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Abstract 

The description in terms of hydrodynamical variables of a relativistic superfluid, modeled by a semiclassical wave 
equation, is given using a generalized Madelung transformation. The Galilean limit is shown (for both 
wavefunction and fluid variables) to be the well known Landau-Pitaevski model of superflows at T = 0 K. The 
special relativistic elementary classical acoustic and vortex excitations are explicited. A model for a relativistic 
self-gravitating superfluid is obtained by minimally coupling the wave equation to Einstein’s gravity. The equations 
corresponding to a static star (using fluid variables) and an isotropic cosmology are derived. 

1. Introduction 

Recently, much work has been devoted to the 
study of the hydrodynamics of a Galilean super- 
fluid described in a semi-classical context by the 
non-linear SchrGdinger equation (NLSE) [l-3]. 
In this approach, the so-called Madelung trans- 
formation maps the wave dynamics into a fluid 
dynamical description. The physical phenomena 
contained in this picture are irrotational ideal 
fluid dynamics, acoustics and line vortices corre- 
sponding to the nodes of the complex wave 
function. A special relativistic generalization of 
the NLSE dynamics, using the nonlinear Klein- 
Gordon equation (NLKGE), has been studied 
by J.C. Neu [4,5]) with emphasis on the deriva- 
tion of equations of motion for vortices, without 
taking into account the acoustic sector of the 
dynamics. In a general relativistic framework, 

static solutions of this wave equation describing 
boson stars have already been considered by 
various authors [6,7], but without a Madelung- 
like correspondence to usual hydrodynamics. In 
cosmology, unidimensional topological defects of 
general relativistic complex scalar fields have 
been interpreted as cosmic strings and proposed 
as a possible ingredient for large-scale structure 
formation [8,9]. General relativistic models of 
superfluidity as a generalization of the Galilean 
two fluids model [lo-121 have been considered, 
among others, by Israel [13], but, to the best of 
our knowledge, a complete quantum derivation 
of the equations of motion for the relativistic 
perfect fluid (at T = 0 K) has not yet been carried 
out. 

The aim of this paper is to propose a unifying 
point of view for these different subjects through 
(relativistic) hydrodynamics and to explore some 
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related interesting points which have not been 
submitted yet to fully scrutiny in the literature. 
In Section 2 we study carefully the relations 
between the special relativistic NLKGE and the 
standard relativistic lluid dynamics, using a 
generalized Madelung transformation. The non- 
trivial and rather involved Galilean limit is 
characterized, both in the Lagrangian description 
of the equations of motion and with the con- 
served currents. The dispersion relation corre- 
sponding to special relativistic acoustics is ob- 
tained. The special relativistic generalization of 
Ginzburg-Pitaevski quantum vortices is dis- 
cussed in terms of hydrodynamical variables. 

In Section 3, we give a complete hydro- 
dynamical description of semi-classical boson 
star models in general relativity, exhibit a natural 
generalization of the classical Tolman-Op- 
penheimer-Volkov equation for these objects 
and its Newtonian limit. In Section 4, we derive 
the cosmological equations describing a “toy 
universe” where the only form of matter is the 
NLKG superfluid and relate it to more standard 
cosmological models. 

Finally, in Section 5, we conclude by indicat- 
ing a few problems left open for further study. 

Notation. Throughout the paper, the units will 
be chosen in order to insure h = 1, and the 
signature of the Lorenzian metric will be chosen 
to be negative. In Section 2, c will not be set 
equal to 1 and the space-time coordinates xW 
will be written (ct, x), corresponding to the 
Minkovskian metric q given by n = diag (1. - 
1, -1, -1). 

2. The special relativistic Bose-condensate at 
T=OK 

2.1. General presentation of the special 
relativistic equations 

Let V(.X”) be the relativistic wave function of 
the condensate in its fundamental state. W will 

satisfy the equation of motion which derives 
from the so-called non-linear Klein-Gordon 
(NLKG) Lagrangian, which, after convenient 
scaling for the wave functions, takes the form: 

L(FE, Y$ P”, F) = q;Fy” - m;c-lYl’ 

-+ -- 1):. (2.1. I ) 

where mh is the boson mass and 5 some charac- 
teristic coherence length. Having already set h =- 
1, the only units we are still free to fix are the 
unit for length and for time. Choosing 5 as unit 
length and k/c as the unit of time. L can be 
recast in the somewhat simpler form: 

L(q,*, VW. q*. Y) = pzqW - m’c’(!P[’ 

-(]Tfy - I )’ (2.1.2) 

with m = m,,<’ denoting the mass of the bosom 
in the new system of units. Expression (2.1.2) 
will be retained in all the paragraphs of this 
section. Another choice of units will be adopted 
in Section 3. 

As expected, the equations of motion derived 
from I, are equivalent to the usual NLKG 
equation: 

plr’*+ + m’c’ly + 21L((lPl’ - 1) = 0. (2.1.3) 

Replacing the complex wave function lp by its 
modulus r and its phase 9, one can rewrite the 
Lagrangian density as: 

W,. O+,r.O)=r,rfi+rr?H,B’- ’ m’c’r- 

_(rJ ~_ 1)’ (2.1.4) 

The Lagrange equation associated with r is: 

r@Llr - rHPHP + m’c’r + 2r(r’ - 1) = 0 (2.1 S) 

and that associated with 6, reads: 

220’ + rQP”, = 0 (21.5) 

These equations taken together are obviously 
equivalent to (2.1.3). 

As is well-known, the conserved current asso- 
ciated with the I/( 1) invariance of L, j,, may be 
chosen to be: 
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j, = -$Im(F+P*) = -+r28 
IL 

(2.1.7) 

and the canonical energy-momentum tensor, 
conveniently normalized, is given by: 

1 
TPy = 2m P:1yy + qPF’y* - b,,l 

=; [Iwry + r’e,e” - yq,,] . (2.1.8) 

Two remarks should be made at this point. First, 
(2.1.6) clearly implies the conservation of j. 
Second, T, like the Lagrangian density L, con- 
tains a constant term independent of the fields, 
which makes T non-zero (and equal to (1/2m)rl), 
even when the wave function identically van- 
ishes. This constant, somewhat unphysical term 
is harmless as long as we restrict ourselves to 
special relativity and we will retain it in all of 
Section 2. It will be naturally discarded in 
Section 3. 

2.2. The Galilean limit 

To study the Galilean limit, let us fix some 
4-vector K with norm mc and introduce a new 
function CD defined by: 

@ = eiK’XG = r eiS . (2.2.1) 

In terms of @, L reads: 

L(~:,~~,~*,Q,)=~IT~“+2K’“Im(~:Q,) 

-(I@pI’- l)* (2.2.2) 

or, using the phase and modulus of CD: 

L(rp, &,, r, 4) = rprp + r’&4” - 2r2K,+’ 

-(r* - 1)” (2.2.3) 

and Eq. (2.1.3) becomes: 

@p&l -2iK”@P+2@(1@12-1)=0. (2.2.4) 

The equations equivalent to (2.1.5) and (2.1.6) 
read: 

rpp - r4p4’ + 2rK,+‘” + 2r(r* - 1) = 0, 

(2.2.5) 

2r,($& -K’) + r4“+ =O. 

As for the conserved currents, one has: 

j, =$--Im(Qfi@*) + (@p(2K,] 

257 

(2.2.6) 

(2.2.7) 

(2.2.8) 

To recover from (2.2.4) and (2.2.2) the usual 
NLS equation and the classical Lagrangian den- 
sity from which it derives, one has only to set the 
contravariant components of K equal to (mc, 0) 
and let c tend to infinity. Moreover, if one 
defines the Galilean particle density j,” and the 
associated current density 3-vector jG by: 

j: =fim $, j” =iim j . (2.2.9) 

Then, choosing the same value of K as before, 
one gets: 

j: = r2 , jG=$r2v+ (2.2.10) 

and (2.2.6) reduces to the Galilean continuity 
equation associated to NLS as c tends to infinity. 

Since the conservation equation: 

PT,, = dc(Tvp = 0 (2.2.11) 

may be understood as a direct consequence of 
the equations of motion, it has also, by the 
procedure outlined above, a limit which is identi- 
cal to the energy-momentum balance derived 
from the NLS equation. However, obtaining the 
associated asymptotic form of the energy- 
momentum tensor is a little more involved. To 
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understand how it works, let us review briefly 
how one solves the corresponding problem for 
point particles, i.e. what one must do to obtain 
the Galilean (kinetic) energy and momentum 
from the special relativistic energy-impulse 4- 
vector p. As is well known, the trick consists in 
first subtracting from p the product of the mass 
m, the constancy of which is associated to matter 
conservation, by some 4-vector K normalized to 
cl. One has then to choose the components of K 
to be (c’, 0) and let the velocity of the particle, 
U, be much less than c, retaining only the higher 
order terms (in l/c) in the expression obtained. 
This strongly suggest the following generalization 
for the case of the continuum we are dealing 
with: First, subtract from T the (tensorial) 
product of j by the vector K used in (2.2.1) in 
order to obtain a new second order tensor ?. 
Then, set the components of K equal to (mc, 0), 
as before and, finally, obtain the correct asymp- 
totic expression for ? as c tends to infinity. 
According to this procedure, one has: 

Note that y, unlike T, is not symmetric so that 
the conservation equations (2.2.11) only imply: 

PfP,, = 0 (2.2.13) 

and not: 

CPY”& =O. (2.2.14) 

I$ us then define the Galilean energy den$y 
T &, the associated current density vector Tie, 
the 3-momentum density f: and the corre- 
sponding stress tensor ?y by: 

f; ==f&q_ 7;, (2.2. IS) 

These different quantities, for K = (mc, 0), turn 
out to read: 

-- Y$&- [2r’ rn4, + (r’ - 1)‘]8,, (2.2.16) 

and (2.2.13) gives back the standard energy and 
momentum conservation equations associated to 
the NLS equation. Obviously, the use of indices 
E {O, 1,2,3} in (2.2.16) is purely formal and 
does not mean that ?” is a Lorentzian 4-tensor, 
Let us close this discussion by remarking that 
further insights concerning the meaning of the 
various terms in (2.2.8) and (2.2.16) will be 
gained by the hydrodynamicai presentation ot 
the following paragraph. 

2.3. Hydrodynamical presentation 

We will now show that the special-relativistic 
Bose-condensate admits a description in terms of 
hydrodynamical variables, and that this descrip- 
tion allows one to get, in the Galilean limit, the 
usual hydrodynamical description of the NLS 
equation. 

To begin with, let us identify the 4-velocity u 
and the scalar particle density n of the equivalent 
fluid. By (2.1.7), one has to set: 

Ll& = -QJV0,) ’ A (2.3.1) 

and 

(2.3.2) 
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so that the particle current density might take 
the usual form: 

some link with the Lagrangian density L. We will 
retain for p the following definition: 

j, = nu, . (2.3.3.) 

Relations (2.3.1) and (2.3.2) are the special 
relativistic generalization of the Madelung trans- 
formation. At this point, we note that the 
possibility of defining IZ and u by (2.3.2) and 
(2.3.1) is correlated to the assumption that ei,O’ 
remains positive, i.e. the 4-vector j remains 
timelike in the interesting region of space-time; 
this condition will be automatically satisfied 
everywhere if we restrict our study to not too 
important perturbations around the homoge- 
neous equilibrium state of the condensate, de- 
scribed by j = (m, 0). However, a representation 
of a generic solution of the NLKGE in hydro- 
dynamical terms may not be possible every- 
where. A simple and interesting example is 
provided with the straight vortex solution, de- 
scribed in 2.5. 

The following step is to identify the thermo- 
dynamical functions of the condensate. As in the 
Galilean case, the ‘superflow’ of the special 
relativistic fluid associated to it should always be 
irrotational. We will consequently choose the 
scalar enthalpy density, w, to be: 

L 

W =11-()“(f) 
m p (2.3.4) 

in order to obtain, from (2.3.1) and (2.3.2): 

e,=-fu II (2.3.5) 

which is the usual special relativistic condition 
for potential flow [ll]. 

Using the three definitions (2.3.1), (2.3.2) and 
(2.3.4), one can write the energy-momentum 
tensor in the form: 

Tpv = (s)&), + wu,uv -$% 
(2.3.6) 

which strongly suggests, by comparison with the 
expression of the same tensor for a perfect 
special relativistic fluid, that the ‘pressure’ p has 

=$+&-+q 
so that T can be written: 

(2.3.7) 

(2.3.8) 

The first two terms in the preceding expression 
form the ideal fluid part of T. The next two 
terms stem from the dispersive nature of the 
fluid; the quantity q can be appropriately called 
‘the quantum pressure’ of the fluid, keeping in 
mind that what is loosely called ‘quantum pres- 
sure effects’ is a manifestation of both q and the 
other dispersive term in T. The last term in 
(2.3.8) is the constant alluded to at the end of 
2.2. Moreover, using (2.3.2), (2.3.4), (2.1.4), 
(2.1.5) and (2.1.6), it is easy to check that, for 
all possible motions of the condensate, the value 
of p takes the much simpler form: 

p = mn4/(2w2) . (2.3.9) 

As for the internal energy density 8, we will 
conserve the classical expression E = w - p. Since 
we describe the quantum liquid at T = 0 K, it is 
natural to suppose that its entropy vanishes 
identically. Therefore, (2.3.9) can be viewed as 
the equation of state of the superfluid at T = 0 K. 
The chemical potential p of the Bose-condensate 
can then be expressed, by standard thermody- 
namical arguments, as the specific enthalpy (per 
particle), namely p = w/n. 

To check that the preceding identifications are 
meaningful, let us derive from them the fluid 
variables associated with the Galilean conden- 
sate (at T = 0 K). In accordance with (2.3.3), it 
is natural to define the Galilean particle density 
nG and the Galilean fluid velocity uG by: 

(2.3.10) 
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and 

(2.3.11) 

From (2.3.2), (2.3.4) and (2.3.10), one deduces 
that, in the Galilean limit, nlfi is equivalent to 
r n lm; this fact, together with (2.3.10), implies 
that w is equivalent to ncmc2 as c tends to 
infinity. Using this, (2.3.5) reads, in the Galilean 
limit: 

V0 = mu” (2.3.12) 

insuring that the flow defined by v” is indeed 
potential in the Galilean sense. On the other 
hand, relation (2.3.9) implies immediately that 
the pressure p, for all possible motions, is 
identically equal to (n”)2/2m, which is the cor- 
rect Galilean equation of state. In the same way, 
the definition of the quantum pressure q. (2.3.8), 
implies that this quantity, in the Galilean limit, is 
equivalent to 1/4m Ano. Moreover, choosing 
again K = (mc, 0), (2.2.12) leads to: 

?,,, = C,, + m%, . (2.3.13) 

From this relation, by use of (2.2.16) and the 
definition of nG, one obtains directly the asymp- 
totic expansion of E in the Galilean limit: 

1 
E = nGmc’ + m”(;(n” - 2) (2.3.14) 

which leads us to the right expression of the 
Galilean internal energy density ho: 

G 1 
& =~no(n” -2). (2.3.15) 

The Galilean enthalpy density W” and chemical 
potential pG = wCInG are then obviously given 
by: 

1 Wo=_ m n”(n” - 1) , (2.3.16) 

$ = no _ 1 (2.3.17) 

and are related to the asymptotic form of the 
corresponding special relativistic quantities by: 

w = nomc’ + wc’ (2.3.18) 

and 
(I 

P =mc+b (‘-3.19) 

2.4. Acoustic modes 

As explained in the preceding paragraph, the 
special relativistic Bose-condensate at T = 0 K 
can be considered, as its Galilean analogue, as 
some particular type of perfect fluid. The quan- 
tum nature of this fluid exhibits itself through the 
presence of the so-called quantum-pressure 
terms which can give birth to topological defects 
also known as vortices. But acoustic waves can 
also propagate in the Bose-condensate, as in any 
other fluid. Let us find the special relativistic 
dispersion relation for these waves. To do this, 
we will search for solutions of (2.2.4) represent- 
ing small perturbations around the equilibrium 
state Q(X) = I i.e. for solutions of the form: 

@(x) = (1 + ep(x)) e”““’ . (24.1) 

where p and CK are both of zeroth order. lnsert- 
ing this ansatz in (2.1.3) and retaining only the 
first-order terms in E, one obtains: 

-2p,K’* + LY I*@ = 0 , 

2aPKP t p”, + 4p = 0. (2.4.2) 

If one seeks plane wave solutions to this system. 
one can check easily that the only solutions of 
this type which do not vanish identically must 
have a wave 4-vector k which verifies the disper- 
sion relation: 

4(k. K)’ + k’(4 - k’) = 0 (2.43) 

Introducing the contravariant components of k. 
w/c and k and setting those of K equal to 
(mc, 0), (2.4.3) can be written: 

4m’w’ (2.4.4) 

Letting c tend to infinity, one obtains the usual 
Galilean dispersion relation: 

2 
w = --+ + f(k2)‘) . (2.4.5) 
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2.5. Ginzburg-Pitaevski vortex 

Let us now present rapidly, in the hydro- 
dynamical language, some fundamentals about 
the special relativistic equivalent of the Ginz- 
burg-Pitaevski vortex (GPV) solution. 

In this paragraph, when referring to equations 
of 2.2, we will implicitly assume that we have set 
ab initio the contravariant components of K 
equal to (mc, 0). With this in mind, we will say 
that a solution 9 of (2.1.3) is a special relativistic 
Ginzburg-Pitaevski vortex (SRGPV) if there 
exists an inertial reference frame, the proper 
frame of the vortex, in which the function @ 
associated to W by (2.2.1) is a time independent 
(spatially-)cylindrical solution of (2.2.4). This 
definition directly implies that, in the proper 
frame of the vortex, the function @ describes the 
SRGPV if (and only if) it also describes the usual 
Galilean GPV. In particular, if p and a are polar 
coordinates in this frame around the axis of the 
vortex, the phase of @(p, LY), 4( p, cr), will be an 
integral multiple of 0: 

$(p,o)=qa 3 qEZ. (25.1) 

Therefore, in this frame, the phase 8(p, (Y, t) of 
the original wave-function 9(p, (Y, t) will be 
given by: 

f3(P,a,t)=qa-mcZt, qEZ. (2.5.2) 

Let C be any space-like closed contour around 
the vortex. The circulation: 

I= dX”8, I (2.5.3) 
C 

is a Lorenz scalar. Its evaluation in the proper 
frame of the vortex naturally gives: 

I=2nq. (2.5.4) 

To recast the preceding results in hydro- 
dynamical language, we have first to evaluate the 
scalar 0,0”. We obtain from (2.5.2): 

2 

tlpfl” = m2c2 - %. (2.5.5) 
P 

Since the possibility of presenting a solution of 
the NLKGE in hydrodynamical terms presup- 
poses the particle current density associated to it, 
j, to be timelike, (2.5.5) entails that an hydro- 
dynamical presentation of the SRGPV is only 
possible for p >pmin = Iq)lmc = lqlh,, where A, 
is the Compton wavelength of the bosons (cf. the 
short discussion on this point in 2.3). Using 
(2.3.2), (2.3.5), (2.3.11) and (2.5.5), we get 
that, for p > pmin: 

+mc(l _!A)“’ 

and 

UG = Pmin 
cpa > 

(2.5.6) 

(2.5.7) 

where (Y is the unit orthoradial vector associated 
to cr. If one uses the standard Galilean hydro- 
dynamical presentation of the GPV, the velocity 
depends on p as l/p and approaches infinity as p 
tends towards zero. In the special relativistic 
interpretation, this behaviour is clearly impos- 
sible. What happens is that the (3-)velocity still 
depends on p as l/p but ceases to be defined for 
p < pmin and reaches the value c precisely at 
p = pmin. Moreover, pmin tends evidently towards 
0 as c tends to infinity. If we now take the 
contour C to lie entirely in the region p > pmin, 
we obtain directly from (2.3.5): 

I= ~dx”(~u,)=2lTq. (2.5.8) 
C 

However, the special relativistic vortex cannot be 
interpreted as a simple line distribution of vor- 
ticity, like its Galilean counterpart, as no hydro- 
dynamical variable exist for p < pmin. 

3. Hydrostatics of bosons stars 

The static, spherically symmetric solutions of 
the minimal coupling of the NLKG equation 
with the Einsteinian gravitational field has al- 
ready been studied by various authors, in order 
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to investigate the structure of what may be called 
a boson star. However, their point of view was 
essentially field theoretical; we will now review 
rapidly the structure of the basic equations to be 
used and, in the light of the preceding section, 
show that these stars satisfy a natural generaliza- 
tion of the Tolman-Oppenheimer-Volkoff equa- 
tion (TOVE) [14]. 

Throughout this section we will conveniently 
set c = h = G = 1 (see the discussion on the 
system of units at the beginning of Section 2). 
The appropriate action S for the coupled gravita- 
tional and complex scalar fields takes the form 
[14]: 

(3.1) 

where L, is the minimal curved space-time 
generalization of expression (2.1.2): 

L, ==Vpq* V’q - WZ’)~V]~ - 1!P14 + 2]ly]’ (3.2) 

and R stands for the scalar curvature of the 
metric-compatible connection 0,. The equation 
of motion for the scalar field is: 

0, V’Y + rn2?IJ + 2F(]F12 - 1) = 0 (3.3) 

and a variation of (3.1) with respect to the 
metric leads to the Einstein equations. Intro- 
ducing the same hydrodynamical variables as in 
Section 2, the stress-energy tensor (associated 
with YJ) reads: 

(3.4) 

Seeking the metric of a static spherically 
symmetric spacetime in the usual form [14]: 

dr2 =f(r) dt* -h(r) dr2 + r’(de* + sin28 d+*) 

(3.5) 
the use of the preceding stress-energy tensor in 
the Einstein equations gives the following set of 
differential relations: 

SlT(&(?) + q(r)) = (rh2)-‘hr + r-y1 -h?) , 

(3.6) 

877(p(r) -q(r) + h ‘(d(r))?) = &TrP(r) 

=(rfh) y-r :(1-h ‘). 

ST(P(Y) - 4(r)) 

(3.7) 

(3.X) 

where v(r) stands for n(r)/Vlw(r). These cqua- 
tions are clearly identical with the ones which 
describe the interior of a static, spherically 
symmetric usual star, except for ‘quantum pres- 
sure terms’ which involve derivatives of v. The 
solution to the problem consequently proceeds in 
a parallel way. (3.6) implies that: 

(3.9) 

where M(Y) is related to the internal energy 
density E(T) and quantum pressure q(r) by: 

M(r) = 4rr 
j 

(cc@‘) + q(r’))r” dr’ (3.10) 

Replacing f(r) by exp(2a(r)) in (3.7) gives: 

dw M(r) + 4nr’( p(r) - q(r)) dv ’ 
dr r(r - 2M(r)) 

+ 4rv dr i ) 

(3.11) 

and, after a rather tedious calculation. (3.8) 
takes the form: 

dP (E(r) + P(r) 4 q(r))(M(r) + 4m’P(r)) _= - 
dr r(r - 2M(r)) 

(3.12) 

which is the equivalent, for the Bose-condensate. 
of the usual Tolman-Oppenheimer-Volkoff 
equation for ideal fluids. The differences are that 
the pressure p is replaced by the pressure-like 
quantities P(r) or (P(r) + q(r)) and that an extra 
‘quantum pressure’ term must be added to the 
standard relation. For a perfect fluid, the TOVE 
must be supplemented by an equation of state 
relating p to E, in order to completely specify the 
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(spherically symmetric) equilibrium configura- 
tions of the star under consideration. The case of 
the Bose-condensate is a little more complicated 
because (3.12) involves four different ‘thermo- 
dynamical’ quantities: P, E, q and v. Three other 
relations between these quantities are therefore 
required in order for the problem to be well- 
posed. The first one is, as in the ideal fluid case, 
the equation of state of the relativistic conden- 
sate, p = mn4 /(2w*), which, transcribed in terms 
of P, q and v, reads: 

P(r) = imv4(r) + ( F) 1 - W)>* - q(r) . 

(3.13) 

The very definition of q (Eq. (3.3.8)) gives, after 
a straightforward calculation) the second rela- 
tion: 

q(r) = (? - I)[&$ (v&) 
+ v(r)$(++2w($J2)] 

--y $ [M(r) + 2w3(p(r) - E(r) - 2q(r))] . 

(3.14) 

In (3.13) and (3.14), the scalar M(r) has natu- 
rally to be understood as the functional of E(r) 
and q(r) defined by (3.10). The last condition to 
be imposed comes from the fact that we are 
studying the structure of a static star, which, be 
definition, implies that, in the reference frame 
where the line element takes the form (3.5), all 
spatial components of the fluid 4-velocity u’ 
vanish. In this frame, 8 is then, according to 
(2.3.1), a function of the time-coordinate t only 
and, moreover: 

b=-XU”, (3.15) 

w and n depend only on r, as well as uO, since 
the solution we explore is supposed to be static. 
On the other hand, 4, like 8, is a function of t 
only. (3.13) therefore indicates that this function 
is constant and that 8 varies linearly with t: 

e=-at, (3.16) 

where 0 is some fixed real number, chosen to be 
positive if we are interested in stars made of 
matter (and not anti-matter). Since, by (2.3-l) 
and (3.5), u” is then equal to f”2, one gets: 

(3.17) 

which, with the help of (3.11), provides the third 
required relation. 

As has already been mentioned, the physics of 
these stars has been thoroughly studied and 
characterized by many authors; for a short re- 
view and extensive references, the reader is 
referred to [7]. Let us just remark here that, for 
example, the hydrodynamical derivation of 
(3.15) seems to us to be much simpler and 
intuitive that the purely field-theoretical one, to 
be found, e.g., in Ref. [6]. 

To conclude this section, let us now elaborate 
on the Newtonian-Galilean limit of the preced- 
ing equations. Following closely the usual pro- 
cedure [14], we suppose that, in this case, M(r) 4 
r, 4Tr3P(r) + M(r) and q(r) 6 E(r). Since, in this 
regime, E(r) can be approximated very well by 
the mass density, we have: 

M(r) = M(r) = m 1 4Tr’2nG(r’) dr’ . 
0 

(3.18) 

On the other hand, using the fact that, in the 
Galilean case, nlv’ii is equivalent to a, we 
get the following equivalent expression for P(r): 

P(r)=p(r)-+-[-$$-+($$)‘] 

1 dnG _-- 
2mr dr ’ 

(3.19) 

The TOVE can then be recasted in the simpler 
asymptotic form: 

1 dP M(r) --..---= _- 
mnG dr r2 

(3.20) 

It is easy to check that this is indeed the right 
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equivalent to the TOVE for Newtonian starts of that u’(t) 7’0, is independent of t and its constant 
spin 0 bosons; as a matter of fact, one has just to value will be hereafter conveniently denoted by 
couple the NLSE to Newtonian gravity by add- C. The existence of C traces back to the particle 
ing to it a (gravitational) potential term and by number conservation. Eq. (2.1.6). The equations 
imposing, via the Poisson equation, that this of motion for Y and a(t) then read respectively: 
potential is self-consistently created by the star 
itself. This was done by Rica in [15], where a ! 

C-‘ 
3a,r, + ar,, = u __ h i -m’r-2?+2r . 

nr i (4.3) 
detailed discussion of the Newtonian-Galilean 
solution can be found, together with possible 
astrophysical applications. 

4. Homogeneous isotropic cosmological models 

As has already been noticed, the minimal 
coupling of the gravitational field with an un- 
charged scalar field has already been extensively 
studied, notably for cosmological reasons, in 
relation to the construction of so-called inflation- 
ary models of the universe [16]. In this vein, let 
us now discuss some fundamentals about 

These two equations admit an integral of motion 
/ which is distinct from C and can be obtained by 
calculating the Hamiltonian density H associated 
to S and by replacing 6, by Cla”r’. In this way 
one obtains: 

+ rn’r’ i- rJ -- 2r’) 

homogeneous isotropic universes obtained by 
minimally coupling, as in the preceding para- 
graph, the gravitational field and the charged 
scalar field YJ. Expression (3.1) for the action 
remains valid and the metric to be sought for 
takes the form [14]: 

ds’ = dr’ - a’@)($$ + $(d$ 

+ sin20 d+2)) , k = -l,O, 1 (4.1) 

- 3a(k + a’) . (4.5) 

Eqs. (4.3) and (4.4) admit two simple limits. 
First, if one neglects the quantum pressure 
effects by removing the time-derivative of r in 
the action (4.2), (4.3) and (4.4) reduce to the 
standard Friedman-Robertson-Walker cosmolo- 
gy, for a fluid with p = r4/2m as equation of state 
(i.e., (2.3.9) with the r-dependance of n and w 
explicited). Second, when the constant of motion 
C is zero, the matter field dynamics reduces to 
that of a real scalar field and the model degener- 
ates to Linde’s chaotic inflation [17]. A complete 
study of the general solutions of Eqs. (4.3) and 
(4.4) will be presented elsewhere. 

all variables now being functions only of the time 
coordinate t. The direct input of this ansatz in 
(3.1) gives the following equivalent expression 
for the action S: 

5. Conclusion 

x 16~~7” 
i 7 [rf + r”Of - mZr2 - r’ + 2r’] 

+ 6a(k - ai,) . (4.2) 

The equation of motion for 0 gives immediately 

Introducing a generalization of the classical 
Madelung transformation, we have shown that 
the physics contained in the special relativistic 
NLKG equation, considered as a wave equation 
for a semi-classical superfluid at T = 0 K, re- 
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duces, up to higher order ‘quantum pressure 
terms’, to standard irrotational dissipationless 
special relativistic hydrodynamics, naturally com- 
bined with the presence of topological defects. 
The dispersion relation for the acoustic modes 
propagating in this fluid has been derived. The 
special relativistic generalization of Ginzburg- 
Pitaevski quantum vortices has been presented in 
hydrodynamical language. We have also studied 
how this hydrodynamical description of a special 
relativistic Bose-condensate reduces, for small 
velocities, to the Galilean hydrodynamics de- 
rived from the NLS equation. These results 
prompted the search for the generalization of the 
usual Tolmann-Oppenheimer-Volkoff equation 
to bosons stars which is presented in Section 3 of 
this paper, together with its Newtonian limit. 
Finally, the equations governing the evolution of 
an isotropic ‘toy-universe’ filled with superfluid 
are presented and shown to give back, in suitable 
regimes, a standard Friedman-Robertson-Walk- 
er cosmology as well as Linde’s chaotic inflation 
model. Let us remark that, in light of our 
present work, the general relativistic dynamics of 
a non-linear spin-0 field seems to be the simplest 
system in which a fluid is coupled to Einsteinian 
gravitation. 

As a direct continuation of this work, we are 
currently studying, both analytically and numeri- 
cally, the general relativistic phenomena corre- 
sponding to the Galilean vortex-vortex and 
vortex-sound interactions. Our forthcoming re- 
sults will hopefully shed new light on many 
different issues, including cosmological ones. 

Shifting to solid state physics, another applica- 
tion of the present study could be a more precise 
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evaluation of possible relativistic effects and/or 
corrections arising in phenomena related to 
superconductivity. 
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