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Abstract

Cosmological solutions of a toy homogeneous isotropic universe filled with a superfluid Bose condensate described by a
complex scalar field (with relativistic barotropic fluid interpretation) are studied. The eigenvalues of the tangent map for the
resulting Hamiltonian system are used to classify the phase space regions and to understand the typical toy-universe evolution.
After a transient, inflation is obtained in the hyperbolic (real eigenvalues) region. This new independent eigenvalue-based
inflationary criterion is shown to be compatible and complementary to the standard slow roll-over conditions. For the later evo-
lution of the toy-universe, a family of adiabatic trajectories oscillating about a conventional cosmology filled with a relativistic
fluid is obtained once the system falls into the elliptic (imaginary eigenvalue) regions. The corresponding thermodynamic
functions are computed. © 2000 Elsevier Science B.V. All rights reserved.

PACS:98.80.Hw; 98.80.Cq; 05.30.Jp; 47.37.+q
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1. Introduction

In a purely Galilean framework, the correct tool to describe a Bose condensate of scalar particles is naturally
quantum field theory. It turns out that at vanishingly small temperature and for enough bosons present in the
condensate, the system can be efficiently modeled by introducing a complex time-dependent wave-function (or first
quantized field), which describes the common state of all bosons in the condensate and whose time-evolution is
determined by the Gross–Pitaevskii [1,2] equation, also called the nonlinear Schrödinger equation. Since a Bose
condensate is superfluid [3], it is natural to expect that one can recover from such a pure quantum formulation
another hydrodynamical one, where the state of the condensate and its dynamics are described in a manner more
congruent with the formalism usually adopted to study nondissipative barotropic fluids. This can be done by using
the Madelung transformation [4,5] and is now well documented in the literature [6,7].
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Some years ago, Debbasch and Brachet [8] started from the assumption that there were regions of space–time
where a relativistic Bose condensate could be correctly modeled using a single classical complex scalar field
and developed a relativistic analog of the Madelung transformation. More precisely, it was shown that, under
a wide variety of circumstances, a charged Klein–Gordon field could be described in terms of usual relativistic
hydrodynamical variables (spatial particle density, enthalpy density, 4-velocity, etc.) and that these variables obey
dynamical equations which are essentially identical to those of an ideal barotropic relativistic fluid, except for
supplementary quantum pressure terms, which are also present in the Galilean limit. Several solutions of these
equations were also examined, using both field theoretical and hydrodynamical languages. Among them are, in
Minkovski space–time, the exact vortex solution as well as linear and nonlinear acoustic waves, and in curved
space–time, the static boson star, sometimes called soliton star.

A very special class of solutions to Einstein equations is constituted by the so-called cosmological solutions.
Their frequent study is perhaps due to their physical importance and also to the fact that their simplest embodiment,
the isotropic cosmologies, exhibit enough symmetry to be mathematically relatively tractable and still exhibit some
nontrivial properties. It seems therefore quite natural to investigate, in both field theoretical and hydrodynamical
languages, what kind of isotropic “universe” a charged Klein–Gordon field coupled to Einsteinian gravity could
produce. This will mainly be done in the spirit of dynamical system theory. The links of this paper with physical
cosmology will be discussed in Sections 4 and 5.

This paper is organized as follows. In Section 2, we derive the equations that are to be investigated. Section 3
introduces the main theoretical tool that will be used to qualitatively characterize the solutions of the cosmological
equations and offers a generic picture of their possible behavior. Section 4 is devoted to a more thorough investigation
of two important stages in the evolution of the toy-universe. In Section 5, we discuss our results and their links with
the existing literature.

Finally, Appendix A rapidly reviews the correspondence between the field theoretical language used throughout
the paper, and the hydrodynamical language, of interest for the physical interpretation of solutions discussed in
Section 4.

Notation. Throughout this paper, the signature of the metricg is conventionally chosen to be negative and the
physical dimension of ds2 = gµν dxµ dxν will be [ds2] = L2.

2. Definition of the model

In this section, we present the main elements of the model, first for an arbitrary metric and field, and then
for the particular case (relevant for a toy-cosmology) of the Friedman–Robertson–Walker (FRW) metric with a
homogeneous field.

2.1. Fundamentals

In a general relativistic framework, we will consider the following Hilbert action for a complex scalar field8

minimally coupled to the metricg [8,9]:

A = 1

c

∫ √
−g̃ d4x

(
L− c4

16πG
R

)
, (1)

where the Lagrangian density is given by

L = 2α2∇µ8∇µ8∗ − 2αf (|8|2), (2)
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with G the Newton gravitational constant,c the speed of light,̃g the determinant of the metric tensor andR the
scalar curvature of the Riemannian connection (Ricci’s scalar) [9]. In the case of a Bose condensate of particles of
rest massmb, the real positive constantα is given byα = ~/2mb with dimension [α] = L2T−1. Requiring for the
action that [A] = ML 2T−1 yields for the dimension of the matter field [|8|2] = ML−3. It is easy to show that, with
these definitions, we have [f (|8|2)] = ML−3T−1.

In (2), the nonlinear character of the associated equations of motion for the scalar field8 is contained in the
polynomial functionf . We definef (r2) by

f (r2) = c6

8Gα3

n∑
i=1

fi

(
4Gα2

c4
r2
)i

, (3)

where the constantsG, c andα have been set so that thefi are adimensional constants. In (3), the vacuum energy
has been set to zero:f (0) = 0. This amounts to considering that no space–time curvature is induced byL when
8 = 0. Note that the constantG cancels out only in the first term off .

In order to push literal calculations as far as possible, we will sometimes particularizef to the following simpler
form:

f (r2) = c2

2α
f1r

2 + 2Gα

c2
f2r

4. (4)

As we never consider in this paper nontrivial (i.e. symmetry breaking, Higgs-like) potentials, the essential content of
our results will not depend on thef2 term. Note that the formulas considerably simplify whenf2 = 0. However, we
will retain a nonzerof2 term in order to take into account generic nonlinear effects in the nonlinear Klein-Gordon
(NLKG) equation.

The equation of motion for the matter field can be found by extremizingA with respect to8∗. This yields the
NLKG equation (with polynomial nonlinearity):

α∇µ∇µ8 + 8f ′(|8|2) = 0. (5)

The standard (linear) Klein–Gordon equation for particles without interaction is recovered from (5), keeping in mind
thatα = ~/2mb, by settingf1 = 1

2 and all otherfi ’s to zero. However,f1 will be kept as an arbitrary parameter
throughout the text and fixed tof1 = 1

2 only to evaluate the results.
ExtremizingA with respect to the metric furnishes the Einstein equations:

Rµν − 1
2gµνR = 8πG

c2
T µν, (6)

where

T µν = 2α2(∇µ8∗∇ν8 + ∇µ8∇ν8∗) − Lgµν (7)

is the energy–momentum tensor andRµν the contracted Ricci tensor [9]. This last expression, together with (5),
completes the set of dynamical equations stemming from the stationary action principle for (1).

The complex field8 is related to the real fields2 andr by

8 = r exp

(
i
2

2α

)
. (8)

As we describe in Appendix A, this expression can be used to produce a formal correspondence to a relativistic
hydrodynamical flow through the Madelung transform [4,5]. In what follows, all expressions are given in terms of
2 andr.
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2.2. Cosmological equations

In this section we consider the cosmological equations corresponding to our model of scalar field. Using the
general relations found in the previous section, we will compute the characteristical scales and equations of motion
for this particular toy-model.

Consider a homogeneous and isotropic FRW space–time model [9]:

ds2 = c2 dt2 − a2(t)

(
dl2

1 − k l2
+ l2 dθ2 + l2 sin2θ dφ2

)
, (9)

wherea(t) is the characteristic length scale of the universe andk is a discrete parameter that will control whether
(9) produces a closed (k = 1), a flat (k = 0) or an open (k = −1) universe.

Let us now find the dynamical equations fora, r and2. Inserting the homogeneous field8 and the FRW metric
into (5), the real part of the product of the NLKG equation by8∗ produces

rtt + 3
at rt

a
− r

22
t

4α2
+ c2

α
r f ′(r2) = 0, (10)

while, by using the imaginary part, we obtain

∂t (a
3r2 2t) = 0, (11)

from which we define the conserved quantity52 as

52 ≡ 1

c2
a3r2 2t . (12)

Einstein equations become

a2
t

a2
+ kc2

a2
= 16πGα2

3c4

(
r2
t + r2 22

t

4α2
+ c2

α
f (r2)

)
, (13)

2
att

a
+ a2

t

a2
+ kc2

a2
= −16πGα2

c4

(
r2
t + r2 22

t

4α2
− c2

α
f (r2)

)
. (14)

Eqs. (10), (11), (13) and (14) form a seemingly overdetermined system for only three independent variables (a, r

and2). To better understand the status and compatibility of these equations, let us consider the dynamical system
defined by the Lagrangian

L = 3ca

8πG
(−a2

t + kc2) + 2α2a3

c3

(
r2
t + r2 22

t

4α2
− c2

α
f (r2)

)
, (15)

which stems from the actionA when the matter field variables and the FRW metric are directly replaced into (1).
Eq. (11) then results from the Noether conserved current associated with theU(1) invariance ofL while (13) is
obtained by setting to zero the conserved “energy”E = ∂L/∂qt −L. Eqs. (10) and (14) are obtained by combining
the Euler–Lagrange equations forL with (13). The conservation equations (11) and (13) must therefore be compatible
with (10) and (14), which stem from the equations of motion. Note that theE = 0 condition has to be imposed as
a constraint, compatible with the dynamics stemming from (15). The reason being that thegtt variation in (1) has
no equivalent in (15).

Before we continue any further, let us introduce the natural units of the toy-model. Usingα andc, the length and
time units can be respectively defined byL = 2α/c andT = 2α/c2. For a Bose–Einstein condensate with bosons



24 C. Huepe et al. / Physica D 144 (2000) 20–36

of massmb, we haveα = ~/2mb, and soL andT are respectively given by the Compton length (lc = ~/mbc) and
time (tc = ~/mbc

2). A second natural scale is fixed by the gravitational constantG in the Riemannian curvature
term ofA. We have chosen to define the mass unit asM = 2αc/G in order to deal with the Compton scale and
G in the same system of units. For a Bose condensate,M = M2

p/mb (whereMp = √
~c/G is Planck’s mass). We

therefore define the following adimensional quantities that will be systematically used in Sections 3 and 4:t̃ = t/T ,
ã = a/L, r̃ = rL3/M, 2̃ = 2T/L2 and5̃2 = 52/M. In these units, the adimensional constants{fi} are the only
parameters of the model.

3. Phase space partition using eigenvalues of the tangent map

This section is devoted to the study of the dynamical system defined by the Lagrangian in (15) that describes
the evolution of the toy-cosmology presented in Section 2. A partition of the phase space using the eigenvalues of
the tangent map is presented. The resultingeigenvalue-criteriaregions are then used to describe the evolution of a
characteristic trajectory. From now on, we will use the adimensionalized variablest̃ , ã, r̃, 2̃ and5̃2. However, the
tildes will be omitted to simplify the notation.

3.1. Eigenvalues of the tangent map

While studying the vorticity (passive scalar) field equations in an inviscid, incompressible two-dimensional fluid,
Weiss stressed the importance (for the qualitative understanding of trajectories) of the linearized evolution equation
for the separation between nearby points in the phase space [10]. The eigenvalues of the tangent map allowed
him to distinguish between hyperbolic and elliptical regions (corresponding to a pair of respectively real or purely
imaginary eigenvalues). He observed that in the real eigenvalue regions the vorticity field is stretched in one direction
while compressed in the perpendicular one, and that in the imaginary eigenvalue regions the vorticity tends to rotate
without major deformations. The purpose of the rather long computation that is carried out in this section is to
generalize this procedure to the dynamical system defined by the Lagrangian (15) in order to partition the associated
phase space into four eigenvalue-criteria regions.

From (15) and the conserved quantity52 in (12), we obtain the following adimensionalized Hamiltonian:

H = − 3k

8π
a − 2π52

a

3a
+ 52

r

2a3
+ 52

2

2a3r2
+ a3f (r2). (16)

Here, the canonical conjugate momenta are defined by:5r = ∂L/∂rt = a3rt and5a = ∂L/∂at = −3aat /4π.

The HamiltonianH thus provides a four-dimensional dynamical system fora, r, 5a and5r . This system is further
constrained to evolve only on the hypersurface defined byH = 0 as explained in the preceding section. We will
use this constraint to represent the phase space in a three-dimensional volume by eliminating one of the degrees of
freedom. We therefore define areducedphase-space having as coordinatesa, r andrt .

Using simplectic coordinates and definingη = (a, r, 5a, 5r), Hamilton’s equations becomėηi = Jik∂H/∂ηk

(the dot indicates a time derivative), where

J =
[

0 I

−I 0

]
(17)

with I the 2× 2 identity block matrix. The elements of the tangent map matrixM of the vector fieldη̇i are then
given by

Mij ≡ ∂η̇i

∂ηj

= Jik
∂2H

∂ηj∂ηk

. (18)
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The separation vector between two (asymptotically close) points in the phase spaceδηi follows the dynamical
equationδη̇i = Mij δηj . Therefore, in the special case whereM is constant, real eigenvalues correspond forδηi to
an exponential behavior in time, while imaginary eigenvalues ofM correspond to an oscillatory dynamics. In the
general case, for a nonconstantM, the trajectories will behave exponentially in regions where the eigenvalues are
real, and will be of an oscillatory nature in regions where the eigenvalues are imaginary.

The four eigenvalues for the tangent map matrix of the Hamiltonian (16) are obtained (after a straightforward
calculation) as the solutions of the following characteristic bisquare polynomial expression:

λ4 + Bλ2 + C = 0, (19)

whereB andC are given by

B = 1

a6

(
−8π52

r + 52
2

(
3

r4
− 8π

r2

))
+
(
−8πf + 2f ′ + 4r2 f ′′

)
, (20)

C

4π
= 352

2

a12

(
−52

2

r6
+ 52

r

r4

)
+ 52

2

a6

(−6f

r4
+ 8f ′

r2
− 8f ′′

)

+52
r

a6
(2f ′ + 4r2 f ′′) − 4(ff ′ − 3r2f

′2 + 2r2 ff ′′). (21)

We now proceed to explain in detail the bifurcations of the four solutions (λ+, λ−, λ̃+, λ̃−) of Eq. (19), since they
will turn out to be of paramount importance to classify the phase space regions. Note that these are the standard
bifurcations of a 4× 4 symplectic matrix [11]. The explicit solutions of (19) are

λ± = ±(−B + √
B2 − 4C)1/2

√
2

, λ̃± = ±(−B − √
B2 − 4C)1/2

√
2

. (22)

WhenB2 − 4C ≥ 0, both parentheses take real (positive or negative) values. All eigenvalues are then purely real or
purely imaginary and symmetric with respect to the axes on the complex plane. These configurations are pictured
in Fig. 1 and labeled by i, ii or iv. It is clear that at least one pair of eigenvalues must vanish at the frontiers between
i, ii and iv, which will therefore be found at the surfaces whereC = 0. On the other hand, whenB2 − 4C < 0,

Fig. 1. All possible distributions on the complex plane of the four eigenvalues of the tangent map (see Eqs. (18), (19) and (22)): two real and
two imaginary (i), four purely imaginary (ii — elliptic), four complex (iii) or four real (iv — hyperbolic) eigenvalues. Note that all possible
configurations are symmetric with respect to the axes (see Section 2).
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the parentheses take complex values so the eigenvalues cannot be situated on (but are still symmetrical with respect
to) the axes in the complex plane. In this case (labeled by iii in Fig. 1), the frontier is directly given by the surface
B2 − 4C = 0. Let us point out that the symmetry with respect to the complex plane axes exhibited by all four
eigenvalue configurations is due to the Hamiltonian nature of the problem. Indeed, sinceH, η andM are real,
eigenvalues must appear in complex conjugate pairs. Furthermore, the time reversal symmetry of the Hamiltonian
indicates that ifλ is an eigenvalue,−λ is also an eigenvalue.

In order to provide explicit expressions for (20) and (21), we use the minimal nonlinear form forf given in (4):
f (r2) = f1r

2 + f2r
4. We representB andC in the reduced phase-space coordinatesa, r andrt :

B = −8πr2
t + 52

2

a6

(
3

r4
− 8π

r2

)
− 8πf2r

4 + (12f2 − 8πf1) r2 + 2f1, (23)

C

4π
=
(

352
2

a6 r4
+ 12f2 r2 + 2f1

)
r2
t − 354

2

a12r6
+ 52

2

a6

(
2f1

r2
−6f2

)
+ 2r2(6f2 r4 + 10f1f2 r2 + 4f 2

1 ). (24)

We can then solveC = 0 andB2−4C = 0 forrt to find explicitly the frontiers between the various eigenvalue-criteria
zones. We will not reproduce here the resulting literal expressions since they are extremely long and can be trivially
recovered from (23) and (24).

3.2. Partition of the phase space

In Fig. 2, we show the frontiers on the reduced phase-space forf1 = f2 = 1
2 and52 = 10 first in the 3D space

(Fig. 2A) and then on three cuts at fixeda = 1, a = 5 anda = 1000 (Fig. 2B–D, respectively). Each resulting
region contains one of the different eigenvalue distributions (i, ii, iii or iv) pictured in Fig. 1 and has been labeled
consequently. In Fig. 2A, the light surface correspond to the solutions ofC = 0, and the two dark surfaces to
B2 − 4C = 0. In Fig. 2B–D, the dashed lines denoteC = 0 and the solid ones,B2 − 4C = 0.

In Fig. 2A, we definea ∼ aTI as the minimuma for which the elliptic zone ii contains a region withrt = 0.
It is apparent that there exists atransition intervalfor a ∼ aTI , where all zones form an entangled 3D structure.
For a < aTI , the reduced phase-space is essentially partitioned by theC = 0 surface, and fora > aTI , by the
B2 − 4C = 0 surface. From (23) and (24) it is straightforward to show thataTI is given by52/a3

TI = ρc(f1, f2),
whereρc(f1, f2) is a long polynomial expression inf1 andf2. By evaluatingρc(f1, f2) we obtainaTI ≈ 2.6 for
the52 = 10 case shown in the figure.

As a goes to 0, thert coordinate of all surfaces diverge, following the self similar lawrt (a, r) ∼ (52/a3)r̃t (r),
wherer̃t (r) are functions depending only onr that define the frontier surfaces on the(a, r) plane. Their shape is
shown in Fig. 2B. In particular, theC = 0 surface follows the simple relationrt = ±52/a3r. At the transition
interval (a ∼ aTI ), zone iii reaches ther axis and theC = 0 frontier becomes the nearest to ther = 0 axis (see
Fig. 2C). Finally, fora > aTI , the conditionC = 0 is only verified in a small region for which ther coordinate goes
to 0 asr ∼ 52/a3 (see Fig. 2D). Only theB2 − 4C = 0 surface is therefore relevant. Fora � aTI , we can neglect
the52/a3 terms to obtain the following expression for this surface:

r2
t = f2r

4 +
(

−f1 + 3f2

π

)
r2 + f1

2π

±
√

6

28π3

[
f 2

1

8π
+
(

f1 + 3f2

2π

)
f1r

2 +
(

f1 + 9f2

2π

)
f2r

4 + 2(1 − f2)f2r
6

]1/2

. (25)

The zeros of (25), as can be seen by inspection of Fig. 2D, define two relevant density scales (rC1 andrC2) for r.
For the parameters of Fig. 2 we numerically computerC1 ≈ 0.093 andrC2 ≈ 1.37.
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Fig. 2. Eigenvalue distribution in the reduced phase-space (labeled i–iv as in Fig. 1) with52 = 10,f (r2) = f1r
2 + f2r

4 andf1 = f2 = 1
2 .

(A) Frontiers of zone iii (gray surface) and between zones i and ii or zones i and iv (white surface). Thert < 0 region (not shown) is symmetric
with respect tort = 0 to the presented half-space. (B)–(D) Two-dimensional cuts of the reduced phase-space A witha = 1 (B), a = 5 (C) and
a = 1000 (D). The solid lines represent the gray frontiers and the dashed lines the white surface. The (normalized) vector field is the projection
of the flow direction of trajectories on the B, C and D planes.

The analysis of the eigenvalue-criteria regions therefore provides us with three characteristic scales as functions
of f1 andf2: 52/a3

TI , rC1 andrC2.
It is interesting to point out that the speed of soundcs and the coherence lengthξ , that we introduced in Eqs. (A.14)

and (A.15) as the two natural constants appearing in the hydrodynamical interpretation, do not fix any of these
characteristic scales. Furthermore, since they both depend onr, they cannot fix any scale on the reduced phase-space.
Therefore, they do not parametrize the eigenvalue regions as one could have expected.

3.3. Forbidden zone

Another important feature of the reduced phase-space is the well-known forbidden zone [12,13] that appears
whenk = +1. It is defined as the region where theH = 0 condition cannot be satisfied. It can be found directly
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Fig. 3. Qualitative disposition of the forbidden region on the reduced phase-space withf (r2) = f1r
2 + f2r

4, f1 = f2 = 1
2 and52 = 0 (A) or

52 6= 0 (B). In (B),Zr
max andZa

min indicate ther anda limits of the forbidden region. The dashed line plotted on ther = 0 surface shows the
position of the minimumr0 of the potentialVeff (r

2) in Eq. (26).

from (16) by considering the zone where the effective potential

Veff(r
2) = − 3k

8π
a − 2π52

a

3a
+ 52

2

2a3 r2
+ a3 f (r2) (26)

is lower or equal to zero, a condition equivalent to

r2
t + 52

2

a6 r2
+ 2f (r2) <

3

4πa2
. (27)

In Fig. 3, we picture the forbidden zone on the reduced phase-space forf (r2) = f1r
2 + f2r

4 with f1 = f2 = 1
2.

If 52 = 0 (Fig. 3A), the forbidden zone exists for all values ofa, shrinking as the sizea of the toy-universe grows
with expansion. If52 6= 0 (Fig. 3B) the forbidden zone is bounded byZmin

a andZmax
r (see figure).

In Fig. 3B, we have also plotted a dashed line indicating the position in the(a, r) plane of the minimum of
Veff(r

2). Note that this line must meet the surface of the forbidden zone ata = Zmin
a since the minimum ofVeff(r

2)

must be the first point to reachVeff(r
2) ≤ 0 as we varya. Let us now findZmin

a andZmax
r as functions of52. For

f (r2) = f1r
2 + f2r

4, using (27) and its derivative, we find thatrmax follows:

f1 Zmax
r + f2(Z

max
r )3 = (4π)−3/25−1

2 . (28)

When the right-hand term is small,r is bounded by(4π)−3/2/f152 and we can computeZmin
a by approximating

f1r
2 + f2r

4 ≈ f1r
2 in (27) to obtain

Zmin
a ≈ 27/2π

3
f

1/2
1 52. (29)

If k = 1, the maximum expansion of the toy-universe will be on the border of the forbidden zone (there,at = 0).
Therefore,Zmin

a is the characteristic length scale related to the maximal expansion of the toy-universe.
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4. The hyperbolic and the elliptic regimes

In this section, we describe the typical trajectories using our eigenvalue-criteria regions. The flow field shown in
Fig. 2B and numerical integration of several trajectories (data not shown) indicate that if52 6= 0 and52/a3 �
ρc(f1, f2), numerical trajectories starting in zones i, ii or iii are immediately ejected to the hyperbolic (real eigen-
values) region iv. On the other hand, it is shown in Fig. 3 that if52 = 0 the forbidden region will contain all i, ii
and iii zones whena → 0. The early evolution of a typical trajectory is therefore expected to occur within region
iv. This hyperbolic region will be studied in the first part of this section.

Asa(t) grows, the trajectory will eventually enter zone iii and continue to approach zone ii. Once inside the elliptic
zone ii, the trajectories remain within, oscillating about ther = rt = 0 axis (see Fig. 2D). This later evolution of
the toy-cosmology is studied in the second part of this section.

4.1. Inflationary behavior in the hyperbolic zone

Several observational facts in physical cosmology suggest that, during an early period of evolution, the universe
grew in a nearly exponential way (a(t) ∼ ekt) [9,14,15]. This inflationary period is usually introduced in standard
model cosmologies through theslow roll-over (SRO) conditions which consist in neglectingrtt and imposing a
so-called vacuum-dominated energy [15,16]. To impose a vacuum-dominated energy in our system, we neglect all
terms in the Hamiltonian (16) other than the expansion term 2π52

a/3a and the potential energy terma3f (r2).
On the other hand, in terms of the eigenvalue-criteria regions, we expect exponential behavior to happen mainly

in zone iv, where all eigenvalues are real. We thus obtain a new criterion for inflation which will be compared in the
present section to the standard SRO conditions.

Let us first express the SRO conditions in terms of the reduced phase-space coordinatesa, at andrt . Defining
δ1 ≡ rtt, we can use the adimensionalized form of relations (10), (12) and (13) to mapδ1 to the reduced phase-space
obtaining

r4
t +

(
2f − 3k

4π a2
+ 52

2

a6 r2

)
r2
t − 1

12π(1 + δ1)2

(
2r f ′ − 52

2

a6 r3

)2

= 0. (30)

In the limit, wherertt = δ1 = 0, and the terms52/a3 and 3k/4πa2 are neglected (considering that they have
vanished due to the exponential behavior ofa(t)), (30) is reduced to

r2
t = −f (r2) +

√
f (r2)2 + r2

3π
f ′(r2)2. (31)

The second SRO condition consists in supposing that the energy in (16) is dominated by the vacuum energy. It can
be directly mapped to the reduced phase-space as

δ2 ≡ r2
t

2f (r2)
� 1. (32)

We are now in position to compare the SRO conditions [15] to the eigenvalue-criteria regions.
In Fig. 4, the evolution on the(r, rt ) plane of a typical trajectory (dotted line ABCD), withf (r2) = f1r

2 +f2r
4,

f1 = f2 = 1
2 and52 = 0, is shown. The SRO conditions, (31) and (32) (where the tolerance for condition (32)

was fixed toδ2 = 0.1), are respectively labeled as SR1 and SR2. They are obeyed by trajectories in the vicinity of
SR1 and between SR2 and ther axis. The eigenvalue-criteria zones are noted as ii–iv, following the convention in
Fig. 1.
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Fig. 4. Projection to the(r, rt ) plane of the reduced phase-space with52 = 0, f (r2) = f1r
2 + f2r

4 andf1 = f2 = 1
2 . The solid lines are the

frontiers between ii–iv eigenvalue-criteria regions (as labeled in Fig. 1). The standard SRO conditions for inflation are satisfied when a trajectory
is found near the SR1 curve and between SR2 (plotted here for a smallδ2 = 0.1 tolerance criterion — see Eq. (32)) and ther axis. The dotted
line shows the numerical time integration of Eqs. (10) and (14) producing a typical trajectory that first follows an adaptation transient (AB), then
an inflationary regime (BC), and finally enters transition zone iii. Time integration was stopped shortly after D for numerical reasons.

The ABC segment of the trajectory occurs within the hyperbolic zone iv. According to the eigenvalue-criteria, it
is expected to follow an exponential behavior. Through numerical integration we observe that all typical trajectories
in this zone will first adjust to the inflationary regime after transient (segment AB on the displayed trajectory).
Indeed, due to the stretching and contracting eigenvector directions corresponding to the real eigenvalue pairs that
characterize zone iv, typical trajectories will closely pack in the vicinity of the SR1 curve (segment BC on the
displayed trajectory). The hyperbolic zone iv therefore contains the inflationary trajectories, and defines a region
where the typical evolution will rapidly lead the system to an inflationary behavior.

As the evolution continues, the trajectory enters zone iii where all eigenvalues have nonzero real and imaginary
parts. In this zone, the eigenvalue-criteria does not give a clear indication on the expected type of evolution.
Nevertheless, it is reasonable to consider this zone as a transition region where trajectories exit from inflation,
since the system continues to evolve towards the purely imaginary eigenvalue zone ii. On the other hand, the SRO
conditions does not determine a precise criterion to exit inflation since we can arbitrarily fix the toleranceδ2 on
condition (32). In Fig. 4,δ2 = 0.1 fixes the exit from inflation at point D, whileδ2 = 0.05 would shift the intersection
between SR1 and SR2 to the right, and make the exit from inflation to be at point C. However, it is clear that as
the trajectory approaches zone ii, it no longer follows an inflationary behavior since we then haveδ2 ∼ 1. Zone iii
therefore determines, without theδ2 tolerance ambiguity appearing in the SRO conditions, a transition zone where
the trajectory exits from inflation.

4.2. Adiabatic invariance in the elliptic zone

In this section, we study the typical evolution of the toy-cosmology within the elliptic zone ii. We will consider
trajectories in the phase space that present fast oscillations about the minimum of the potential energyVeff(r

2)

defined on relation (26), whilea grows adiabatically. If52 6= 0, the minimum fixes the amplitude of the complex
field to r = r0. We will consider in this case (that will be studied in the first part of this section) nearly circular
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trajectories on the complex plane, in which the phase2(t) turns whiler ∼ r0. If 52 ≈ 0, the minimum occurs
close tor = 0. This case (that will be studied in the second part of this section) corresponds to highly elliptical
trajectories of the field8(t) on the complex plane.

4.2.1. Nearly circular trajectories
When52 6= 0, the potential energyVeff(r

2) in (26) presents a minimum atr = r0. In the minimal nonlinear
case wheref (r2) = f1r

2 + f2r
4, r0 satisfies

2f2r
6
0 + f1r

4
0 − 52

2

2a6
= 0. (33)

Rather than writing all exact solutions forr0 of the bicubic equation (33), we find the relevant solution when
52/a3 � 1. This condition is satisfied for the late evolution of the toy-cosmology. The series expansion on52/a3

gives

r2
0 = 52√

2f1a3
− f2

2f 2
1

(
52

a3

)2

+ O

(
52

a3

)3

. (34)

We consider trajectories that present small oscillations aboutr0. The frequencyωc of this oscillations is computed
using (16), (26) and (33). One finds

ω2
c = 8f1 + 24f2 r2

0 . (35)

Using the adiabatic invariants theory [17] one can relate the amplitude of small oscillationsAc to the characteristic
size of the toy-universea. For a slowly varyinga, the adiabatic invariant is

Ic = 1
2a3ωcA

2
c. (36)

Therefore, sinceIc is approximately constant, the amplitude of harmonic oscillations vanishes asa−3/2.
By comparing to the leading term in (34), we see that asa grows,Ac andr0 vanish with the same law. The

relative size of the perturbations with respect to the radius of the quasi-circular orbits traced by8(t) on the complex
plane remains constant. This is probably not true when we consider higher than harmonic terms in the potential,
which cannot be neglected for large oscillation amplitudes. If higher order effects makeAc vanish faster thana−3/2,
elliptic 8(t) orbits would be circularized asa grows. A detailed study of these effects will be left for a future work.

In Fig. 5A, the solid line is a plot ofr(t)− r0(t) (i.e. the oscillations ofr about the minimum of the potentialVeff )
for a typical numerical trajectory with52 = 10,f (r2) = f1r

2 + f2r
4, 52/a3 � ρc(f1, f2) andf1 = f2 = 1

2.
The dotted vertical lines are traced every half-period associated to the frequencyωc = 2 obtained from (35). The
dashed curve shows a fit of the amplitudeAc(a), using the lawAc(a) = Kca

−3/2, as suggested by relation (36). Both
analytical results are shown to give good approximations of the period and amplitude of the numerical trajectory.

We now interpret the nearly circular orbits in terms of the hydrodynamical description presented in Section 2, by
computing (A.19)–(A.22). For an ideal circular orbit (withAc(a) = 0 andr(t) = r0) we obtain

Pbar = f2r
4
0, (37)

εbar = 52
θ

a6r2
0

− f2r
4
0 = 2f1r

2
0 + 3f2r

4
0, (38)

Pdis = εdis = Tdis = 0.

Since all the dispersive terms vanish, the circular orbits regime is equivalent to a standard cosmology filled with a
perfect barotropic fluid (see Section 2).
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Fig. 5. Solid lines: oscillations of the amplituder(t) about the minimum of the potentialVeff (r
2) obtained by the numerical time integrations of

Eqs. (10) and (14), withf (r2) = f1r
2 + f2r

4, f1 = f2 = 1
2 . In (A), we show the nearly circular case with52 = 10, where the minimum of

Veff (r
2) is atr = r0, as computed from (33). In (B), we show the highly elliptic regime limit with52 = 0, where the minimum ofVeff (r

2) is at
r = 0. Vertical dotted lines: analytical approximation of the half-period of the frequency given by Eqs. (35) and (42). Dashed lines: analytical
fits of the amplitude of small oscillations using thea(t)−3/2 law obtained by using the adiabatic invariants (see text).

An exact implicit expression for the equation of state can be found by solving Eqs. (37) and (38). We find

Pbar + 2

3
f1

√
Pbar

f2
= εbar

3
. (39)

This relation describes the fluid’s thermodynamical behavior on the circular orbits regime.
An approximate expression of the fluid’s equation of state after a large expansion (5θ/a

3 � 1) is found by
expanding (37) and (38) in powers of5θ/a

3. One obtains

Pbar = f2

2f1

(
5θ

a3

)2

+ O

(
52

a3

)3

, (40)

εbar =
√

2f1

(
5θ

a3

)
+ f2

2f1

(
5θ

a3

)2

+ O

(
52

a3

)3

. (41)

To leading order, these relations reduce to the equation of state for a dust gasPbar = 0. This is in agreement with
what one expects for a toy-universe after a large expansion, since then the density is low, so the interactions can be
neglected and the energy is dominated by the rest mass.

4.2.2. Highly elliptical trajectories
We will focus here on the limit of highly elliptic (52 ≈ 0) orbits. In this case, the minimum of the potential

Veff(r
2) in (26), withf (r2) = f1r

2 + f2r
4, is trivially found to be atr = 0. Repeating the same computations as

in Section 4.2.1, the oscillation frequency of highly elliptical orbits is

ω2
e = 2f1, (42)

while the adiabatic invariant is

Ie = 1
2

√
2f1a

3A2
e, (43)
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so the amplitude of harmonic oscillationsAe also vanishes asa−3/2. In Fig. 5B the solid line shows the oscillations
of r(t) for a typical numerical trajectory with52 = 0,a � 1,f (r2) = f1r

2 + f2r
4 andf1 = f2 = 1

2. The dotted
vertical lines are traced every half-period associated to the frequencyωe = 1 obtained from (42). The dashed curve
shows a fit of the amplitudeAe, using the lawAe = Kea

−3/2, as suggested by relation (43). Both analytical results
are shown to give good approximations of the period and amplitude of the numerical trajectory.

Finally, we search for an hydrodynamical interpretation of the highly elliptic orbits by taking the time average of
(A.19)–(A.22) over the oscillations of the rapid dynamical variabler(t). By directly replacingr(t) = Ae cos(ωet)

we computeωe
∫ 2π/ωe

0 dt/2π (which we will denote by〈·〉). We obtain

〈Pbar〉 = 3
8f2A

4
e, 〈εbar〉 = −3

83f2A
4
e, 〈Pdis〉 = 〈εdis〉 = 0, 〈Tdis〉 = 1

2A2
eω

2.

Since〈Tdis〉 dominates whenA0 is small, the quantum pressure effects are important and we cannot identify this
system with a relativistic fluid as we had done in the nearly circular case. This can be related to the fact that, at an
early evolution stage, the quantum terms become important and therefore the complex matter field is not expected
to follow a barotropic fluid behavior.

5. Discussion and conclusions

The purpose of this section is to discuss the general significance of the results obtained through the detailed study
of the toy-cosmology described by the Lagrangian (15). In Section 3, we were able to classify different regions of
the phase space according to the evolution of the separation between nearby points. The classification was made
possible by the determination of the eigenvalues of the tangent map as pioneered by Weiss [10] in a simpler context.
In Section 4, we showed that inflationary behavior occurs in hyperbolic regions, while classical behavior could be
obtained in elliptic regions through an adiabatic approximation. This qualitative picture is expected to be robust in
the sense that the same behaviors will occur even when more complicated field Lagrangians are used. It therefore
seems fit to locate our results in the current panorama of physical cosmology.

Physical cosmology is primarily interested by the large scale structure of the real universe we live in. For various
reasons which need not be reviewed here, many cosmologists have reached the conclusion that our universe might
very well have experienced in the past a phase where all sizes exponentially increased with time (in contradiction
with the predictions of the standard FRW models, where the scale dependence on time obeys a power law). Such a
period is referred to as inflation [9,16]. It is usually supposed that this inflation was driven by some unknown field,
conveniently called inflaton and that, after some time, inflation ceased when the inflaton decayed into some lighter
particles, allowing our universe to enter a FRW phase. In practical calculations, the inflaton is usually taken to be a
real neutral first quantized Klein–Gordon field but the theoretical possibility of generating inflation with other kinds
of matter field has already been mentioned.

From that point of view, it would be tempting to interpret some of the results presented in this paper as a new
implementation of the inflation idea. We do not consider our work that way for the following reasons. For physical
cosmology, studying in detail some solutions of the Einstein equations, albeit cosmological ones, is but one issue.
Physical cosmology has also to cope, inter alia, with high energy physics and quantum gravity on the theoretical
side, and with condensed matter physics and statistical data analysis on the experimental one. Our aim was certainly
not to present some results pertaining to theoretical physical cosmology. We have restricted our attention to a
well-defined problem in theoretical physics, i.e. the study of the generic behavior of solutions to a system of
nonlinear equations which represents, in purely physical terms, the minimal coupling between Einsteinian gravity
and a charged Klein–Gordon field. That this generic behavior seems to include a phase which deserves the name
inflation might be striking, as might be the fact that the system under consideration seems to exit spontaneously from
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that inflationary period. Even if these points can be interpreted as possible hints to some perhaps simpler models of
the early evolution of our universe, the system investigated in this paper is certainly not to be considered as a real
cosmological model but, at best, a toy-model for future realistic cosmologies. It is our feeling that the prevalence
of an inflationary phase followed by a FRW type evolution are best understood with the modern nonlinear concepts
of robustness and genericity.

Appendix A

We will now briefly present a hydrodynamical description of the matter field8. It has been shown in [8,18]
that we can map8 to a set of standard hydrodynamical variables:n (the particle number density or barionic
number density),uµ (the fluid’s 4-velocity),w (the enthalpy density) andP (the pressure). These variables obey
dynamical equations which are essentially equivalent to the ideal barotropic relativistic fluid expressions (except
for supplementary dispersive terms which are commonly called quantum pressure terms). A formal correspondence
between (5) and a relativistic potential flow can be achieved by using the Madelung transform [4,5]:

8 = r exp

(
i
2

2α

)
, (A.1)

where we define

uµ = −∇µ2

(∇β2∇β2)1/2
, n = r2

mbc
(∇β2∇β2)1/2, w = r2(∇β2∇β2). (A.2)

From these definitions we obtain the standard special relativistic condition for potential flows and the conservation
of the current associated to theU(1) phase invariance ofA becomes the usual continuity equation in relativistic
hydrodynamics

∇µ(nuµ) = 0. (A.3)

Using (A.2) and the real part of the product by8∗ of the NLKG equation,1 we find the following expressions for
n andw in terms ofr:

n = r

mbc
(4αr2f ′(r2) + 4α2r∇β∇βr)1/2, w = 4αr2f ′(r2) + 4α2r∇β∇βr. (A.4)

The terms containing∇β∇βr reflect the dispersive nature of the fluid and correspond to the so-calledquantum
pressureterms. If they are neglected, it is possible to deduce from (A.4) the correct expression for the pressure of
the remaining barotropic fluidPbar, making use of the standard thermodynamical relation for systems with vanishing
entropy dPbar = n dh, whereh is the enthalpy per particle (h = w/n). We thus obtain

Pbar = 2α(r2f ′(r2) − f (r2)). (A.5)

It is also convenient to introduce, according to (A.4):

wbar = 4αr2f ′(r2), (A.6)

and the internal energy densityεbar through the usual thermodynamic relation:

εbar = wbar − Pbar. (A.7)

1 The imaginary part gives back Eq. (A.3).
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We are now in position to castT µν in a close-to-standard-relativistic-hydrodynamics form

T µν = (w + wdis)u
µuν − (Pbar + Pdis)g

µν + T µν

dis . (A.8)

The dispersive parts of the enthalpy densitywdis and pressurePdis are then given by

wdis = 4α2r∇β∇βr, (A.9)

Pdis = α2∇β∇βr2, (A.10)

and the only dispersive term in theT µν that does not have a barotropic analog is

T µν

dis = 4α2∇µr∇νr. (A.11)

Finally, we consistently define the dispersive internal energy density as

εdis = wdis − Pdis. (A.12)

The hydrodynamical formulation provides us with a physical interpretation forf1 andf2. From (A.5) and (A.7) we
can see that, to leading order,f1 andf2 fix respectively the internal barotropic internal energy densityεbar and the
barotropic pressurePbar. In the minimal nonlinear case wheref (r2) = c2f1r

2/2α + 2Gαf2r
4/c2, Pbar is simply

given by

Pbar = 4α2G

c2
f2r

4, (A.13)

and thereforef2 determines this equation of state for the barotropic fluid part uniquely. We also obtain from the
hydrodynamical interpretation two characteristic scales that could presumably be relevant to the evolution of the
toy-model studied in Sections 3 and 4: the speed of soundcs and the length scaleξ at which dispersion becomes
noticeable (known as thecoherence length). We can roughly estimate these two quantities using their nonrelativistic
expressionscs =

√
2αr2f ′′(r2) andξ =

√
α/(r2f ′′(r2)) given in [6,7] and obtain, in the minimal nonlinear case

cs = (6f2G)1/2α

c
r, (A.14)

ξ = c

2(f2G)1/2
r−1. (A.15)

Before ending this section, let us point out that the Madelung transform (A.1) can only be used in situations
where the complex matter field8 contains no vortices [8] since the phase2 is not defined whenr = 0. However, it
has been shown in [18] that a phase-amplitude (2, r) representation of the field is not required to definew, P and
ε, thus permitting the hydrodynamical interpretation to be established even in the presence of vortices.

Using homogeneity, we can readily show from (A.2) that for the homogeneous and isotropic cosmology considered
in this paper, the 4-velocityuµ is constant and given byu0 = 1 andu1 = u2 = u3 = 0. In the same way, the
barionic numbern and the enthalpy densityw are given by

n = r2

mbc2
2t, w = r2

c2
22

t , (A.16)

where the subscriptt indicates a time derivative. The continuity equation (A.3) furnishes the conservation relation

∂t (a
3r22t) = 0, (A.17)
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which had already been obtained from the NLKG equation (see Eq. (11)). The conserved quantity52, defined in
expression (12), can therefore be expressed as

52 = mb a3n. (A.18)

Eq. (A.17) amounts to the conservation of the number of particles or barions contained in the characteristic volume
a3. In particular, whenk = 1 (i.e. for a closed and therefore finite universe), the total volume of the universe is
2π2a3, so the total barion numberNb is given byNb = 2π2a3n = 2π252/mb.

We can also derive explicit expressions to be used below for the pressure and the internal energy density. Using
(A.5), (A.6) and (A.7), we obtain

Pbar = 2α
(
r2 f ′(r2) − f (r2)

)
, (A.19)

εbar = 4αr2f ′(r2) − Pbar = 2α(r2 f ′(r2) + f (r2)), (A.20)

while (A.9), (A.10) and (A.12) produce

Pdis = 2α2

c2

(
3

at

a
r rt + r2

t + r rtt

)
, (A.21)

εdis = 4α2r

c2

(
rtt + 3

at

a
rt

)
− Pdis = 2α2

c2

(
3

at

a
r rt − r2

t + r rtt

)
. (A.22)

For the FRW case, we therefore obtain, in the reference frame where the metric takes the form (9), a simple diagonal
form for T µν : T µν = diag(T tt, T ll , T ll , T ll ), whereT ll = Pbar + Pdis andT tt = εbar + εdis + Tdis, with

Tdis = 4α2 r2
t

c2
. (A.23)
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