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Abstract

A phenomenological two-fluid model of the (time-reversible) spectrally-truncated 3D Euler equation is proposed. The thermalized small scales
are first shown to be quasi-normal. The effective viscosity and thermal diffusion are then determined, using EDQNM closure and Monte-Carlo
numerical computations. Finally, the model is validated by comparing its dynamics with that of the original truncated Euler equation.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the (inviscid and conservative)
truncated Euler equation admits absolute equilibrium solutions
with Gaussian statistics, equipartition of kinetic energy among
all Fourier modes and thus an energy spectrum E(k) ∼

k2 [1]. Recently, Cichowlas et al. [2,3] observed that the
Euler equation, with a very large (several hundreds) spectral
truncation wavenumber kmax, has long-lasting transients which
behave just as those of high Reynolds-number viscous flow;
in particular they found an approximately k−5/3 inertial range
followed by a dissipative range. How is such a behaviour
possible? It was found that the highest-k modes thermalize at
first, displaying a k2 spectrum. Progressively the thermalized
region extends to lower and lower wavenumbers, eventually
covering the whole range of available modes. At intermediate
times, when the thermalized regime only extends over the
highest wavenumbers, it acts as a thermostat that pumps out
the energy of larger-scale modes. Note that similar k−5/3/k2

spectra have already been obtained within the Leith model
of hydrodynamic turbulence which is a simple differential
closure [4], and earlier similar mixed cascade/thermodynamic
states (but with spectra different from k−5/3/k2) were discussed
in the wave turbulence literature (e.g. [5]).
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The purpose of the present work is to build a quantitative
two-fluid model for the relaxation of the 3D Euler equation. In
Section 2, after a brief recall of basic definitions, the statistics
of the thermalized small scales are studied during relaxation.
They are shown to be quasi-normal. Our new two-fluid model,
involving both an effective viscosity and a thermal diffusion, is
introduced in Section 3. The effective diffusion laws are then
determined, using an EDQNM closure prediction and direct
Monte-Carlo computations. The model is then validated by
comparing its predictions with the behaviour of the original
truncated Euler equation. Finally Section 4 is our conclusion.

2. Relaxation dynamics of truncated Euler equations

2.1. Basic definitions

The truncated Euler equation (1) are classically obtained [1]
by performing a Galerkin truncation (v̂(k) = 0 for supα |kα| >

kmax) on the Fourier transform v(x, t) =
∑

v̂(k, t)eik·x of
a spatially periodic velocity field obeying the (unit density)
three-dimensional incompressible Euler equations, ∂t v + (v ·

∇)v = −∇ p, ∇ · v = 0. This procedure yields the following
finite system of ordinary differentials equations for the complex
variables v̂(k) (k is a 3 D vector of relative integers (k1, k2, k3)

satisfying supα |kα| ≤ kmax)

∂t v̂α(k, t) = −
i
2
Pαβγ (k)

∑
p

v̂β(p, t)v̂γ (k − p, t) (1)
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where Pαβγ = kβ Pαγ + kγ Pαβ with Pαβ = δαβ − kαkβ/k2

and the convolution in (1) is truncated to supα |kα| ≤ kmax,
supα |pα| ≤ kmax and supα |kα − pα| ≤ kmax.

This time-reversible system exactly conserves the kinetic
energy E =

∑
k E(k, t), where the energy spectrum E(k, t)

is defined by averaging v̂(k′, t) on spherical shells of width
∆k = 1,

E(k, t) =
1
2

∑
k−∆k/2<|k′

|<k+∆k/2

|v̂(k′, t)|2. (2)

2.2. Small scales statistics

Perhaps the most striking result of Cichowlas et al. [2] was
the spontaneous generation of a (time dependent) minimum of
the spectrum E(k, t) at wavenumber kth(t) where the scaling
law E(k, t) = c(t)k2 starts. Thus, the energy dissipated from
large scales into the time dependent statistical equilibrium is
given by

Eth(t) =

∑
kth(t)<k

E(k, t). (3)

In this section we use the so-called Taylor–Green [6] initial
condition to (1): the single-mode Fourier transform of uTG

=

sin x cos y cos z, vTG
= −uTG(y, −x, z), wTG

= 0.
In order to separate the dynamics of large-scale (k < kth)

and the statistics of small-scales (k > kth) we define the low-
and high-pass filtered fields

f <(r) =

∑
k

F(k) f̂keik·r (4)

f >(r) = 1 − f <(r) (5)

where f (r) is an arbitrary field and f̂k its Fourier transform; we
have chosen F(k) =

1
2 (1 + tanh[

|k|−kth
∆k ]), with ∆k = 1/2.

This filter allows us to define the large-scale velocity
field v< and the spatially dependent thermalized energy (or
heat) associated to quasi-equilibrium. Using the trace of the
Reynold’s tensor [7], Ri j =

1
2 (v>

i v>
j )<, we define the local

heat as

Q(r) =
1
2

[
(v>)2

]<

(r). (6)

By construction of the filters, (4) and (5) the heat spatial average
is equal to the dissipated energy (3) 〈Q(r)〉 = Eth. Fig. 1a
shows a 2D cut of the heat Q on the surface z =

π
2 , where a

cold zone is seen to be present at the centre of the impermeable
box (x = [0, π], y = [0, π], z = [0, π]). An isosurface of
the hottest zones is displayed on Fig. 1b. It is apparent on both
figures that Q(r) is not spatially homogeneous.

2.3. Heat diffusion

The simplest quantities to study in order to quantify the
evolution of Q, are the spatial average Q(t) = 〈Q(r, t)〉 and
the root mean square variation ∆Q =

√
〈(Q2 − 〈Q〉2)〉. These

quantities are shown in Fig. 2, where that the mean heat is seen

Fig. 1. Cut at z =
π
2 of Q (a) and the isosurface Q(r) = 0.8Qmax = 0.42 (b).

Fig. 2. Plots of Q(t) (a) and ∆Q(t)/Q(t) (b); solid lines are the results of the
two-fluid model (see Section 3).

to increases in time, due to the energy coming from the large
eddies, as was shown precedently in [2]. The relative fluctuation
∆Q/Q is seen to decrease from 0.9 to 0.2.

The next natural question is related to the statistical
distribution of the small eddies v>: are they approximately
Gaussian, like an absolute equilibrium? A histogram of v>

x is
shown in Fig. 3. As the heat is not homogeneous, we also
computed the histogram of the normalized field ṽ>

x = v>
x /

√
Q

which seems to better obey Gaussian statistics as can be seen on
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Fig. 3. Histogram of v>
x and ṽ>

x and normalized cumulant s4 and s6 (odd
cumulants vanish because of symmetries).

Fig. 3 and comparing the firsts normalized cumulant sn =
cn√

cn
2

(cn is the cumulant of order n) in the table.

3. Two-fluid model

We now introduce our phenomenological two-fluid model
of the truncated Euler equation. One of the fluids describes
the large scale velocity field and the other represents
the thermalized high-wavenumber modes described by a
temperature field T = Q/c (c is the specific heat,
explicitly given by c = 8k3

max). This model is somewhat
analogous to Landau’s standard two-fluid model of liquid
helium at finite temperature T where there is a natural cut-
off wavenumber for thermal excitations: the classical-quantum
crossover wavenumber kmax given by h̄kmaxcS = kBT (cS is
the sound velocity and kB Boltzmann’s constant). In Landau’s
model kmax is temperature dependent and the specific heat c is
proportional to T 3. In constrast, kmax and the specific heat are
constant in our model that reads:

∂tv
<
i + v<

j ∂ jv
<
i = −∂i p̃ + ∂ jσ

′

i j (7)

∂iv
<
i = 0 (8)

∂t T + v<
j ∂ j T = DT +

1
2c

(
∂ jv

<
i + ∂iv

<
j

)
σ ′

i j (9)

where

σ ′

i j = F−1
[νeff(k)(iki v̂

<
j + ik j v̂

<
i )] (10)

DT = F−1
[−k2 Deff(k)F[T ]] (11)

and F[·] denotes the Fourier transform. σ ′

i j is a generalized
form of the standard viscous strain tensor [8]. The precise
form of the anomalous diffusion terms νeff and Deff will be
determined below, in Sections 3.1 and 3.2.

The advection terms in Eq. (7) are readily obtained from
the Reynolds equations for the filtered velocity by remarking
that the diagonal part of the Reynolds stress can, because
of incompressibility, be absorbed in the pressure. Eq. (10)
represents a simple model of the traceless part of the Reynolds
tensor [7]. In the same vein, the advection terms in Eq. (9)
are readily obtained together with higher-order moments (see
equation (1) of Reference [9]). The dissipation and source terms
in (9) are thus simple models of the higher-order moments.
It is easy to show that in the present model 〈

1
2 v<2

+ cT 〉

is conserved, corresponding to the energy conservation in the
truncated Euler equation.

As the fluctuations ∆Q/Q are small (see above) we
will furthermore assume that νeff and Deff only depend on

〈Q〉 = Eth. Thus the evolution of the filtered velocity v< is
independent of the fluctuations ∆Q. As [Eth] = L2T −2, simple
dimensional analysis yields the following form for the function
νeff and Deff:

νeff =

√
Eth

kmax
f

(
k

kmax
,

k0

kmax

)
;

Deff =

√
Eth

kmax
Ψ

(
k

kmax
,

k0

kmax

) (12)

where k0 = 2π/Lp the smallest nonzero wavenumber (Lp is
the periodicity length, 2π in the present simulations).

3.1. EDQNM determination of viscosity

An analytical determination of function νeff is possible using
the eddy-damped quasi-Markovian theory (EDQNM) [10]. It
is known that this model well reproduces the dynamics of
truncated Euler Equation, including the k−5/3 and k2 scalings
and the relaxation to equilibrium [11].

The EDQNM closure furnishes an integro-differential
equation for the spectrum E(k, t):

∂ E(k, t)

∂t
= TN L(k, t) (13)

where the nonlinear transfer TN L is modeled as

TN L(k, t) =

∫ ∫
4

Θkpq(xy + z3)[k2 pE(p, t)E(q, t)

− p3 E(q, t)E(k, t)]
dp dq

pq
. (14)

In (14) 4 is a strip in p, q space such that the three wavevectors
k, p, q form a triangle. x , y, z, are the cosine of the angles
opposite to k, p, q. Θkpq is a characteristic time defined as

Θkpq =
1 − exp(−(ηk + ηp + ηq)t)

ηk + ηp + ηq
(15)

and the eddy damped η is defined as

ηk = λ

√∫ k

0
s2 E(s, t)ds. (16)

Classically λ = 0.36 and the truncation is imposed omitting all
interactions involving waves numbers larger than kmax in (14).

A simple and important stationary solution of (13) is the
absolute equilibrium with equipartition of the kinetic energy
and corresponding spectrum E(k) ∼ k2.

To compute the EDQNM effective viscosity νeff we consider
an absolute equilibrium with a small perturbation added in
the mode of wavenumber kpert and study the relaxation to
equilibrium. The corresponding ansatz is E(p, t) =

3Eth
k3

max
p2

+

γ (t)δ(p − kpert) and we suppose Eth � γ , so that the total
energy is almost constant and equal to Eth.

Using the long time limit of (15) and expanding the EDQNM
transfer (14) to first order in γ yields for the delta containing
part, after a lengthy but straightforward computation:
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Fig. 4. Effective viscosity νeff (a) and thermal diffusivity Deff (b) determined by Monte Carlo computations performed at different values of Eth and kmax
(see text).

TN L(k, t) = −γ (t)δ(k − kpert)k
2
√

Eth

kmax

√
30
λ

I

(
k

kmax

)
(17)

where I is given by the explicit integral

I (x) =
√

x

×

∫ 2−x
x

1

∫ 1

−1

(p2
− 1)(1 − q2)(q2

+ p2(1 + 2q2))

(p2 − q2)(2
5
2 + ((p − q)

5
2 + (p + q)

5
2 ))

dqdp.

Using (13) and (17) and the basic definition of the two-fluid
model (7)–(11), we obtain

νeff(k) =

√
Eth

kmax

√
30

2λ
I

(
k

kmax

)
. (18)

The function f (x =
k

kmax
, 0) in (12) is thus given by

f (x, 0) =

√
30

2λ
I (x). (19)

In the limit x → 0, it is simple to show that f has a finite
value f (0, 0) =

7
√

15λ
. Thus the EDQNM prediction in the

small k/kmax limit is

νeff =

√
Eth

kmax

7
√

15λ
, (20)

with 7
√

15λ
= 5.021 for the classic value of λ = 0.36. This

asymptotic value can also be obtained from the EDQNM eddy
viscosity expression calculated by Lesieur and Schertzer [12]
using an energy spectrum E(k) ∼ k2.

3.2. Monte-Carlo determination of viscosity and thermal
diffusion

In order to numerically determine the effective viscosity
νeff(k) of the two-fluid model, we use a general-periodic code
to study the relaxation of an absolute equilibrium perturbed
by adding a stationary solution of the Euler equation. We thus
consider the initial condition

u = cos kx sin ky + ueq (21)

v = − sin kx cos ky + veq (22)

w = weq (23)

where the (solenoidal and Gaussian) absolute equilibrium
velocity field satisfies 〈u2

eq + v2
eq + w2

eq〉 = 2Eth.
The resulting amplitude of the rotation in (21)–(23) is found,

after a short transient, to decay exponentially in time. The
function νeff(k) is then obtained by finding the halving time
τk , for which v̂α(k, t0 + τk) = v̂α(k, t0)/2, with t0 chosen
larger than the short transient time. The effective dissipation
thus reads

νeff(k) = log 2/(k2τk). (24)

The values of νeff(k)kmax/
√

Eth are shown in Fig. 4a for dif-
ferent values of Eth, k, kmax. A very good agreement with the
EDQNM prediction is observed. Note that there is not depen-
dence in the dimensionless parameter k0/kmax (see Eq. (12)).

An exponential fit of all data in Fig. 4a gives

νeff = 5.0723

√
Eth

kmax
e−3.97k/kmax . (25)

Note that the limit k/kmax → 0 is consistent with the EDQNM
prediction (20).

Another simple numerical experiment can be used to
characterize the thermal diffusion: the relaxation of a spatially-
modulated pseudo-equilibrium defined by〈

u2
+ v2

+ w2
〉
= 2Eth + 2ε cos(kx) (26)

with ε < Eth.
An x-dependent temperature can be recovered by averaging

u2
+v2

+w2 over y and z. Numerical integration of the truncated
Euler equation with the initial condition (26) produces an
amplitude ε that decays exponentially, as in the case studied for
the determination of effective viscosity. The thermal diffusivity
Deff is determined in the same way as in Eq. (24) and the
corresponding data are shown in Fig. 4b. A power-law fit gives

Deff = 0.7723

√
Eth

kmax
(k/kmax)

−0.74. (27)

The negative exponent in (27) is characteristic of hypodiffusive
processes.

We can define an effective Prandtl number as the ratio
Peff(k) = νeff(k)/Deff(k). The Prandtl number is plotted in
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Fig. 5. Effective Prandtl number Peff = νeff/Deff. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. (a) Time decay of rotation (21) and (22) (upper curve) and temperature
modulation (26) (bottom curve). Solid line: truncated Euler equations
and dashed line: two-fluid model. (b) Time-evolution of energy spectra,
truncated Euler equation: solid lines and two-fluid model: dashed lines. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5, where the solid blue line is obtained using the EDQNM
prediction (20) and the fit (27) and the dashed red line is
obtained using the fits (25) and (27). Note that the Prandtl
vanishes in the the small k/kmax limit and verifies Peff < 1
for all wavenumbers.

3.3. Validation of the model

In this section, numerical integration of the the two-fluid
model equations (7)–(11) are performed using a pseudo-
spectral code. Time marching is done using second-order
leapfrog finite difference scheme and even and odd time-steps
are periodically recoupled by fourth-order Runge–Kutta. The
effective viscosity and diffusivity are updated at each time step
by resetting Eth = 〈Q〉. The obtained data is compared with
that directly produced from the truncated Euler equation.

The time-evolutions resulting from initial data (21) and (22)
(in red) and (26) (in blue), both normalized to one and with
the same value of Eth is displayed on Fig. 6a. Good agreement

with the two-fluid model is obtained in both cases and the
faster relaxation of the temperature modulation is related to the
smallness of Peff < 1.

We now compare, the evolution of non-trivial spectra of
the truncated Euler equation (1) and the two-fluid model. The
truncated Euler equation is integrated using the Taylor–Green
initial data. At t ∼ 8, when a clear scales separation is present,
the large-scale fields v< (see Eq. (4)) and the heat Q (Eq. (6))
are computed and used as initial data for the two-fluid model
(7)–(11). The subsequent evolution of the two-fluid model is
then compared with that of the truncated Euler equation.

Both spectra, plotted in Fig. 6b, are in good agreement. The
straights lines represents the thermalized zone E(k, t) = c(t)k2

in the spectrum of the truncated Euler equation, where c(t) is
determined by the condition 〈Q(t)〉 =

∑
k>kth

c(t)k2.
The value of Q(t) and ∆Q/Q are plotted in Fig. 2 (solids

lines); the evolution of the fluctuation of the temperature are
well reproduced too by the two-fluid model.

4. Conclusion

The thermalized small scales were found to follow a quasi-
normal distribution. The effective viscosity was determined,
using both EDQNM and Monte Carlo. (Hypo)diffusion of heat
was obtained and the effective Prandtl number found to vanish
at small k/kmax. The two-fluid model was found to be in
good quantitative agreement with the original truncated Euler
equations.
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