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Abstract. The probabilistic reformulation of the multifractal model iii is obtained directly
from the structure functions written

as
integrals

over
cumulative distribution functions (c.d.f.)

by the steepest descent method. The saddle point being a function of scale, we perform a

change of variable to obtain expressions that are asymptotically valid in the inertial range.

Starting directly from the inertial range behavior of the c-d-f-, our algorithm yields values for the

scaling exponents and codimension that are identical to those obtained from structure functions.

Furthermore, a simple interpretation of multifractality in terms of global c-d-f- scaling is shown

to collapse the inertial range c-d-f- into a
single curve, directly related to the codimension. Our

method determines
a new

length scale, larger than the integral scale, that gives
a

quantitative

measure of the degree of multifractality of the data. Finally, some possible future applications

are mentioned.

Inertial range intermittency in turbulence is characterized by scaling laws obeyed by the

structure functions. Experimentalists often calculate the longitudinal structure functions, I..e.

the ~J-th order moments of the longitudinal velocity increments: (AUF(I))
=

((u(x +I) u(x) )P ).
In the inertial range, these structure functions scales as i~P The deviation of the exponent

(p from the Kolmogorov law (p
=

p/3 provides a quantitative measure of intermittency iii.
Frisch et Parisi's multifractal model [2] uses the Legendre transform (p

=
infh(hp + ~t(h)) to

relate the exponent (p to the codimension ~t(h)
=

3 D(h) of a set on which the velocity
increments Au(I) scale as

i~. More recently, Frisch iii proposed a probabilistic reformulation

of the multifractal model, based on the asymptotic behavior of the probability distribution

functions (pdf's) of the velocity increments. This reformulation has the advantage of being
independent of the existence of singularities, and is related to an experimentally measurable

quantity. However, it is difficult to use this reformulation to determine ~t(h), which is defined

in the double limit of vanishing viscosity and length t.

The purpose of this letter is to use the method of steepest descents to establish asymptotic
formulas for the pdf's which are valid for I in the inertial range. These formulas can then be
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used both to test the validity of the scaling hypotheses and also to extract ~t from experimental
pdf's.

Because the velocity increments Au(I)
are of either sign, the structure functions

can be

defined in several ways [1,3,4]. In this letter, we have chosen to use the absolute values of the

increments, as in [3].
The pdf's of the absolute velocity increments p;n~((Au(I)(,I)

can be used to express the p-th
order structure function Sp(I)

=
((u(x + I) u(x)(P) as

Sp(I)
=

uPp;n~(u,I)du, with u =
Au. (I)~~

We also define the cumulative distribution function (cdf)

(2)
dlinc(~'i)

=
-p>ncl~'i)

(3)
~~~

~ o

Integrating (1) by parts, Sp(I) can be written:

+cc

SP(I)
" P U~ ~fInc(U> I) dU. (4)

The basic idea is to approximate the integrals (4) by the method of steepest descents [5].
Let

1= /~~ e~~~~~ dt (5)
-c~c

where 4l has a dominant saddle point t~ (4l'(t~)
=

0) and x - oc. The method of steep-

est descents yields the asymptotic expression (through this letter, the asymptotic expression
f(x)

+~

g(x) for x - To means lim~-~~ f(x)/g(x)
=

1).

1
~4

e~~~~~~W(-x4l"(tc))~~/~ (6)

However, the method cannot be directly applied to (4), because the saddle point us is a

function of I. In such cases, a change of variables must be found such that the saddle point
in the new variable becomes independent of I [5]. Using the assumption of the multifractal

model that us scales as
i~, then an appropriate choice of variable is h

=
log(u/uo)/ log(ilio),

with uo, to some given velocity and length scales. Note that this is equivalent, up to a scale

dependent ailine transformation that leaves the value of expression (6) unchanged, to taking
log u as the integration variable. Introducing the pdf in log u:

ji;nc(logu, I)
= u

p;nc(u, I) (7)

and the associated cdf

fi>nc(i°g~,I)
"

~~~()j)~~~ (8)

Anc(+OO)
=

0. (9)

Equation (4) then becomes

Spit)
= p /~~ UP fIn~(log u,I)d logu (10)

-c~c
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Fig. I. a) logS3(t) determined by (13)
w.

log([u[~) (true value). lo) without the li/2 (14) contri~

bution and (+) with li/2. b) 1)/~ us.
logS3(t) for p =

1.. 5. The scaling laws 1)/~ +~

-C(p) logS3(t)

are displayed
as

straight lines.

or, in exponential form

Sp(t)
= p /~~ exp I- logi (-p )~) °~~(j~~)~~'~~jj

dlogu. (ll)
~°°

°~ ~

We are now in a position to apply the method of steepest descents (6) to (11) by identifying

x with log I and 4l(t) with
~ ~°~~ °) ~~~~~'~~

Denoting by us the saddle point where
og

4l(logu) is maximal, I.e.

Sp (I)
+~ p exp(- log I 4l(log us

)@ ~~ j)~
))))~~ ~~

~~~

(13)

The results that we shall present were obtained from pdf's computed on the experimental signal
MODVITLON.D [6, 7]. The structure function and c.d.f. shown in this letter were computed

from 10~ successive integer data values, that were arbitrarily normalized by 1/20000. Figure la

shows that the saddle-point expression (13), gives a good approximation of the third order

structure functions.

Expression (13) leads directly to Frisch's probabilistic reformulation iii. Indeed, neglecting
the subdominant second-order term (see below)

11/~ -

w ~~iiiiiiii°~~LS~j ~~~

(14)

the definition (p
=

limi-o log Sp(I) flog I yields (p
=

ph + ~1, where h and
~1 are defined by

h
=

lim [log us (p, log I) / log ii 11 5
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~t =
lim (log l~n~(log us flog ij (16)

Starting from (11), (12), and using (15) and (16), (p can be expressed as

o log nnc o log nnc o log nnc
~~ " o log I

'"
" o log I

'~ ~
o log u

'~' ~~~~

From (17), it can be verified that d(p/dp
=

h. The exponent (p is thus the Legendre transform

of ~t(h).
As shown by [3], the determination of the exponent of the scaling laws obeyed by Sp(I) is more

accurate when the third-order structure function is used instead oft itself. Throughout this

letter we shall use this method, called E.S.S. (Extended Self-Similarity) which is an expedient

way to determine scaling laws within the inertial range where 53(I) Ii is constant to a good
approximation.

The subdominant nature of the term li /2 is a consequence of the scaling law 1) /~ +~

Co (p) log I,

(see Fig. lb). This law can be derived from the definition of the saddle point (12) and from

the multifractal behavior of log(us/uo)
+~

hlog(ilio), with h a function of p. The result is:

~~~~~~~~~)2~~~~~~~ 0~u'~ lji'
~~~~

(15) and (16) yield the local scaling laws in the inertial range

log us =
h log I + Ci (p) (19)

log Anc (log Us " ~l i°g I i°g il /2 + C2 (P) 12°)

log Sp
=

( log I + C3 P) 121)

where the coefficients in (19-21) are determined by linear least-square fits (see Figs. 2a and

2b). Although (/2 is subdominant in the limit I
-

0, it provides correction to the scaling
law (20) with respect to the asymptotic expression (16). Thus, the approximation of Sp(I) by
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Fig. 2. a) log~s(p,logt)
~s.

logS3(t) for p =
1.. 6. The scaling law (19), displayed as straight

lines, gives h(p)
as

the slope. b) log fine(log us,logt) +log li/2 w, log 53(t) for p =
1 6. The scaling

laws (20)
,

displayed
as

straight lines, directly gives the codimension ~1(h) as the slope.



N°6 MULTIFRACTAL SCALING OF PROBABILITY DENSITY 941

Table I. Val~es of exponent ~tp and (p corresponding to straight lines in Fig~res 2a and 2b.

~tj and (j are deterInined as ~tp and (p b~t without the (/2 terIn.

p 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

hp 0.36 0.34 0.32 0.31 0.29 0.27 0.26 0.25 0.24 0.23

~tp -0.005 0.004 0.037 0.058 0.104 0.19 0.23 0.253 0.291 0.33

~t( 0.018 0.038 0.076 0.105 0.154 0.24 0.287 0.327 0.387 0.453

(p 0.357 0.525 0.692 0.847 1 1.147 1.275 1.393 1.498 1.591

(( 0.381 0.56 0.731 0.894 1.05 1.197 1.333 1.467 1.595 1.714

the method of steepest descents determines the scaling laws (19), (20) and (21). The slopes of

these laws (for p < 6) in the inertial range give the values of ~t(h) and (p displayed in Table I.

Note that the correction to the exponents stemming from the ii/2 is in the range 0.05 0.1.

The exponents (p obtained by the present method are identical to those of Benzi [3].
Because of multifractality hp is non-constant and thus the straight lines in Figure 2a are non-

parallel. A naive idea to quantify the " "degree of multifractality" of the data is to extrapolate
the straight lines in Figure 2a to scales much larger than the inertial scale and look for a

common intersection. Such a procedure is not very accurate, but gives an order of magnitude
for the intersection length scale iA of order the integral scale ii. Such a behavior is consistent

with a global scaling law.

fIn~(logu)
+~

PA exp
log(iliA)l~ ~°~~~~~~~ log (-

og(iliA))j
(22)

1°g(iliA) 2

This global scaling gives in the asymptotic ii
-

0) regime the correct expression for (p (using
expressions (12, 15, 16)). Furthermore, for values oft such that the subdominant term in (20)

is not negligible, the 1/2 log (- log(iliA)) term in (22) will yield in (20) a value of ~t consistent

to that in (22).
Equation (22) can be inverted into

~1
Ill())])

-

~°~ ~~~ ~~°~ ~~ ~°tin)ill~ ~°~ ~~ ~°~ ~~/~~~~ (23)

This expression shows that if (22) holds, the c.d.f. 's corresponding to different values of I can

be collapsed, by a simple scaling transformation, into a single function ~th. It can thus be used

to determine values of iA and PA yielding the best collapse for
~1 (VA is not a free parameter,

it can be expressed as (eiA)~~~ with e determined as 53 (t) Ii with I in the inertial range).
A convenient error function characterizing the collapse is the sum of the square of the

differences between values for ~t obtained from (23) for all pairs oft contained in the inertial

range. The sum is carried out for a set of values of h. To perform the minimization, we have

used Powell's method [8]. The starting point for Powell's method is obtained by estimating
the intersection points corresponding to the straight lines in Figures 2a and 2b. The result of

this global procedure are presented in Figures 3a and 3b. The values obtained for ~t and (p
are in good agreement with the one previously derived. The best value of iA is found to be of

order 10 ii- As a bonus, we have obtained a good representation of the c.d.f.'s corresponding
to inertial scales, in terms of a single function ~th and the parameters iA, PA only (see Fig. 4).
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by the Legendre transformation of the global collapse of ~(h) (see Fig. 3a), the dots (.) correspond to

8 c.d.f.'s with t in the inertial range, (p determined by (21) without the li/2 term (+), with li/2 (o).
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Fig. 4. Global representation of the c-d-f- in inertial range. The dots correspond to c-d-f- deter-

mined by (22), the lines correspond to the experimental c-d-f-

Note that (22) is reminiscent of the asymptotic expression for the probability in large de-

viation theory iii. Thus the c.d.f. for the velocity increment behaves like the c-d-f- of a

random cascade model iii after N
=

log(iliA) steps. Clearly there is no relevant dynamics
going on between iA and it, the former is only a geometric scale, indicating the origin of the

global scaling law (22), valid only when I < it. In conclusion, let us remark that the scale

tA gives a quantitative geometrical measure of the degree of multifractality of data. Indeed

for monofractal data, the slopes of the straight lines in Figure 2a would be independent of the

order of the moment p and iA would be infinite. A determination of iA at increasingly large
Reynolds numbers for a turbulent flow with fixed geometry, such as the one studied in [9,10],
could be carried out with the methods developed in this letter. It would be interesting to know

the behavior of tA determined in this way at very large Reynolds number. Finally the present
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method could be used to make a connection between the small scale structures seen in the

numerical simulations and multifractality.
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