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We here report results obtained from numerical simulations of the Taylor- 
Green three-dimensional vortex flow. This flow is perhaps the simplest system in 
which one can study the generation of small scales by three-dimensional vortex 
stretching and the resulting turbulence. The problem is studied by both direct 
spectral numerical solution of the Navier Stokes equations (with up to 2563 
modes) and by power series analysis in time. 

The inviscid dynamics are strongly influenced by symmetries which confine 
the flow to an impermeable box with stress-free boundaries. There is an early 
stage during which the flow is strongly anisotropic with well-organized (laminar) 
small-scale excitation. The flow is smooth but has complex-space singularities 
within a distance 8(0 of the real space which are manifest through an exponen- 
tial tail in the energy spectrum. It is found that 8(0 decreases exponentially in 
time to the limit of our resolution. Indirect evidence is presented that more 
violent vortex stretching takes place at later times, possibly leading to a real 
singularity (8 = 0) at a finite time. These direct integration results are consistent 
with new presented results extending the Morf, Orszag, and Frisch temporal 
power series analysis from order t 4~ to order t 8~ Still, convincing evidence for or 
against the existence of a real singularity will require even more sophisticated 
analysis. 

The viscous dynamics (decay) have been studied for Reynolds numbers R 
(based on integral scale) up to 3000 and beyond the time tma x at which the 
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maximum energy dissipation is achieved. Early time, high R dynamics are 
essentially inviscid and laminar. Then, instabilities starting at small scales, which 
may be driven by viscosity, make the flow increasingly chaotic (turbulent) with 
extended high-vorticity patches appearing away from the impermeable walls. 
N e a r  tma x the small scales of the flow are nearly isotropic provided R >~ 1000. 
Various features characteristic of fully developed turbulence are observed near 
/max when R = 3000. 

KEY WORDS: 2.70, 3.40G, 47.10, 47.25C. 

I N T R O D U C T I O N  

Viscous incompressible three-dimensional flow can become turbulent when 
the Reynolds number R is sufficiently large. The latter is determined by the 
typical length scale L of the flow, a typical velocity V, and the kinematic 
viscosity v, as the ratio of the viscous diffusion time L 2 / p  to the circulation 
(turnover) time L~ V. 

In this paper we shall be concerned with the properites of flows at very 
large Reynolds numbers. In contrast to the situation at the onset of 
turbulence, where in general excitation is only in the large scales of the flow 
and where the dynamics appears to be governed by the interaction of only 
a few modes, (1) high Reynolds number turbulence involves excitation in a 
very wide range of scales. 

In fact, Fourier analysis of velocity signals from a probe in high 
Reynolds number flow (e.g., turbulent jet) reveals the kind of energy 
spectrum shown in Fig. 1. The spectrum follows a power law of the form 
k -m ( m , ~ 5 / 3 )  over a range of scales (i.e., inverse wavenumbers k) 
extending from the integral scale I 0 to the dissipation scale l D . The range of 
scales l ~ l  o is called the energy-carrying or production range because that is 
where most of the turbulent energy is produced (usually by some instability 
mechanism). The range /o>> l >> l D is called inertial range because the 
dynamics is dominated here by the inertial terms in the Navier-Stokes 
equation (direct production and dissipation are negligible). The range of 
scales l < l D is called the dissipation range because dissipation terms as well 
as inertial terms are relevant here. 

As the Reynolds number increases the dissipation range moves to 
larger wave numbers, in fact, the ratio lo l l  D is experimentally found to 
increase like R" (n ~ 3 /4)  and in the limit of infinite Reynolds number a 
power law spectrum extending to infinite wavenumbers will result. 

While all this was predicted in 1941 by Kolmogorov (2) there still 
remains a major lack in theoretical understanding: In fact, the Kolmogorov 
theory is inconsistent with another important experimental observation: the 
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Fig. 1. 
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Energy-spectrum of high Reynolds number turbulence in log-log scale, l 0 is the 
integral scale and/o is the dissipation scale. 

fact that small-scale activity is intermittent. (3) Indeed, high-pass filtering of 
turbulent signals shows that small-scale activity comes in bursts. Intermit- 
tency appears both in the inertial and in the dissipation range. Inertial 
range intermittency has not received any systematic explanation�9 There 
have been attempts to modify the original Kolmogorov (1941) theory in 
order to include the effects of intermittency, (4-6) but the problem is still 
open (cf. Ref. 7). Dissipation range intermittency is much better under- 
stood (8) and has been related to singularities of the solutions to the 
Navier-Stokes equation at complex times. (7'9) 

The essence of the explanation is that high-pass filtering of an analytic 
function with complex-time singularities produces bursts centered at the 
real part of the singularity position and with overall amplitude proportional 
to exp(-f21~']) where f~ is the high-pass filter frequency and ~- the imaginary 
part of the singularity. The rare singularities closest to the real time axis 
dominate for large fL A similar consideration can be applied to the 
connection between the small-scale (large wavenumber k) behavior of the 
energy spectrum and complex space singularities of the velocity field. In 
this view, the exponential decay rate, characterized by the cutoff wave- 
number k D ~ 1 / l D ,  would be associated with the distance from the real 
domain of the singularities in complex space, and in the limit of infinite 
Reynolds number one might then expect that singularities would occur at 
real points in space and thus lead to a power law spectrum for all k, whose 
exponent would be associated with the spatial structure of the flow in the 
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vicinity of a real space singularity. This mechanism actually works for 
solutions of the Burgers equation 

OtV + VOxV= vO,,xV (I)  

which in the zero-viscosity limit (v = 0) undergo the formation of shocks, 
thus leading to a power law E(k)ec k -2 for the energy spectrum. (1~ 

For the Navier-Stokes equation (or for v = 0, the Euler equation) the 
situation is, however, quite different: For the two-dimensional Euler equa- 
tions (i.e., even in the inviscid case!) it has been proven that real singulari- 
ties will never occur unless present initially (cf. Ref. 7). Less is known for 
the three-dimensional case, where in contrast to the two-dimensional case, 
the generation of small scales occurs by three-dimensional vortex stretching 
and vortex lines could conceivably be stretched to infinite length. 

These considerations have motivated our study of one particular 
three-dimensional flow, the Taylor -Green  vortex flow. (ll) A full account of 
this work has been published recently (12) and we shall review the principal 
results here. 

The Taylor-Green vortex is that three-dimensional flow that develops 
from the single-Fourier mode initial condition 

Vx(x, y,z) = sinx cos y cosz 

Vy (x, y, z) = - cos x sin y cos z (2) 

Vz- -0  

under the action of the Navier-Stokes equation 

0,V + V ,  VV = - V p  + vV2V (3) 

together with the condition of incompressibility X7 �9 V = 0. While the initial 
symmetry Vy(X, y ,z )= Vx(y,~r - x,z) holds for all later times, the z com- 
ponent of the velocity field becomes nonzero for all t > 0 and the flow 
becomes truly three-dimensional. However, owing to the symmetries com- 
putational work and data storage is significantly less than in the general 
nonsymmetric case and thus computations with higher spatial resolution 
become possible. This allows flow studies at much higher Reynolds num- 
bers than is possible in the general nonsymmetric case. 6 On the other hand, 
the fact that the initial condition contains one single Fourier mode allows 
the computation of temporal power series for the velocity field 

V(r, 0 = (4) 
p = 0  

6 A Taylor Green code with resolution of (256) 3 Fourier modes requires roughly an equivalent 
amount  of computation as a general spectral code with resolution (64) 3. 
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where V (?) can be obtained by recursion from the Navier-Stokes equation 
in a finite number of steps. This series representation will converge for short 
times (cf. Ref. 7 and references therein) and can be used for the calculation 
of spatial averages such as the mean square vorticity (or enstrophy) 12(t) 

1 a( t )  = ~- ~ Ikl2u(k, e) (5) 
k 

with a temporal power series 

a ( t )  = ~ A , t  n (6) 
n = 0  

The Fourier transform of the velocity field has been denoted by u(k, t). 
Again the computation of the coefficients A, up to an order nma x involves a 
finite number of Fourier modes and can be calculated in a finite number of 
recursion steps using the Navier-Stokes equation. Clearly, the development 
of a power law energy spectrum at a finite time t ,  would imply a 
singularity for ~(t) at t ,  and therefore the behavior of the Taylor series (6) 
for ~2 will be of great interest for the analysis of small scale structure in the 
flow. This method together with direct numerical integration of the Navier-  
Stokes equation has been utilized in our work. In Section 2 we shall review 
results for the inviseid flow and Section 3 will be devoted to finite Reynolds 
number results. 

2. ANALYSIS OF INVISCID FLOW 

We begin our discussion with results based on temporal power series 
calculations for t2(t) [Eq. (6)]. A computation of this series up to order t 44 
was carried out by Morf, Orszag, and Frisch. (13) The radius of convergence 
was found to be determined by imaginary time singularities at t 2 ~  - 5 .  7 
Analytic continuation was required to study the question of the existence of 
a real time singularity. Pad6 approximants indicated the possibility of a 
singularity at t ~  5.2. The reliability of this method was subsequently 
studied for flow problems for which rigorous results are known. (~4) In 
particular, for the inviscid Burgers equation, series-extrapolation methods 
correctly predict locations and nature of the singularity, corresponding to 
the formation of shock waves. Also, for two-dimensional Euler flow, series 
analysis does not predict a real singularity, consistent with rigorous theo- 
rems. (15) In the present work, we have extended the power series for f~(t) 
up to order t 8~ This was possible through efficient use of fast Fourier 
transform methods for the recursive calculation Of V~?)(r) (4) [together with 
multiple precision (28 hexadecimal mantissa) arithmetic]. Pad6, D log 

7 Note that for v = 0 the series (6) contains only even terms and is analyzed in the variable t 2. 
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Table I. Singularities and Estimates of 
d~/dt from Pade Approximants 

Complex-t 2 plane pole df~ 
Approximant locations with (larg t21 < �88 ~r) ~ -  ,= 4 

[17/22] 18.94, 16.58 +_ 11.33i 3.98 
[18/21] 20.53, 15.84 + 7.89i 3.16 
[19/20] 31.32, 15.65 _+ 4.43i 2.03 
[20/19] 31.12, 15.66 +__ 4.45i 2.04 
[21/18] - -  14.94 _+ 3.19i 1.23 
[19/22] 20.05, 15.66 _+ 8.54i 3.32 
[19/21] 19.95, 15.56 _+ 8.64i 3.35 
[21/19] 18.50, 14.29 _+ 7.35i 3.91 
[22/18] - -  15.76 +_ 4.05i 1.87 

Pad6,(16) and  inhomogeneous  differential approx imants  (17) suggest singular- 
ities of f~ at  t 2 = - 4 . 6 5  _ 0.05 and  at t 2 -- (1.5 _ 0.2) _+ (5.4 +_ 0.2)i, imply- 
ing a radius of convergence R C ~ 2.16. An addit ional  singularity appears  to 
be  present  at [t2[ ~ 15-20 either on the positive real axis or as a nearby  
complex-conjugate  pair. The  uncer ta inty  in the nature  of this singularity is 
illustrated in Table  I, in which we give a partial  list of Pad6 approx iman t s  
of Q with all pole locations with [arg t21 < �88 ~r. 

Since in mos t  cases the poles shown in Table  I are also the poles 
furthest  f rom the origin, their a lmost  " r a n d o m "  posit ion is not  so surpris- 
ing. We believe that  this r andomness  is a t t r ibutable  to a lack of informa-  
tion, i.e., the limited n u m b e r  of coefficients available.  This conclusion is 
based on the observat ion that  approx iman t s  de termined f rom a series up to 
t 7s typically predict  the coefficient of the term of order t 8~ to 7-digit 
accuracy,  whereas  the compu ted  coefficient, we believe, has three more  
significant digits. In  addition, the lack of unders tanding  of the unphysical  
singularities of seriously hampers  our  a t tempts  to deduce  its analyt ic  
structure at real times. 

Let  us now turn to the results based  on direct integrat ion of the Euler 
equat ion (or Nav i e r -S tokes  equat ion for zero viscosity). In order  to probe  
the small-scale structure of the flow we look at  the t ime evolution of the 
spherically averaged energy spect rum E(k, t) calculated as the b a n d  aver- 
age 

E(k,t)Ak = �89 ~ lu(k',/)l  2 
k'eC(k) (7) 

C(k) = ( k ' l k  - �89 < Ik' I < k + �89 

In  Figs. 2 and  3 we plot  the energy spect rum both  in l inear - log  and  log- log  
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Fig. 2. The inviscid spectrum E(k, t) in log-linear scale. The different symbols distinguish 
the spectra at equally spaced times, from crosses at t = 0.5 to diamonds at t = 3,5. 

scales for the times t = 0.5, 1, 1.5, 2, 2.5, 3, and 3.5. While the early-time 
behavior is essentially exponential, for times t ~> 2.5 a power law regime is 
conspicuous. Fitting the energy spectrum to the form 

E(k ,  t) = A ( t ) k - ' (% -2~(0k (8) 

we obtain the solid lines in Figs. 2 and 3. While the exponent of the power 
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Fig. 3. 
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The inviscid spectrum E(k, t) in log-log scale. Symbols are the same as in Fig. 2. 

l aw  part  varies little with time and approaches  the value n(t)~ 4 for t > 2, 
the cutoff wave vector k C = (26)-~ increases exponentially with time in the 
form 

kc(t) ~ kc(O)e ~/T (9) 
with a time constant  T ~ 0 . 5 7 ,  which corresponds to a doubl ing time 
At ~ 0.40. Equat ion (9) holds up to the limit of resolution which for our 
(256)3-computation occurs for kc(t)~ k~,  X = 84. This actually occurs al- 
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ready at a time of 2.5. The variable 6(0 of Eq. (8) which is proportional to 
k~ -1 may be regarded as the width of the analyticity strip of the velocity 
field V(z, t) in complex C 3 (z = x + iy, x and y E R3). (18'7~ The result (9) 
thus implies that singularities of the velocity field would approach the real 
domain in an exponential manner never actually hitting it, bu t  coming 
arbitrarily close. This would thus imply that no finite time singularity exists 
in this flow. This conclusion is, however, based on the assumption that no 
crossover in the evolution of the flow occurs. However, as discussed in 
great detail in Ref. 12 there is strong evidence that such crossover does 
occur in the flow. It is based on the numerically observed growth of the 
strain rate (or convergence) near the special point x = z = ~r/2, y = 0. It is 
pointed out that the behavior of the flow field near this point will for t ~> 3 
dominate the large k behavior of the spectrum actually giving rise to 
significantly more rapid growth of the cutoff wave number kc(t ) with a 
doubling time of the order At' ~ 0.2 around t = 4. 

Finally it is interesting to compare the results of direct integration with 
those based on series extrapolation techniques and test in this way the 
reliability of the Pad6 extrapolation. A detailed comparison is made in Ref. 
12. It is found that up to a time t ~ 3.6 the results for f~(t) and df~/dt based 
on integration are consistent with those based on series extrapolation. In 
other words there is agreement significantly beyond the radius of conver- 
gence (Rc,~2.16). In addition, it is interesting to note that the results for 
df~/dt at t = 4, which are for resolutions (64) 3, (128) 3, and (256)3: (df~/dt) 
(t = 4 ) =  1.53, 2.06, and 2.59, respectively, are consistent with all Pad6 
approximants which exhibit a singularity at around t 2 ~ 18-20 (cf. Table I), 
based on the plausible assumption that the integration results are lower 
bounds to the true value of d~2/dt at t = 4. 

This is the strongest evidence we have at present for the existence of a 
real-time singularity and its possible time of occurrence t . ~ 4 . 4 +  0.2. 
Although the above argument is by no means definitive, it does serve as an 
excellent example of the complementary nature of the time-series and 
time-marching techniques used here. 

To conclude this section, we should like to discuss a possible explana- 
tion for the complicated nature of series (6), as evidenced by the "noise" in 
the Pad6 analysis. Indeed, systems have been studied which naturally 
display that kind of "noise," which results from the existence of natural 
boundaries in these systems. A well-studied example is the Hdnon-Heiles 
system which has been found to exhibit natural boundaries with a self- 
similar fractal structure. (19'2~ Such a structure, one may speculate, might 
result in the Taylor-Green vortex if the flow develops into an infinite 
cascade of ever smaller vortices, and no method of extrapolation from a 
finite number of Taylor coefficients might ever work. 
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3. HIGH-REYNOLDS-NUMBER BEHAVIOR 

Here, we report results obtained by numerical solution of the viscous 
Navier-Stokes equation for the Taylor-Green vortex flow. We will only 
give a brief summary and refer the reader to the detailed discussion of Ref. 
12, which contains also a great number of illuminating flow pictures. 

The Reynolds number is R = 1/v, noting that the length and velocity 
scales of the initial flow are of order unity. While the inviscid runs cannot 
be extended accurately beyond t ~ 3, finite R runs may be accurate for all 
times. For example the (256) 3 calculation is accurate for all but the smallest 
dissipation scale for R ~< 3000. 

The time evolution of the energy dissipation e(t) = 2 f~( t ) /R  is plotted 
versus t in Fig. 4 for 100 < R < 3000. The observed enhancement of 
mean-square vorticity f~(t) for short times measures the strength of nonlin- 
ear vortex stretching while the late-time decay of e(t) reflects the decay of 
the flow by viscous damping. The results also show that the maximum 
enstrophy f~max is roughly proportional to R, since the maximum dissipa- 
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Fig. 4. Ra te  of energy dissipation c(t)  = 2p~( t )  vs. t for 100 < R < 3000. N o t e  that  the t ime 

tma x of m a x i m u m  dissipation is shifted f rom tma x ~ 7 at  R = 200 to t,na• ,~ 9 at  R = 3000. 
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Fig. 5. Plots of energy spectra E(k) vs. k on l inear- log and  log- log scales: bot tom: t = 5, 
R = 3000; middle:  t = tma• R = 3000; top: t = tMa • R = 1600. The solid lines represent 
fits using Eq, (8). 
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tion varies only weakly with R. The time tma X at which the dissipation 
reaches its maximum depends only weakly on R up to R ~ 300, until at 
R ~ 400 a second maximum appears which becomes the only maximum for 
R ~ 500. It lies around tma x ~ 9. We have no evidence for a further increase 
of tma x as R increases, but it cannot be excluded on the basis of these data. 

Let us now discuss the behavior of the energy spectrum. For early 
times t ~ 3, spectra of the large R viscous computations are essentially 
identical to those of the inviscid flow. At later times, however, the high-R 
runs lead to nearly isotropic high-wave-number behavior, in which the 
effect of the initial condition is largely forgotten. In Fig. 5, energy spectra 
are plotted for R = 1600 at tma x = 9 and for R = 3000 at tma x = 9 and at 
t = 5. Especially, for the R = 3000 case, the log- log  plot of E(k) shows a 
rather obvious power law character, although inertial and dissipation range 
have considerable overlap. In order to  extract such quantities as power law 
exponents and dissipative cutoff wave numbers we again use least-squares 
fits to Eq. (8). The results are indicated as solid lines in Fig. 5. Results for 
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Fig. 6. E x p o n e n t  n(t) of the a lgebraic  factor  vs. t in the spectral  fit (8). The  least-squares fits 
are d o n e  over  the w a v e - n u m h e r  interval  13 < K < 8 3 .  The  plus signs are for R = 1600; the 
circles are for R = 3000. 
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the exponent  n(t) are plotted in Fig. 6 for both R = 1600 and  R = 3000. It 

is apparen t  that a round  t = 8, n(t) drops quickly from a value of the order 

3 to a value close to 2. Also, it can be seen that n(t) has a m i n i m u m  value 

close to the Kolmogorov  value; this occurs in the vicinity of tma x when the 
dissipation rate is max imum.  

Let us finally discuss results concern ing  in termit tency of the small 

scales. Direct  access to in termi t tency is provided by  analyzing the fluctua- 
tions of local dissipation, which is defined by 

= e,je  

(1o) 

Consider  the f luctuat ions in the local dissipation f(r) = c(r) - ~. Ac- 
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Fig. 7. Plot of the spectrum of dissipation fluctuations r = vw2(r) for R = 3000 at t = 9. 
The solid line is a least-squares fit to the form (11) over wave numbers 11 < k < 83. The 
least-squares result is/~ = 0.46 in (11). 
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cording to the original Kolmogorov theory, at inertial-range scales these 
fluctuations are expressible in terms of velocity fluctuations. These contrib- 
ute a self-similar process with exponent 1/3. (7) Hence, the spectrum of 
dissipation fluctuations E~(k) is given, at inertial range wave numbers, by 
E~(k),~p2~.4/3k 5/3. In contrast, according to the modified Kolmogorov 
theory, (4) dissipation fluctuations may be correlated Over distances much 
larger than the viscous cutoff scale l D. Modified Kolmogorov theory then 
leads to 

E~(k)~2(klo)-l+. (11) 

where/ ,  is an exponent which in some models allows a geometric interpre- 
tation, as the codimension of a fractal on which dissipation is concen- 
trated.(5,6) 

AS a measure of local dissipation we have analyzed the quantity 
el(r) = ~02(r) where oz(r) is the vorticity. In Fig. 7 we plot the spectrum 
E~(k) for R = 3000 at t = 9 near the time of maximum dissipation. A 
least-squares fit to a form analogous to Eq. (8) leads to a value 

/~ = 0.5 _+ 0.2 (12)  

consistent with experimental data. (21) It has been conjectured (5~ that in the 
limit v--->0, all the dissipation will be concentrated in a fractal. In our 
calculation at R = 3000 power-law behavior is only "observed in the highest- 
wave-number octave. This corresponds to about one mesh unit in physical 
space and therefore we cannot expect to actually see fractal-like structures 
in the flow. 

4. S U M M A R Y  

Direct numerical integration of the Navier-Stokes equation has been 
used in order to investigate small-scale behavior of both inviscid and 
viscous flow. For the largest Reynolds numbers accessible to our spatial 
resolution we have started to observe Kolmogorov-like power law behavior 
of the energy spectrum. This occurs around the time of maximum energy 
dissipation rate. 

We have compared results based on direct integration of the Euler 
equation and on temporal power series to study the question of the 
existence of a real time singularity in the inviscid flow. No definitive con- 
clusion can be drawn since there exists conflicting evidence. The "noise" 
observed in Pad6 analysis may suggest a very complicated analytic struc- 
ture possibly related to the existence of a natural boundary. 
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