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Abstract

Moments and probability density functions (PDF) of (absolute value) velocity increments|v(x+`)−v(x)| in turbulence are
linked by simple integral relations. It is shown that the steepest descent method can be applied to evaluate the integrals if the
moments (the absolute value structure functions) obey multifractal scaling laws of the type〈|v(x + `) − v(x)|n〉 = An`

ζn . A
double asymptotic relation then relates the moments to the PDF. The dominant (exponential) terms of the asymptotic relation
naturally yield the Legendre transform that is at the core of the Parisi–Frisch model of inertial-range intermittency. Using
the asymptotic relation, the PDF can be reconstructed from the multifractal exponent spectrumζn and the statistics of large
scale moments. On the basis of experimental results, it is shown that moments are quantitatively represented by multifractal
scaling laws and large scale Gaussian (or quasi-Gaussian) statistics. The large scale at which the statistics are Gaussian (or
quasi-Gaussian) is determined from inertial-range data alone and is of the order of the integral scale for Taylor-scale Reynolds
numbersRλ in the range (300–2200). This representation of moments together with the double asymptotic relations is able
to reconstruct quantitatively the experimental inertial-range PDF. Analytic expressions (She-Lévêque and Log-normal) of
scaling exponents are both shown to lead to reconstructed PDF with systematic deviations from experiment. ©1999 Published
by Elsevier Science B.V. All rights reserved.
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1. Introduction

The existence and characterization of scaling laws in fully developed turbulence has been the object of considerable
interest in the last 50 years. Perhaps the best known example is the famous prediction by Kolmogorov in 1941 (K41)
[1–3] of the scaling of order-n moments of velocity increments over a distance` as`ζn , with ζn = n/3 for n = 2
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andn = 3. This prediction was latter extrapolated to arbitraryn. However, the actual situation is known to be more
complex than this K41 model. In 1962, Kolmogorov and Obukhov [4,5] introduced the log-normal (K62) model
which is defined using a random multiplicative process that was presented as a model of the (random) fluctuating
cascade of energy in turbulence. Although the K62 model is known to lead to inconsistency in incompressible
turbulence in the limit of high Reynolds numbers [6], several other models using the concept of a random cascade
were developed. An example is the 1964 ‘black and white’ model of Novikov and Stewart [7]. A reformulation of the
black and white model using inertial-range quantities, the so-calledβ-model, was proposed in 1978 by Frisch, Sulem
and Nelkin [8]. Independently, at the end of the 1960s, Mandelbrot applied the notion of non-integer Hausdorff
dimension (fractal dimension) to the measure of the sets where energy is dissipated [9,10]. A few years later, several
experimental teams measured the exponentsζn, for highn-vaues [11–13]. These experiments showed that neither
the log-normal nor theβ models were adequate. In 1985, in order to interpret the experimental results, Frisch and
Parisi [14] introduced the multifractal model that represents the exponentsζn as the Legendre transform of a function
µ(h) = 3 − D(h), interpreted as the Hausdorff co-dimension of a family of sets. Let us recall that the scaling is
termed ‘unifractal’ if the exponentζn is an affine function ofn and ‘multifractal’ if it is a non-linear (convex)
function of n. Our starting point will be the probabilistic reformulation of the multifractal model by Frisch [6],
which gives for the velocity, a formulation analogous to that called ‘Cramér renormalization’ by Mandelbrot [15].

The main purpose of the present paper is to quantitatively reconstruct the PDF of velocity increments in turbulence
from the known values of the scaling exponentsζn. Such a reconstruction is nontrivial. Indeed, the probabilistic
reformulation is known to put some constraints on the PDF but not to determine it in a unique way (see [6], p. 194,
note 44). Nevertheless, reconstruction is possible because of two properties. First, the large scale moments follow
Gaussian (or quasi-Gaussian statistics). Thus, it is possible to know the moments at all (inertial) scales by using
both the scaling laws (with knownζn) and the large scale statistics. Second, using multifractal scaling, it is possible
to asymptotically evaluate the integrals that relate moments to PDF. The resulting asymptotic formula is used to
reconstruct the PDF.

The asymptotic formula is obtained in the following way. The moments are linked to the PDF by a Mellin transform
that is equivalent, after a logarithmic change of variable, to a two-sided Laplace transform. The Laplace transform
can be inverted in the complex plane by a Fourier transform. Both the Laplace and the Fourier transforms can be
evaluated asymptotically in the limit` → 0, using the Laplace and steepest descent methods, respectively. (Here,`

is the spatial scale associated with the velocity increments.) Note that Kalilasnath, Sreenivasan and Stolovitsky [16]
have pursued a similar objective in terms of combining multifractal scaling with Gaussian statistics of a stochastic
multiplier at the large scales to obtain the PDF of velocity increments. However, they did so using a specific
multifractal model, without the benefit of a general asymptotic formula.

The paper is organized as follows. Section 2 is devoted to the theoretical background. We first derive the integral
relations that link moments and PDF. Then the steepest descent and Laplace methods are used to evaluate the integrals.
The dominant terms are shown to be equivalent to the Parisi–Frisch Legendre transform and the consistency of the
sub-dominant terms is explicitly checked. The asymptotic relation is then used to generate PDF from known forms
of the multifractal spectrum, assuming large scale Gaussian statistics.

Section 3 is concerned with the analysis of experimental data. We first briefly characterize the experimental setup
and then apply our new algorithms to the data. The direct asymptotic relation (from PDF to moments) is used to
reproduce the inertial-range moments. We then analyze the large scale moments and give an algorithm to determine
the scale at which they are as close as possible to Gaussian. Small non-Gaussian corrections are then taken into
account. The variation of the Gaussian scale with respect to Reynolds number is determined. The inverse asymptotic
relation (from moments to PDF) is used to reconstruct the PDF. The experimental and reconstructed PDF are then
compared. The reconstruction is also performed with values of the scaling exponents determined by analytic models.

Section 4 has the conclusions and the useful technical computations are given in the Appendix.
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2. Theoretical background

2.1. Integral relations between moments and densities

As the velocity incrementsv(x + `) − v(x) are of either sign, the structure functions which are closely related
to their moments can be defined in several ways. In this paper, we have chosen to use the absolute values of the
increments as in [17].

Thenth order absolute value structure function is defined as

S(n, `) =
∫ +∞

0
pinc(u, `)un du (1)

whereu = |v(x + `) − v(x)| andpinc is the associated probability density function (PDF). Defining the variable

Lu = logu (2)

and the corresponding PDFp(Lu, `) = eLupinc(e
Lu , `), relation (1) can be written as

S(n, `) =
∫ +∞

−∞
enLup(Lu, `) dLu (3)

Note that the absolute value structure functionS(n, `) is well defined for non-integer values ofn. We now define
the characteristic function associated top(Lu, `)

Z(k, `) =
∫ +∞

−∞
eikLup(Lu, `) dLu (4)

The characteristic function and the structure function are thus mathematically related as

S(n, `) = Z(−in, `) (5)

Z(k, `) = S(ik, `) (6)

Using these relations, we can express the PDF as an inverse Fourier transform

p(logu, `) = (2π)−1
∫ +∞

−∞
e−ik loguS(ik, `) dk (7)

Thus, the absolute value structure function evaluated for imaginary arguments is physically related to the char-
acteristic function of the PDF in logarithmic variables.

2.2. Double asymptotic relation

We now suppose that the structure functions follow scaling laws with multifractal exponentsζn, for ` < `G

S(n, `) = An

[
`

`G

]ζn

(8)

where`G is an arbitrary scalèG > ` at this point. Factoring out the log(`/`G) term, we can write the integral
relations (3) and (7) in a form suitable to their asymptotic evaluation. Relation (3), with the notation logu = Lu =
h log(`/`G), gives

S(n, `) = −log

(
`

`G

) ∫ +∞

−∞
exp

{
log

(
`

`G

) [
nh + logp (h log(`/`G), `)

log(`/`G)

]}
dh (9)
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and Eq. (7) yields

p

(
h log

(
`

`G

)
, `

)
= (2π)−1

∫ +∞

−∞
exp

{
log

(
`

`G

) [
−ikh + logS(ik, `)

log(`/`G)

]}
dk (10)

We define the following functions

µ(h, `) = logp (h log(`/`G) , `)

log(`/`G)
(11)

ζ(n, `) = logS(n, `)

log(`/`G)
(12)

and let us assume that they admit finite` → 0 limits

lim
`→0

µ(h, `) = µ(h) (13)

lim
`→0

ζ(n, `) = ζn (14)

Note that the finitè → 0 limit of Eq. (13) is equivalent to the probabilistic reformulation of Frisch (see [6] p.
147, relation (8.50)). The finitè→ 0 limit of Eq. (12) is a simple consequence of Eq. (8).

2.2.1. Steepest descent method
The steepest descent method applied to Eq. (10) (see Appendix A.2) gives the relations

h(n, `) = 1

log(`/`G)

∂ logS(n, `)

∂n
(15)

logp(n, `) = −n
∂ logS(n, `)

∂n
+ logS(n, `) − 1

2
log(2π) − 1

2
log

[
∂2logS(n, `)

∂n2

]
+O

[
1

log(`/`G)

]
(16)

or equivalently, using the variableLu ≡ logu = h log(`/`G), Eq. (15) reads

logu(n, `) = ∂ logS(n, `)

∂n
(17)

Eqs. (16) and (17) give a parametric representation of the logarithm of the PDFp(Lu, `), with parametern. Inverting
Eq. (17) to obtain an expression forn = n(Lu, `) and inserting this expression into Eq. (16) yieldsp(Lu, `).

2.2.2. Laplace method
Evaluating Eq. (9) by the Laplace method (see Appendix A.1) gives the following relations

n(h, `) = − 1

log(`/`G)

∂ logp (h log(`/`G) , `)

∂h
(18)

logS(h, `) = −∂ logp (h log(`/`G) , `)

∂h
h + logp (h log(`/`G) , `) + 1

2
log(2π)

−1

2
log

[
−∂2logp (h log(`/`G) , `)

∂h2

]
+ log

[
−log

(
`

`G

)]
+O

[
1

log(`/`G)

]
(19)

or equivalently, using the variableLu ≡ logu = h log(`/`G)

n(logu, `) = −∂ logp(logu, `)

∂ logu
(20)
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logS(logu, `) = −∂ logp(logu, `)

∂ logu
logu + logp(logu, `) + 1

2
log(2π)

−1

2
log

[
−∂2logp(logu, `)

∂ logu2

]
+O

[
1

log(`/`G)

]
(21)

Eqs. (20) and (21) give a parametric representation of the logarithm of the structure functionS(n, `), with parameter
Lu. Inverting Eq. (20) to obtain an expression forLu = Lu(n, `) and inserting this expression into Eq. (21) yields
S(n, `).

2.3. Parisi–Frisch Legendre transform

We now show that the dominant exponential terms of Eqs. (16), (17), (20) and (21) are equivalent to the Parisi–
Frisch Legendre transform. To wit, inserting Eq. (12) into Eq. (15) we get

h(n, `) = ∂ζ(n, `)

∂n
(22)

Furthermore, we define the function

µ̄(n, `) = logp(n, `)

log(`/`G)
(23)

and from Eq. (16), we obtain

µ̄(n, `) = −n
∂ζ(n, `)

∂n
+ ζ(n, `) − 1

log(`/`G)

{
1

2
log(2π) + 1

2
log

[
log

(
`

`G

)
∂2ζ(n, `)

∂n2

]}

+O
[

1

log(`/`G)2

]
(24)

Using Eqs. (8) and (12), we obtain

ζ(n, `) = ζn + logAn

log(`/`G)
+O

[
1

log(`/`G)2

]
(25)

We now take thè → 0 limit of expressions (22) and (24) using Eq. (14) and uniformity inn. With the notations

lim
`→0

h(n, `) = hn (26)

lim
`→0

µ̄(n, `) = µ̄n (27)

Eqs. (22) and (24) yield

hn = dζn

dn

µ̄n = −nhn + ζn

which is the inverse Legendre transform of the Parisi–Frisch model (see Fig. 1).
The direct Parisi–Frisch Legendre transform is obtained in the following way. Inserting Eq. (11) into Eq. (19)

and defining the function

ζ̄ (h, `) = logS(h, `)

log(`/`G)
(28)
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Fig. 1. The Parisi–Frisch Legendre transform.

gives the relations

n(h, `) = −∂µ(h, `)

∂h
(29)

ζ̄ (h, `) = −∂µ(h, `)

∂h
h + µ(h, `) + 1

log(`/`G)

{
1

2
log(2π) − 1

2
log

[
− 1

log(`/`G)

∂2µ(h, `)

∂h2

]}

+O
[

1

log(`/`G)2

]
(30)

We now take thè → 0 limit of expressions (29) and (30), using Eq. (13) and uniformity inh. With the notations

lim
`→0

n(h, `) = n(h) (31)

lim
`→0

ζ̄ (h, `) = ζ̄ (h) (32)

Eqs. (29) and (30) yield

n(h) = −dµ(h)

dh

ζ̄ (h) = n(h)h + µ(h)

which is the direct Legendre transform of the Parisi–Frisch model (see Fig. 1).
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Thus, the Legendre transform that is central to the Parisi–Frisch model is naturally contained in the double
asymptotic relations (16) and (19), at the dominant level. Relations (22) and (29) are the extremum conditions.

2.4. Consistency of the sub-dominant terms

The consistency of the dominant terms in the double asymptotic relation is a consequence of the involution property
of the Legendre transform. We now proceed to show that this involutive property extends to the nondominant terms.

We can express the scaling laws (8) in the logarithmic form as

logS(n, `) = logAn + ζn log

(
`

`G

)
(33)

Relations (16) and (17) give the following expressions for the PDF

logu(n, `) = log

(
`

`G

)
dζn

dn
+ dlogAn

dn
+O

[
1

log(`/`G)

]
(34)

logp(n, `) = log

(
`

`G

) [
ζn − n

dζn

dn

]
+ logAn − n

dlogAn

dn
− 1

2
log(2π) − 1

2
log

[
log

(
`

`G

)
d2ζn

dn2

]

+O
[

1

log(`/`G)

]
(35)

In order to check the involution property at the sub-dominant level, we want to use these parametric expressions
of the PDF to recover the moments using Eqs. (20) and (21). To do so, we first need to compute the first and second
derivatives of the probability density logp(Lu, `) from Eqs. (34) and (35). We get

∂ logp(logu, `)

∂ logu
= ∂ logp(n, `)

∂n

[
∂ logu(n, `)

∂n

]−1

= −n − 1

2 log(`/`G)

d3ζn

dn3

[
d2ζn

dn2

]−1

+O
[

1

log(`/`G)2

]
(36)

and

∂2logp(logu, `)

∂ logu2
= ∂

∂n

{
∂ logp(n, `)

∂n

[
∂ logu(n, `)

∂n

]−1
} [

∂ logu(n, `)

∂n

]−1

= − 1

log(`/`G)

[
d2ζn

dn2

]−1

+O
[

1

log(`/`G)2

]
(37)

Inserting Eqs. (34)–(36) into Eq. (20) gives for the order of the computed moment, the expression

ns(n, `) = n + 1

2 log(`/`G)

d3ζn

dn3

[
d2ζn

dn2

]−1

+O
[

1

log(`/`G)2

]
(38)

In the same way, inserting Eqs. (34)–(37) into Eq. (21) gives for the value of the structure function of orderns(n, `),
the expression

logS(n, `) = logAn + log

[
`

`G

]
ζn + 1

2

d3ζn

dn3

dζn

dn

[
d2ζn

dn2

]−1

+O
[

1

log(`/`G)

]
(39)
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Table 1
Multifractal models of exponentsζn

Models Exponents Parameters

Log-normal ζn = n/3 + η(3n − n2)/18 η = 0.2
She-Ĺevêque ζn = n/9 + 2(1 − (2/3)n/3) No parameters

Let us first remark that the sub-dominant log(−log(`/`G)) terms present in Eqs. (24) and (30) have cancelled out
in Eq. (39). To check the involution property at the sub-dominant level, it is enough to further remark that Taylor
expanding inn the structure function (33) to orderns given by Eq. (38) yields expression (39).

To close this section, note that it is possible to compute higher-order terms in the asymptotic relations (see
Appendix A.3) and also check their involutive property [18]. However, we will not need to use these higher-order
terms in the rest of this paper. Also, note that the higher-order formulae involve higher-order derivatives of the PDF
and structure functions. This raises the problem of error propagation. If one looks back at the derivation of the
double asymptotic relation (see Section 2.2 and Appendix A.1), one can see that the direct formulae (20) and (21)
are a straightforward application of the Laplace method [19], while the inverse formulae (16) and (17), first involves
an analytic continuation. Thus, the problem of error propagation in the double asymptotic relation is nontrivial.
However, as will be shown below in Section 3, in the practical case of experimental turbulent data, the errors are
small when using the lowest-order approximation.

2.5. Large scale Gaussian (LSG) hypothesis

In order to compute practically the PDF using the asymptotic expressions (16) and (17), we need an expression
for the momentsAn at the large scalèG defined in Eq. (8). We now suppose that at scale`G, the moments are those
corresponding to a Gaussian distribution with standard deviationuG

1√
π/2uG

∫ +∞

0
e−x2/2u2

G xn dx = 1√
π

0

[
n + 1

2

] [√
2uG

]n

Thus, theAn term in expression (8) has the value

logAn = log

{
0

[
n + 1

2

] [√
2uG

]n
}

− 1

2
logπ (40)

The LSG hypothesis is the explicit expression for the structure function obtained from Eqs. (8) and (40)

logS(n, `) = log

{
0

[
n + 1

2

] [√
2uG

]n
}

− 1

2
logπ + ζnlog

[
`

`G

]
(41)

The LSG hypothesis (41) provides a complete determination, using Eq. (16) and (17) of the PDF in terms of the
multifractal exponentsζn and the Gaussian scales`G anduG. In the rest of this paper, we will call this explicit
determination of the PDF, the multifractal asymptotic model (MAM).

The MAM PDF corresponding to the log-normal and the She-Lévêque models (see Table 1 ) are shown in Fig. 2
, for `/`G = 1/4, 1/16, 1/64, 1/512, uG = 1 andn = 1, . . . , 16.

Figs. 2(A,B) show the values of logu and logp as a function of the parametern. The reconstructed PDF as a
function of logu obtained by inverting the relation shown in Fig. 2(A), is presented in Fig. 2(C). The PDF as a
function ofu is plotted in Fig. 2(D).
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Fig. 2. Reconstruction of the PDF using the MAM Eqs. (16), (17) and (41) for different models (see Table 1) at scales
`/`G = 1/4, 1/16, 1/64, 1/512. (A) logu(n, `) as a function of the parametern. (B) logp(n, `) as a function of the parametern. (C) Classical
representation of logp(logu, `). (D) Classical representation of logp(u, `).

Note that, it can be seen from Fig. 2(D) that the form of the PDF changes when the scale is modified. This is a
characteristic of multifractal scaling in contrast to unifractal scaling, where one expects to find a (re-scaled) invariant
form for the PDF.

3. Analysis of experimental data

3.1. Characteristic of experimental data

We have used the experimental setup that is described in detail in [20–22]. Schematically, a low temperature flow
of helium gas is confined in a cylinder which is limited axially by disks equipped with blades. The turbulence is
produced by rotating the two disks in opposite direction. The local velocity is measured by a hot-wire anemometer
made from a carbon fiber of thickness 7mm. It is possible to obtain a large spectrum of Taylor-scale Reynolds number
(Rλ from 300 to 2200) by controlling the temperatureT (from 4.2 to 8 K) and the pressureP (from 10−2 to 3 atm).
In this paper, we have analyzed several experimental runs that are summarized in Table 2. The experiment ‘69A78’
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Table 2
Physical characteristics of the experimental data.〈U〉: mean velocity,fs : sample frequency,̀e = 〈U〉/fs : sample scale and̀I : integral scale.

File V148 V143 V140 V97 V133 69A78 V156 V157
Rλ 302 391 465 747 1204 2000 1600 2200
〈U〉(cm/s) 228 36.3 63 63.2 108.2 129 128.5 128.5
fs (kHz) 15.625 7.812 15.625 31.25 31.25 125 125 125
`e(10−3 cm) 14.6 4.6 4 2 3.456 1.56 1 1
`I (cm) 2.2 1.66 1.54 1.77 0.96 4 1.64 3.55

Fig. 3. (A) Determination of the inertial range 20`e ≤ ` ≤ 300̀ e for the ‘69A78’ file (see Table 2). (B) Validity of the direct asymptotic method
Eqs. (20) and (21) forS(3, `) with ` in the inertial range.

includes 9 distinct samples of 109 velocimetry data points. The other experiments include 3× 107 velocimetry data
points.

By now, a standard way to analyze the scaling of experimental turbulent data is the extended self similarity (ESS)
method [17]. In this method, the scaling of thenth order structure function is determined against the scaling of
the third order structure function. We have used the ESS method inside the inertial range in order to be able to
compare the scaling exponents with previously published data (see Table 2). Using the ‘69A78’ dataset, a fit of the
third order structure function in the range 20`e < ` < 300̀ e gives an exponent equal to 1 with precision 10−3 (see
Fig. 3 (A)). The values ofζn for n 6= 3 are determined by fitting the structure functions, with respect to the third
order structure function, within this range. This procedure amounts to using a length scale`ESSproportional to the
third-order structure functionS3(`) inside the inertial range. The detailed determination of`ESSis described below.

3.2. Test of direct method and determination ofµ(h)

As a first test of the validity of the asymptotic relation (21), we have checked that Eq. (21) gave correct values
for S(3, `) with ` in the inertial range.

For each value of̀, the momentS(3, `) is obtained by our method, by determining the value of logu that gives
n = 3 in Eq. (20) and inserting this value in Eq. (21). It can be checked in Fig. 3(B) that this procedure correctly
reproduces the empiricalS(3, `).

The direct asymptotic relations (20) and (21) can be used to compute the Parisi–Frisch functionsµ(h) andζn

[23]. This can be achieved in three steps as first derived in [23].
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Fig. 4. (A) logu(n, `) versus logS(3, `) for n = 1, . . . , 10. The scaling law (42), displayed as straight lines giveshn as the slope. (B)
logp(logu, `) + (1/2)log(2π) − (1/2)log

[−∂2logp(logu, `)/∂ logu2
]

versus logS(3, `) for n = 1, . . . , 10. The scaling law (43), displayed
as straight lines gives the codimensionµn as the slope. (C)ζn determined by scaling law (44) and experimentalζn(�). (D) µ(h) determined by
scaling laws (42) and (43) (see (A,B)) and experimentalµ(h) determined by Legendre transform of experimentalζn (see (C))(�).

Each of the three steps involves the determination of a power law by linear fits in log–log coordinates. In order
to agree with previously published data obtained by the ESS methods, the power law is determined with respect
to the ESS length scalèESS. This length scale is determined by the following procedure. First, logS(3, `) is
fit inside the inertial range by a linear law logSlin(3, `) = log` + Cte. Then,`ESS is defined by the formula
log`ESS = logSlin(3, `) − logSlin(3, `e) + log`e. Note that we are performing such ESS fits within the inertial
range (see Fig. 3(A)).

The Parisi–Frisch functions are determined as follows. In the first step, inverting Eq. (20) for several values ofn,
the functionhn is determined by linear fits over the inertial range of the form

logu(n, `ESS) = hn log`ESS+ C1(n) (42)

(see Fig. 4 (A)). In the second step, substituting into Eq. (21) the logu value obtained in the first step and fitting the
corresponding logS values with the linear expression

logS(n, `ESS) = ζn log`ESS+ C2(n) (43)
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determinesζn. Finally, using the Parisi–Frisch Legendre transformζn = hnn+µn and Eq. (21),µn can be determined
by the linear fit

log p̄(logu(n, `ESS), `ESS) = µn log`ESS+ C3(n)

where

log p̄(logu(n, `ESS), `ESS) = logp(logu(n, `ESS), `ESS) + 1

2
log(2π) − 1

2
log

[
−∂2logp(logu, `ESS)

∂ logu2

]
(44)

(see Fig. 4(B)). Thus, it is apparent that the direct asymptotic formula Eq. (21) give satisfactory results in the inertial
range (see Figs. 4(C,D)).

3.3. Determination of the Gaussian scale

We now turn to the determination of the Gaussian scale`G. A general multifractal scaling law of the form

logS(n, `) = Cn + ζn log` (45)

can be written as Eq. (33) with

logAn = Cn + ζn log`G (46)

Starting from Eq. (45), we seek a length scale`G such thatAn determined by Eq. (46) can be considered to be
Gaussian moments and thus obey Eq. (40). Defining

F(n) = Cn + ζn log`G − log0

[
n + 1

2

]
+ 1

2
logπ (47)

for each value of̀ G, one fitsF(n) over some rangen with a quadratic polynomial

P(n) = An + Bn2 (48)

`G is determined whenB = 0. uG is then given by the relationA = [
loguG + (1/2)log 2

]
. In practice, oncèG is

determined, the functionF(n) will not be exactly linear. The small nonlinearities ofF(n) can be taken into account
by using a higher-order polynomial (arbitrarily taken as order five)

P(n) =
[
loguG + 1

2
log 2

]
n + Bn2 + Cn3 + Dn4 + En5 (49)

In the rest of this paper, we will refer to the statistics of the large scales when the small non-Gaussian corrections
are taken into account as large scale quasi Gaussian (LSQG). In this case, the moments can be written as

logS(n, `) = log0

[
n + 1

2

]
− 1

2
logπ + ζn log

(
`

`G

)
+ P(n) (50)

The quality of the representation of the structure functions at the scale`G by the LSG (41) and LSQG (50) formulae
is shown in Fig. 5. An error bar for the determination of`G can be obtained in the following way. For each value
of n, when

d2Cn

dn2
+ d2ζn

dn2
log`G = d2log0 ((n + 1)/2)

dn2
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Fig. 5. Relative errorE(An) = (logAn − P(n) − log0[(n + 1)/2] + (1/2)logπ)/logAn with P(n) given by LSG Eq. (48) and LSQG Eq.
(49), for the ‘69A78’ dataset (see Table 2).

yields

log`G = 1

d2ζn/dn2

{
d2log0 ((n + 1)/2)

dn2
− d2Cn

dn2

}
(51)

We determine the error bar by taking the minimum and maximum of Eq. (51) over the considered rangen.
Note that the determination of`G anduG is obtained from inertial range data. It is interesting to see, how these

quantities scale with the Reynolds number. The results and fit displayed in Fig. 6 show that`G anduG remain close
to the integral scale quantities̀I anduI . It can be seen by inspection of the figure that, although the error bars
are very wide (over a factor of five), no systematic trend is apparent in the studied range of Taylor-scale Reynolds
numbers. Thus, the algorithm for the determination of`G is able to yield correct values, within a large scatter, for
the integral scale from intermittency data in the inertial range. This strongly supports the notion of intermittency
corrections arising from a cascade process that begins at the integral scale.

3.4. Reconstruction of the probability density function (inverse method) and validity test of simple analytic
expressions

We now proceed to see, how well the LSG (41) and LSQG (50) representations together with the inverse asymptotic
relation (16) are able to reconstruct the probability density functions. The PDF are shown in Fig. 7 in the parametric
form defined in Section 2.2, Eqs. (20) and (21). In Fig. 8 , the PDF are shown in the standard form as functions
of u or logu. It is apparent from Figs. 7(B,D) that the tails of the PDF are in better quantitative agreement when
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Fig. 6. Gaussian scalèG as a function of the Reynolds numberRλ. The scalè G is displayed by(�), the error bars are determined by Eq. (51).
The integral scale is displayed by(4). (B) RatiouG/S(3, `G)1/3.

Fig. 7. Parametric representation of the PDF Eqs. (20) and (21) using the LSG (41) (see (A,B)) and LSQG (50) (see (C,D)) representations with
`/`e = 20, 100, 300.
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Fig. 8. Same data as in Fig. 7, with logp using the LSG representation plotted as function of logu (see (A)) or as function ofu (see (B)). Same
plot with LSQG representation (see (C,D)).

the LSQG corrections are taken into account. We have thus shown that the experimentally determined exponentζn

together with the LSG or LSQG representation are able to quantitatively represent the experimental PDF.
It is interesting to see, if simple analytical expressions forζn, such as the log-normal and She-Lévêque, are also

able to represent the data. This seems to be a somewhat more stringent test of the analytic expressions than just
comparing their predictions with experimental values ofζn.

The probabilities generated by the She-Lévêque and log-normal models are compared with the experimental data
at a Taylor-scale Reynolds number of 2000 in Figs. 9 and 10 . Fig. 9 shows the parametric representation of logu

(Eq. (17)) and Fig. 10 shows the parametric representation of logp (Eq. (16)). It is apparent from the figures that
both the She-Lévêque and log-normal expressions yield systematic deviations from the experimental data of the
inertial-range PDF at Taylor-scale Reynolds numberRλ = 2000.

4. Conclusions

To summarize, the main results obtained in this paper are
• The LSG (41) and LSQG (50) representations together with the inverse asymptotic relation (16) are able to

reconstruct the probability density functions.
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Fig. 9. Parametric plot of logu(n, `) for (A) log-normal model, (B) MAM model, (C) She-Ĺevêque model.

• The large scalèG, determined from inertial-range data, is close to the integral scale for a large range of Reynolds
numbers.

• The probabilistic reformulation of the Parisi–Frisch model is naturally contained in the asymptotic relations at
the level of the dominant exponential terms.

• The procedure is in good agreement with experimental data, provided that the LSQG statistics are used together
with the experimentally determinedζn. The agreement deteriorates significantly, if both the conditions are not
satisfied.
Note that the MAM procedures (16), (17) and (41) can be applied to fields other than turbulence, provided that

the large scale statistics are Gaussian and multifractal scaling laws are present. Such is the case for exchange rate
fluctuations in finance (see [18]).

Two points have been left for future work. First, it seems possible to extend the description to (separately) both
negative and positive velocity increments. To do this, one should work with the PDF of negative and positive
incrementsp±

inc(u, `) and the corresponding moments as done in [6]. Second, it would be interesting to see if the
MAM can be extended to describe the fluctuations of energy dissipation. The nontrivial problem is then to find a
description of large scale statistics that could play a role equivalent to that of the LSG hypothesis.
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Fig. 10. Parametric plot of logp(n, `) for (A) log-normal model, (B) MAM model, (C) She-Ĺevêque model.

Appendix A

A.1. Laplace’s method

Eq. (3) can be written in the form

S(n, `) =
∫ +∞

−∞
exp

{
log

(
`

`G

) [
n

Lu

log(`/`G)
+ logp(Lu, `)

log(`/`G)

]}
dLu (A.1)

This integral has a critical point inLu, if n obeys the relation

n(Lu, `) = −∂ logp(Lu, `)

∂Lu

(A.2)

Taylor expanding the integrand aroundn(Lu, `) and performing the Gaussian integral yields

S(Lu, `) =
[
− 2π

∂2logp(Lu)/∂L2
u

]1/2

exp

{
−∂ logp(Lu, `)

∂Lu

Lu + logp(Lu, `)

}
+O

[
1

log(`/`G)

]
(A.3)

Eqs. (A.2) and (A.3), in logarithmic form, are the direct asymptotic formulae (20) and (21).
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Fig. 11. Steepest descent method – Determination of integral curve (C).

A.2. Steepest descent method

The integral of Eq. (7) can be written in the form

p(Lu) = 1

2π

∫ +∞

−∞
elog(`/`G)f (k) dk (A.4)

with

f (k) = 1

log(`/`G)
[−ikLu + logS(ik, `)] (A.5)

The functionf (k) is real fork = −in, n ∈ R. Considerns , such that[
df (k)

dk

]
k=ks=−ins

= 0

thus

Lu(ns, `) = ∂ logS(n, `)

∂n
(A.6)

then Taylor expandingf aroundks , shows thatf is also real on a curve (C) parallel to the real axis and crossing
the imaginary axis atks (see Fig. 11 ).

The basic idea of the steepest descent method [19] is to make a deformation of the contour of integration of Eq.
(A.4) from the real axis to (C). If such a deformation can be made, it follows that

p(Lu, `) = (2π)−1
∫

(C)

elog(`/`G)f (k) dk (A.7)

The steepest descent method, amounts to use the Laplace method on integral of Eq. (A.7). The main contribution of
Eq. (A.7) is at the maximum off on (C), i.e. at the saddle pointks thus, it is enough to computef (ks) andf ′′(ks).
Using Eq. (A.5), we find

f (ks) = 1

log(`/`G)
[−nLu + logS(n, `)]

f ′(ks) = 1

log(`/`G)

[
−Lu + ∂ logS(n, `)

∂n

]
i
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f ′′(ks) = − 1

log(`/`G)

∂2logS(n, `)

∂n2

and thus, the value of Eq. (A.7) is given at leading order by

p(Lu, `) = (2π)−1
[

2π

−log(`/`G)f ′′(ks)

]1/2

elog(`/`G)f (ks ) +O
[

1

log(`/`G)

]
(A.8)

Eqs. (A.6) and (A.8) in logarithmic form are the inverse asymptotic formulae for Eqs. (16) and (17).

A.3. Higher-order corrections

It is possible to compute higher order corrections to the asymptotic relations (A.3) and (A.8) but the calculation
is rather lengthy. Note that Eqs. (A.2) and (A.6) are valid at all orders. The higher-order correction to Eq. (A.3) is
explicitly given by (see [18] for a derivation)

S(logu, `) = exp

[
−∂ logp(logu, `)

∂ logu
logu + logp(logu, `)

] √
2π

−∂2logp(logu, `)/∂ logu2

×
{
1 − 5

{
∂3logp(logu, `)/∂ logu3

}2

24
{
∂2logp(logu, `)/∂ logu2

}3
+ ∂4logp(logu, `)/∂ logu4

8
{
∂2logp(logu, `)/∂ logu2

}2
+O

[
1

log(`/`G)2

]}

(A.9)

The correction to expression (A.8) is given by

p(n, `) = exp

[
logS(n, `) − n

∂ logS(n, `)

∂n

] √
1

2π(∂2logS(n, `)/∂n2)

×
{

1 − 5
{
∂3logS(n, `)/∂n3

}2

24
{
∂2logS(n, `)/∂n2

}3
+ ∂4logS(n, `)/∂n4

8
{
∂2logS(n, `)/∂n2

}2
+O

[
1

log(`/`G)2

]}
(A.10)

It is very easy to check that the higher-order corrections term are of order 1/log(`/`G).

A.4. Explicit computation of the errors in an integrable case

In the general case, where logS(n, `) = log(1 − n2)log(`/`G), it is possible to explicitly integrate Eq. (7). The
result is [24]

p(logu, `) =
√

2/π [log u](−1/2−log(`/`G))BK(−1/2 − log(`/`G), |logu|)
[1/2]log(`/`G)0[−log(`/`G)]

(A.11)

whereBK(n, z) is the modified Bessel function of the second type, which is the solution to

z2 d2y

dz2
+ z

dy

dz
− (z2 + n2)y = 0

The asymptotic evaluation of Eq. (7) gives the following result

logu(n, `) = −log(`/`G)
2n

1 − n2
(A.12)
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The probability density function is given at leading order by

logp1(n, `) = log

[
`

`G

]
2n2

1 − n2
+ log

[
`

`G

]
log(1 − n2) − 1

2
log

[
−log(`/`G)

4π(1 + n2)

(−1 + n2)2

]

and the probability density function including correction Eq. (A.10) is given by

logp2(n, `) = logp1(n, `) + 1

log(`/`G)

−9 + 27n2 − 3n4 + n6

24(1 + n2)3

By defining

h(n, `) = logu(n, `)

log(`/`G)
= − 2n

1 − n2

and

µ1(n, `) = logp1(n, `)

log(`/`G)

µ2(n, `) = logp2(n, `)

log(`/`G)

and defining the exact ratioµexact(n, `) = logp(logu, `)/log(`/`G) with p(logu, `) defined by Eq. (A.11) and
logu by Eq. (A.12), we can study the behavior of the related errors as a function ofn and log̀

E1(n, `) = µ1(n, `) − µexact(n, `)

µexact(n, `)
(A.13)

E2(n, `) = µ2(n, `) − µexact(n, `)

µexact(n, `)
(A.14)

It can be seen in Fig. 12 that the errors vanish in the limitn → 1 (logu → ∞) and, whenn is fixed, in the limit
log(`/`G) → −∞. Furthermore, the convergence in log(`/`G) shows that the higher order term has been correctly
taken into account.

A.4.1. Asymptotic relations in then → ∞ limit
If the probability density function is Gaussian or exponential, it is possible to define asymptotic relations in the

fixed`, n → ∞ limit. Indeed, in the special case where

logp(Lu) = −eLu (A.15)

we define

S(n) =
∫ +∞

−∞
enLu−exp(Lu) dLu (A.16)

the critical pointn is given by logn = Lu, translating Eq. (A.16) at the critical pointLu = x + logn, we find

S(n) = nn

∫ +∞

−∞
en[x−exp(x)] dx

Using the direct method (A.3)

logn(Lu) = Lu
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Fig. 12. ErrorsE1 (A.13), E2 (A.14) for n = 0.1 and 2< log(`/`G) < 200 (see (A)). ErrorsE1 (A.13), E2 (A.14) for log(`/`G) = −2 and
0 < n < 1 (see (B)).

logS(Lu) = eLu(−1 + Lu) + 1

2
log

[
2π

eLu

]
(A.17)

which is equivalent to Stirling formulae. Note that the asymptotic relations in then → ∞ limit can be extended to
Gaussian integrals. Setting eLu = u, Eq. (A.16) can be written as

S(n) =
∫ +∞

−∞
enLu−exp(Lu) dLu =

∫ +∞

0
un−1 e−u du (A.18)

and thusS(n) = 0(n). Settingu = y2/(2σ 2), yields

S(n) = 2[2σ 2]−n

∫ +∞

0
e−y2/(2σ2)y2n−1 dy (A.19)

which shows that the moment of ordern′ = 2n−1 of a Gaussian distribution can be asymptotically evaluated in the
n → ∞ limit by Eq. (A.17). It is thus possible to use the asymptotic relation in this way in the case of a Gaussian
unifractal probability density function.
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