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Rotating self-gravitating Bose-Einstein condensates with a crust: A model for pulsar glitches
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We develop a minimal self-gravitating model for pulsar glitches by introducing a solid-crust potential in the
three-dimensional Gross-Pitaevskii-Poisson equation, which we have used earlier to study gravitationally bound
Bose-Einstein condensates, i.e., bosonic stars. In the absence of the crust potential, we show that, if we rotate
such a bosonic star, it is threaded by vortices. We then show, via extensive direct numerical simulations, that the
interaction of these vortices with the crust potential yields (a) stick-slip dynamics and (b) dynamical glitches.
We demonstrate that, if enough momentum is transferred to the crust from the bosonic star, then the vortices are
expelled from the star, and the crust’s angular momentum J, exhibits features that may be interpreted as glitches.
From the time series of J,., we compute the cumulative probability distribution functions (CPDFs) of event sizes,
event durations, and waiting times, which are consistent with the previous work. We show that these CPDFs have
signatures of self-organized criticality, which are similar to those seen in observations of pulsar glitches and are

consistent with previous work.
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I. INTRODUCTION

Rotating magnetized neutron stars [1,2], or pulsars, dis-
play glitches, which are sudden increases in their rotational
frequencies. These observations have a long history [3-5], and
they indicate that glitches are associated with the transfer of
angular momentum, which is carried by quantum vortices in
the superfluid interior, to the solid crust, in the outer layers of
the pulsar. This transfer occurs because of vortex-crust inter-
actions, as suggested in Refs. [6,7]. The quantitative modeling
of pulsar glitches is complex [8], so different models have
been suggested [1,9]: Some involve avalanches of superfluid
vortices [10]; other mainstream models are based on neutron
superfluidity in the crust [11]. General relativity effects have
been considered in Ref. [12].

Neutron Cooper pairs [13], which comprise a major com-
ponent of the nuclear matter in a pulsar, form a superfluid.
Therefore Refs. [14,15] have proposed simply to model
this superfluid by using the two-dimensional (2D) Gross-
Pitaevskii equation (GPE); in addition, they have included an
externally imposed potential or container and a pinning poten-
tial for the crust. Similar models have been recently studied in
three dimensions (3D) [16,17]. However, gravitational effects
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are important on stellar scales. It is important, therefore, to
account for these crucial features in a model for pulsars and
the glitches they exhibit. In this paper, we construct a minimal
self-gravitating model for pulsar glitches by (a) account-
ing for gravitational effects via the Gross-Pitaevskii-Poisson
equation (GPPE) for a self-gravitating superfluid (see, e.g.,
Refs. [18-20] for a nonrotating bosonic star) and (b) including
rotation and an interacting solid crust.

We carry out extensive pseudospectral direct numerical
simulations (DNSs) to show that our minimal self-gravitating
model yields pulsar glitches with properties that are akin to
those seen in observations. In particular, the time series of
the angular momentum J, of the crust shows the hallmarks of
self-organized criticality (SOC) [21-28]. To obtain these re-
sults, we develop a sophisticated algorithm to find the ground
state of the GPPE, with rotation: This algorithm uses an
ancillary advective real Ginzburg-Landau-Poisson equation
(ARGLPE), an imaginary-time version of the GPPE. The
resulting ground states contain vortices and yield uniformly
rotating solutions of the GPPE. When we include the crust
and its dynamics, we find a transfer of the angular momentum
from the star to the crust, where it is dissipated by friction;
if this transfer is large enough, vortices move outwards, and
glitches are observed.

II. THE MODEL

Self-gravitating GPPE superfluids are described by a com-
plex wave function ¥ (x, t), governed by the following partial
differential equation (PDE):

hz
ihd Y = —%vzvf +[Vo+ G +gly Iy, (1)

VIO = [y* — (|[y%). 2
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Here, m is the mass of the bosons, n = |¢|2 is their
number density, G = 47 Gym? (Gy denotes Newton’s gravi-
tational constant), and g = 4mahi’/m, with a being the s-wave
scattering length [29]. We describe the dynamics of the pul-
sar’s solid crust by a single polar angle 6, which evolves as
follows:

29
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Vo(r,) = Voexp (— ) V(xa, yo). 4)
I. and V, denote the moment of inertia of the crust
and the crust potential, respectively; « controls the fric-
tional slowing down of the rotation of the crust, with
J/1./a being the crust-friction decay time; for specificity,
we choose V (xp, Vo) = 3 + coS(NerustXs) + COS(MerustYe ), With
Xg = cos(0)x, + sin(8)y, and ys = — sin(6)x, + cos(6)yp;
here, ncns determines the number of pinning sites in the
crust potential, reys 1s the radius at which this potential
is a maximum, and Ar.y,g determines the thickness of the
crust. We have chosen to add a friction term, with coefficient
o, in the equation for the angle to introduce the simplest
model for the spin-down mechanism that removes angular
momentum from the system; of course, the interplay of this
friction with the rotation leads to stick-slip events. We use
periodic boundary conditions (PBCs), so, to obtain a periodic
version of the angular momentum J, of the GPPE con-
densate, we use m-centered, 27 -periodic coordinates: r, =

(Xp, ¥p, 2p), Withx, = — 2210 exp (_%nZ)(_l)nw,
=1 i —
Vo == nm 1 exp (—i&n?)(— 1) 0=l and 2, = (x,,

and y, are nearly linear near the center because they are
truncated Fourier expansions of sawtooth waves).

The crust acts on the GPPE superfluid and also reacts
to it [30]. If @ = 0, the GPPE-crust coupled system (3) and
(5) (or the Lagrangian from which it is derived) obeys the
following global conservation laws: (a) rotational invariance,
in the whole space R3, which leads to the conservation of
the total angular momentum J = J,. + J,, with J, = IC% be-
ing the crust angular momentum and J;, = [ d°xy (&, x r) -
(—ihV)Yr; and (b) time-translation invariance, by virtue of
which the total energy Es = E + E, is also conserved. Here,
E. = %(%)2 is the rotational energy of the crust, and E is the
energy of the GPPE system, which we rewrite as

2
i Ly, @V . )

ot 2m
Equation (5) conserves the number of particles N =
f d*x|y|> and (for time-independent @) the GPPE energy
E =Epy+Ew +Eg+Ey, where Ey=12L [dxVyP,
Ew =5 [dx(y ), Eg =5 [dx(y V(Y P),
and Ey = [dx|y|*Vy. For V, =0, the momentum

P=2 [dx(y VY — Y V) is also conserved.

We solve the GPPE (5) by using a 3D Fourier pseudospec-
tral method [31-33], with ¢ (x) = Z\k\<kmax &k exp(ik - x)
and k. = [V/3], where A is the resolution and [-] de-
notes the integer part. In the absence of the crust potential,
friction, and rotation, we obtain the conventional GPPE (see
Ref. [20], where we discuss the gravitational Jeans instability
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FIG. 1. Illustrative plot of the GPPE condensate angular momen-
tum J, vs time ¢; J; is not conserved exactly (decay of ~21% per turn)
because rotational symmetry holds only approximately if we use
PBCs. Parameters: V' = 64, g = 5, G = 50, and Q = 14; the system
has four vortices. Inset: Plot of the ARGLPE-converged value (see
text) of E — QJ; vs the rotation speed 2. The differences between
scans with increasing (red) and decreasing (green) €2 indicate hys-
teresis; the system has no vortices along the horizontal part of the
red line and four vortices along the green one.

and the pseudospectral method (see also the Supplemental
Material [34])). In all three spatial directions, our DNS uses
2m-periodic PBCs, which we also use for J; and Vj; so, even
if @« =0, the conservation of the total angular momentum
holds only approximately, because the system does not have
rotational invariance in R3.

We first obtain uniformly rotating states for the GPPE with
rotational speed €2 by solving the imaginary-time equation

8 P \2
ha,wz—E(E—QJz—uN—)»(m) ) (6)

Rotational ground states are minima of E — QJ; u, the chem-
ical potential, and A are Lagrange multipliers; at each time
step, we tune u to keep the boson number fixed; and we
choose a large value of A so that P is small. We now obtain
the following advective real Ginzburg-Landau equation (AR-
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FIG. 2. Isosurface plots illustrating a rotating, compact object
with vortices obtained via the ARGLPE (see text): (a) Isosurfaces
of the boson density (top view) (for the spatiotemporal evolution
of these isosurfaces, see Video S1 in the Supplemental Material
[34]) and (b) isosurfaces of (V x (pv))’ (side view); here, N = 256,
G = 800, g = 80, and 2 = 60.
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FIG. 3. Plots of crust-potential isosurfaces in blue, with V, = 450, and of ten-level isosurfaces of (V x (pv))?, from our DNS of the
GPPE, for the representative parameter values V = 180, neuy = 12, I. = 0.01, 7ot = 1.0, Areg = 0.15, Q¢ = 14, and o = 0.007 (as in
Fig. 4 below) at times (a) t = 0.06, (b) t = 6.48, (c) t = 7.38, and (d) + = 9.72. For the spatiotemporal evolution of these isosurfaces, see

Video S2 in the Supplemental Material [34].

GLPE):
3 2
a_*” = VY 4 uy — Vo + GV 2 + 9y 1y
t 2m
. A P
- m(szez X T — km) -V, O

which we solve to obtain the rotational ground states (minima)
mentioned above; to stabilize this minimization procedure, we
reset the center of mass r., = f d3xr,,|1ﬁ |2/N to (w,m,0),
after each time step.

III. RESULTS

We obtain rotational (€2 # 0) states by integrating Eq. (7)
until we get convergence; given our initial data, the system
contains N bosons. For 2 = 0 and V, = 0, the solution of the
ARGLPE (7) converges, at large times, to ground states
that are spherically symmetric, compact objects of radius R.
This radius can be estimated by using a variational ansatz [35],
or it can be computed numerically at both zero temperature
(T =0)[18,19] and finite temperature (7" > 0) [20]. We start
from the 7' = O state of Ref. [20], and then we increase the
value of €2 in steps of 1; at each such increase in the value of
2, we use the converged ARGLPE state, from the previous
value of €2, as the initial data. In the inset of Fig. 1 we plot the
ARGLPE-converged values of E — QJ, versus €2; from this
plot it is apparent that the nonrotating state, with no vortices,
loses its stability around €2 ~~ 14, to a state with four vortices.
We show scans in which €2 increases (red line) and decreases
(green line). The differences between these scans indicate that
this system exhibits hysteresis: It has no vortices along the
horizontal part of the red line and four vortices along the green
one, and it goes from the four-vortex branch back to the zero-
vortex branch at 2 ~ 9. The hysteresis in the inset of Fig. 1
follows from the ARGLPE minimization of E — QJ,. The
nucleation of new vortices under ARGLPE dynamics not only
increases E but also increases J,. So, when 2 is increased,
new vortices are nucleated. They are destroyed when € is
decreased. At large values of €2, an Abrikosov lattice of vor-
tices is present; its lattice spacing decreases with increasing
Q. In Fig. 1 we give an illustrative plot of J, versus time ¢
for the GPPE evolution of the four-vortex state at Q = 14; we
see that J, is not conserved perfectly, but it decreases slightly
(>~ 1% per turn). J, is not conserved exactly because rota-

tional symmetry holds only approximately, given our PBCs;
the closer we are to the center of our computational domain,
the better is this rotational symmetry. We show, in Figs. 2(a)
and 2(b), isosurface plots of the boson density (top view) and
of (V x (pv))* (side view), respectively, for the converged
solution of ARGLPE, with N = 256, G = 800, g = 80, and
Q = 60. Clearly, our ARGLPE-based algorithm yields rotat-
ing, self-gravitating Bose-Einstein condensates (BECs), with
vortices in the GPPE; this has not been possible hitherto [36].
Previous work finds vortex tangles and reconnections [16,17],
but our study does not because of its limited resolution.

We turn now to the GPPE (5) coupled with the crust-
rotation equation (3). The full dynamical system, comprising
the crust angle and the GPPE condensate, starts from an
unperturbed ARGLPE state with the same angular velocity
Q= ‘fi—f for both the condensate and the crust. It spins down
because the friction term (with coefficient ) in the crust-angle
dynamics slows down the crust that is coupled to the GPPE
dynamics. In Figs. 3(a)-3(d), we plot the crust-potential iso-
surface in blue, with Vy = 450, and ten-level isosurfaces of
(V x (pv))?* for a representative set of parameters and the
times t = 0.06 [Fig. 3(a)], t = 6.48 [Fig. 3(b)], t = 7.38
[Fig. 3(c)], and ¢t = 9.72 [Fig. 3(d)]. On average, the crust
gains angular momentum from the superfluid; hence, at long
times, these vortices move outwards after losing enough an-
gular momentum to the crust [compare Figs. 3(a) and 3(d)].
However, the time series of the condensate and crust angular
momenta, J, and J., respectively, are complicated, and, as we
show below, they display the signatures of SOC [21-28]. We
illustrate this temporal evolution in Fig. 4, for the representa-
tive parameter values Vy = 180, neryst = 12, 1, = 0.01, repust =
1.0, Arenge = 0.15, Qo = 14, and o = 0.007. In Fig. 4(a) we
plot, versus the scaled time €2y, (J./J;, + 14) (blue curve),
J./Je, (red curve), and (J. + J;)/J., (green curve), where J,,
is the initial angular momentum of the crust. This figure shows
that, if we neglect the overall, gentle decay of the total angular
momentum [37], fluctuations of J. compensate for those in
J;. In Figs. 4(b) and 4(c) we show expanded plots of J./J,,
for 0 <1y < 170 and 80 < 12y < 100, respectively, to il-
lustrate the irregular nature of the time series of the angular
momentum of the crust.

From the time series J.(t) [Figs. 4(a)—4(c)], we see that
the crust can lose (gain) angular momentum to (from) the
superfluid, because vortices stick to (slip from) the crust. To
characterize the statistical properties of these stick-slip events,
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FIG. 4. (a) Plots, vs the scaled time 12, of (J./J., + 14) (blue curve), J./J,,

(red curve), and (J. +J;)/J., (green curve), where J,

is the initial angular momentum of the crust, for the representative parameter values given in Fig. 3 above. Expanded plots of J./J,, for

(b) 0 < €2y < 170 and (c) 80 < 12 < 100.

we calculate the gain AJ; in the crust angular momentum,
between successive minima and maxima of J.(z); we call AJ,
the event size; we scale it by J.,. In Fig. 5(a) we present a
log-log (base 10) plot of the cumulative probability distribu-
tion function (CPDF) Q(AJ./J,,); this yields the power-law
behavior Q(AJ./J,) ~ (AJ, /JCO)ﬂ for the part of the CPDF
that lies in the region shaded gray. Thus the probability distri-
bution function (PDF) P(AJ./J.,) ~ (AJ./Je, -1 by fitting
the CPDF in the gray region, we find 8 >~ 0.7 £ 0.1.

The upper and lower cutoffs of the power-law regimes
in the CPDFs are chosen by identifying flat regions in our
local-slope plots. As we increase €2, the number of vortices
increases, as does the range of the glitch sizes and, conse-
quently, the extent of the power-law regimes in the CPDFs.
Thus the lower and upper power-law cutoffs will depend on
the number of vortices in the system.

Previous papers show that the power-law exponent of
the glitch size has the following values: 0.02 with moat
and 0.81 without moat in Ref. [38], between 1 and 2 in
Ref. [39], and 1.31 in Ref. [40]. Previous papers such as
Refs. [38—40] focus on the sizes and waiting times of the
events, but not their durations, which are an element in this
paper. Indeed, our work should be relevant to new inves-
tigations in which glitch durations are being resolved well
[41-43].

Next, we calculate the event-duration time f.q, i.e., the
time difference between successive minima and maxima of
J.(t), and thence the CPDF Q(z.4€2y) [log-log, base 10, plot
in Fig. 5(b)]. This plot shows, in the shaded gray region, that
Otea20) ~ (tea20)?, with y >~ 2.1 +0.3. Clearly, the PDF
P(t:4S20) ~ (t4$20)" !, in this region.

Finally, we compute the CPDF Q(t,€2p) of the waiting
time ty, i.e., the time difference between two successive max-
ima. From the shaded gray region in the semilog (base 10)
plot in Fig. 5(c), we observe the exponential form Q(z.q€2¢) ~
exp(—ted$20)-

These power-law behaviors of Q(AJ,) and Q(f.q) and the
exponential tail of Q(#y) together show that the stick-slip
motion, between superfluid vortices and the crust, yields the
time series J,.(t), which has all the signatures of SOC found
in measurements of pulsar glitches [25-28]. Some classes of
pulsars exhibit a glitch-size PDF of the type we have obtained
in our model; in particular, they show a power-law behavior
in this PDF, over a certain range of sizes, and the power-law
exponents lie in the range —0.13 < —(8 — 1) < 2.4. For the
pulsar PSR J 1825-0935 [26], the exponent for the power-law
glitch-size PDF is ~0.36, nearly the same as our calculated
exponent. In many pulsars, including PSR J 1825-0935, the
waiting-time PDF has an exponential tail; this is in agreement
with our result [26,44].

We have shown that uniformly rotating vortex-containing
gravitationally bound solutions of the GPPE can be generated
by starting the evolution from initial data obtained by inte-
grating to convergence the (imaginary-time) ARGLPE (7).
We have built on this GPPE and introduced a minimal self-
gravitating model, with a single, angular, dynamical variable
for a solid crust coupled with a rotating GPPE star. We have
demonstrated that this model exhibits stick-slip dynamics,
whose statistical properties we have characterized by comput-
ing the event-size and event-duration CPDFs Q(AJ./J,,) and
0O(t420), which show power-law forms, and the waiting-time
CPDF Q(ty£20), which exhibits an exponential tail. These

10° 10° 10°
=° (a) | = >
(=]
:u 107! a GT} 107t (b) GH 1071
) ) =
< £ =
S ——CPDF o CPDF o
2 —) )07 2 - — CPDF
10 c’“c 10 —(t_Q.) 2
0 ed>“0 10 — 3 exp(—4.65t4 )
1076 107° A 107 1073 10-2 10-1 10° 0 0.5 1
Jehe, tos 0 t

FIG. 5. Log-log (base 10) plots of (a) the CPDF Q(AJ./J, ) of the event size and (b) the CPDF Q(%.4£2y) of the event duration. (c) Semilog
(base 10) plot of the CPDF Q(#,£29). J., and €2 are the initial angular momentum and angular velocity of the crust, respectively. Our DNS
data are shown in blue; the black lines show fits (power law or exponential) to these data in the shaded gray regions in the plots.
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FIG. 6. Isosurface plots illustrating a rotating, compact object
with vortices obtained via the ARGLPE (see text): Isosurfaces of
the boson density (top view) are shown in the top left panel, and
isosurfaces of (V x (pv))* (side view) are shown in the top right
panel; here, N' = 256, G = 900, g = 80, and Q2 = 60. Time series of
the angular momentum and the radius of gyration are shown in the
bottom left and bottom right panels, respectively.
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SOC-type desiderata are in consonance with measurements
on a class of pulsars [26].
IV. DISCUSSION

As self-gravity is one of our main contributions in this
paper, we study briefly the effects of changes in the value of

G. In the bottom panels of Fig. 6, we compare the ARGLPE-
minimization evolution of the angular momentum and the
radius of gyration for two values of G, namely, 800 and 900,
with N = 256, g = 80, and Q2 = 60. It is apparent from this
figure that increasing G decreases both the radius of gyration
and the angular momentum. The final (¢ = 0.3), converged
value that we obtain from this ARGLPE minimization, G =
800, leads to the isosurface plots shown in Fig. 2; the top
panels of Fig. 6 depict their counterparts for G = 900. By
comparing these isosurface plots we conclude that the de-
crease in the angular momentum (at G = 900) reduces the
number of vortices. A full study of the effects of self-gravity
is left for future work.

We plan to study pulsar-glitch models that are more
realistic than our minimal self-gravitating model. Examples
include models with (a) a solid crust with six degrees of
freedom, three rotational and three translational, instead
of only one angle of rotation, or (b) a superconducting
component with magnetic flux tubes. Although fundamental
uncertainties about the input physics will remain and despite
the fact that the dynamic range of the astrophysical parameters
will still be out of computational reach, we believe that such
generalizations of our minimal model will help us to better
understand the types of statistical properties that are displayed
by pulsar glitches in different pulsars [25-28,45-48]. We
have shown that it is computationally feasible to include
self-gravitation in the GPPE model for pulsar glitches. In
future work it will be interesting to examine the dependence
of the size, duration, and waiting-time statistics for glitches
in the presence of a harmonic trap and as a function of G.

We thank DST (India), CSIR (India), and the Indo-French
Center for Applied Mathematics (IFCAM) for their support
and SERC (IISc) for computational resources.
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