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Abstract

The price of ®nancial assets are, since [Bachelier L. Annales de l'Ecole Normale Sup�erieure 1900;3:XVII:21±86], considered to be

described by a (discrete or continuous) time sequence of random variables, i.e., a stochastic process. Sharp scaling exponents or

unifractal behavior of such processes has been reported in several works [Mandelbrot BB. J Business 1963;36:394±419; Peters EE.

Chaos and order in the capital markets. New York: Wiley, 1991; Mantegna RN, Stanley HE. Nature 1995;376:46±49; Evertsz CJG.

Fractals. 1995;3:609±616; Bouchaud JP, Potters M. Th�eorie des risques ®nanciers. Al�ea Saclay, 1997]. In this paper we investigate the

question of scaling transformation of price processes by establishing a new connection between non-linear group theoretical methods

and multifractal methods developed in mathematical physics. Using two sets of ®nancial chronological time series, we show that the

scaling transformation is a non-linear group action on the moments of the price increments. Its linear part has a spectral decomposition

that puts in evidence a multifractal behavior of the price increments. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the pillars of modern physics is the covariance of theories under certain group actions. What is
particular to a given application, such as initial and boundary conditions usually breaks the symmetries of
the theory. The symmetry group of observed data is therefore usually much smaller than the covariance
group of the theory. An example is hydrodynamics where the equations are invariant under space±time
translation and scaling, but where the solutions are not, in general, invariant. For theories that are co-
variant under scaling (to be speci®c, we can think of Navier±Stokes or Korteweg±De Vries equation) the
situation is clear: the scaling properties, such as the spectral decomposition of the solution at each time are
given by the scaling properties of the initial condition, the boundary conditions and external forces. The
study of scaling transformation properties in the domain of economics and ®nance is more complicated
because the evolution equations (or even the theory) governing the dynamics are largely unknown. It is thus
not possible, in this case, to separate these scaling properties into a general property of an underlying theory
and into what is particular to the situation under study. The observed ®nancial chronological data result, at
least to some extent, from the particularities of each market and not only from a general abstract dynamics.
Therefore, there is no a priori reason to expect the data to exhibit simple properties under scaling trans-
formation. Keeping this simple observation in mind, we will base our analysis of the scaling transformation
on methods adapted to physical systems with complex behavior:
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(i) Multifractal analysis of fully turbulent systems introduced in [2] and within that approach further de-
veloped inversion techniques developed in [3] (see also [4]).
(ii) Non-linear group representation theory developed in [5] and applied to many non-linear evolution
equations in mathematical physics (see [6] for recent contributions).
We apply these methods to two sets of ®nancial chronological series:
1. Foreign exchange rate DM/$: The data set provided by Olsen and Associates contains worldwide

1 472 241 bid±ask quotes for US dollar±German mark exchanges rates from 1 October 1992 until 30
September 1993. Tick by tick data are irregularly spaced in recorded time. To obtain price values at a
regular time, we use linear interpolation between the two recorded time that immediately precede and
follow the regular time. We obtain in this way, for a regular time of 15 s, 1 059 648 data. Our study focuses
on the average price which is the mean of the bid and ask price.

2. Stock index CAC 40: The data set provided by the ``Soci�et�e de Bourse Francßaise'' contains 1 045 890
quotes of the CAC 40 index from 3 January 1993 until 31 December 1996. Tick by tick data are regularly
recorded every 30 s, during opening hours (everyday from 10 a.m. until 5 p.m. except weekends and na-
tional holidays). Our data base consist of the daily registers to which a constant has been subtracted such
that the value at 10 a.m. is equal to the value of the previous day at 5 p.m. The subtracted jump process
(with jumps at ®xed times) can be analyzed on its own. This separation allows for a ®ner analysis of the rest
of the process.

Using these data sets, we obtained three new results. First, the scaling transformation of the moments of
the observed probability distribution is a non-linear representation that is well approximated by a linear
representation for small scaling parameters. This linear representation turns out to be diagonal. Secondly,
the function of the order of the moment, de®ned by the spectrum of the generator is (non-trivially) concave.
This shows, by de®nition [2], that the data are multifractal. Note that the concavity in the case of FX
market (DM/$) can partially be deduced from [7] and is con®rmed, independently of our work, by Fisher
et al. [8]. Our third new result is an explicit expression of the family of probability distributions of price
increments corresponding to di�erent time increments.

For larger values of the scaling parameter, the linear approximation breaks down and the non-linear
terms of the representation has to be considered. The analysis of this paper can also be applied to the SP
500 index, where the results should be compared to the (unifractal) scaling behavior found in [1]. It should
also be compared with, from the point of view of ®nance, more fundamental approach of stochastic time
transformation (subordinate processes) that were applied to SP500 [9,10]. These points are left for future
investigations.

2. The mathematical framework

We suppose that the ®nancial variable is described by a stochastic process �u�t��t P 0 such that the set of
increments, u�t � s� ÿ u�t�, sP 0, has a well-de®ned transformation property under scaling of the time
increment s, s 7!as, a > 0. To avoid complications, irrelevant for the quite crude application reported in
this paper, we suppose that �u�t��t P 0 is stationary. Moreover, we will only consider the absolute value
ju�t � s� ÿ u�t�j of increments. Let w�s� � ju�s� ÿ u�0�j, s P 0. This means that for each (scaling) a > 0,
there is a map Ta of the set W � fw�s� j s P 0g such that Ta�w�s�� � w�as�. A group action T of the scaling
(dilatation) group D (the set of strictly positive real numbers) on the set W is then de®ned, i.e.,
Tab�x� � Ta�Tb�x�� and Te�x� � x for a; b 2 D; x 2W, where e � 1 is the identity element in D. In the cases
under consideration in this paper, it follows from the observed time series that the estimated probability
distribution pw�s� in R of w�s� is di�erent for di�erent s > 0. This is enough to ensure the existence of the
action T, and moreover shows that T gives a group action �T , on the set M � fpw�s� j sP 0g of probability
distributions, de®ned by �Ta�pw�s�� � pw�as�.

The group action �T is not linear, in spite of its appearance. To explicit properties of the scaling action �T ,
we change the coordinates of the elements in M. As in the case of fully developed turbulence, we use the
moments as coordinates. For q 2M, let the moment vector be the sequence S�q� � �Sr�q��r P 0, where
Sr�q� �

R1
0

xrq�x� dx and r 2 R�. Here we suppose that the set M of probability measures is such that Sr�q�
exists for all orders r and moreover that q is determined by its moments of order r 2 R� (which is the case if
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for example the Fourier transform of elements in M are quasi-analytic). Let S be the image (in the space
C�R�� of continuous real functions on R�) of M under the coordinate transformation S. The image U of
the group action �T is given by Ua � S � �Ta � Sÿ1, i.e., Ua�S�pw�s��� � S�pw�as��. In the case U is a linear di-
agonal representation, it has the form Ua � U �1�a , where for given real numbers fr with r 2 R�,

U �1�a �m� � afr mr

ÿ �
r P 0

�1�
for a 2 D and m 2 C�R��, mr corresponding to a moment of order r. We note that ffr j r 2 R�g is the
spectrum of the generator of the representation U �1�. When U is a non-linear perturbation of U �1�, there are
algorithms permitting its construction. However, they are outside the scope of this paper [5,6]. For com-
modity we denote sr�s� � Sr�pw�s�� which is the rth component of Us�S�pw�1���. An accurate and explicit
approximation of the inverse transformation Sÿ1, of the moment vectors sr�s� to probability distribution
pw�s� has been developed in [3,4,11]. This permits us to obtain directly from experimental data, an explicit
formula for the family M � fpw�s�gs>0 of probabilities. In fact, for each s 2 R�, we can determine an ele-
ment pw�s� by the formulas:

xpw�s��x� � �p�ln x�; a�r; s� � d ln sr�s�
dr

; �2�

Fig. 1. (A) ln sr�s� vs ln s for r � 1; . . . ; 10 in the case of FX DM/$ index. The scaling law ln sr�s� � Ar � fr ln s displayed as straight

lines for 116 s6 2896 min (delimited by the double-ended arrow) gives fr as the slope. (B) fr determined by scaling law in the case of

FX DM/$ index.

Fig. 2. (A) ln sr�s� vs ln s for r � 1; . . . ; 10 in the case of CAC40 index. The scaling law ln sr�s� � Ar � fr ln s displayed as straight

lines for 16 s6 2048 min (delimited by the double-ended arrow) gives fr as the slope. (B) fr determined by scaling law in the case of

CAC40 index.
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ln �p�a�r; s�� � ln sr�s� ÿ r
d ln sr�s�

dr
ÿ 1

2
ln�2p� ÿ 1

2

d2 ln sr�s�
dr2

; �3�

where r 2 R�.

3. Results

When the representation U is linear it follows from expression (1) that ln sr�s� � Ar � fr ln s, where Ar

and fr are independent of s. Fig. 1(A) shows that, in the case of FX DM/$, this is satis®ed, to a good
approximation with time increments s and moments of order r in the interval 116 s6 2896 min and
16 r6 10. In contrast, for CAC40 the domain of validity of the linear approximation also contains the

Fig. 3. (A) Presentation of the probability density function at s � 8 min for FX DM/$ index and comparison with empirical data.

(B) Same presentation at s � 512 min for FX DM/$ index.
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small values of s: 16 s6 2048 min and 16 r6 10 (see Fig. 2(A)). Outside this domain in the (r; s) plane, the
linear representation approximation breaks down. Inside the domain of validity of the linear representation
approximation, the spectrum of the generator is presented in Fig. 1(B) (resp., Fig. 2(B)) in the case of FX
DM/$ (resp., CAC40). The function r 7!fr is in both cases (non-trivially) concave, which by de®nition (see
[2]) shows that the system has a multifractal behavior.

Finally, we present in Fig. 3(A) and (B) (resp., Fig. 4(A) and (B)) probability densities (M.A.M) given by
(2) and (3), for s � 8 min and s � 512 min in the case of FX DM/$ index (resp., CAC40). In all the cases,
the experimental probability distribution is well approximated, for a large range of price increments, by the
corresponding probability distributions in the family fpw�s�gs>0 constructed by the inverse method devel-
oped in [4,11,12]. Other commonly used probability distributions are also presented in the ®gures for
illustration.

Fig. 4. (A) Presentation of the probability density function at s � 8 min for CAC40 index and comparison with empirical data.

(B) Same presentation at s � 512 min for CAC40 index.
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