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Formation of compact objects at finite temperatures in a dark-matter-candidate
self-gravitating bosonic system
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We study self-gravitating bosonic systems, candidates for dark-matter halos, by carrying out a suite of
direct numerical simulations designed to investigate the formation of finite-temperature, compact objects in
the three-dimensional (3D) Fourier-truncated Gross-Pitaevskii-Poisson equation (GPPE). This truncation allows
us to explore the collapse and fluctuations of compact objects, which form at both zero temperature and
finite temperature. We show that the statistically steady state of the GPPE, in the large-time limit and for the
system sizes we study, can also be obtained efficiently by tuning the temperature in an auxiliary stochastic
Ginzburg-Landau-Poisson equation. We show that, over a wide range of model parameters, this system undergoes
a thermally driven first-order transition from a collapsed, compact, Bose-Einstein condensate to a tenuous Bose
gas (that is not gravitationally condensed). By a suitable choice of initial conditions in the GPPE, we also obtain
a binary condensate that comprises a pair of collapsed objects rotating around their center of mass.
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Gravitational effects are important on stellar scales; it
might also be possible to mimic such effects in laboratory
Bose-Einstein condensates (BEC) [1] and thus emulate gravi-
tationally bound, condensed assemblies of bosons, which are
candidates for dark-matter halos [2-5]. Although many exper-
iments have been carried out to establish the identity of dark
matter, there is still no unambiguous dark-matter candidate.
For many years the front runners have been weakly interacting
massive particles (WIMPs), but their existence has not been
established convincingly (see, e.g., Refs. [6,7] and references
therein), so investigations of other candidates, e.g., axions,
boson stars, black holes, and superfluids, have experienced a
renaissance [8—14].

The Gross-Pitaevskii-Poisson equation (GPPE), for a self-
gravitating assembly of weakly interacting bosons, is the
natural theoretical model for dark-matter-candidate bosonic
assemblies, both in laboratory and in astrophysical settings.
We address finite-temperature (7' > 0) effects in such con-
densation, a problem of central importance in this challenging
field. Several ways have been suggested for including 7 >
0 effects in the Gross-Pitaevskii (GP) model [15] without
gravity; one important way uses the Fourier-truncated GP

*akhilesh @iisc.ac.in

TAlso at Jawaharlal Nehru Centre For Advanced Scientific Re-
search, Jakkur, Bangalore, India; rahul @iisc.ac.in

*brachet@physique.ens.fr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2021/3(2)/L022016(6) L022016-1

model, in which this truncation generates a classical-field
model [15-18] (see also Supplemental Material [22]). We
generalize these studies by using the Fourier-truncated GPPE
to study 7 > O effects during the gravitational collapse of
a system of self-gravitating bosons. In addition, we define
an algorithm that directly reconstructs the thermalized state
of such a system by using an auxiliary stochastic Ginzburg-
Landau-Poisson equation (SGLPE).

We obtain several interesting results by pseudospectral
direct numerical simulations (DNSs) of the truncated GPPE
and the SGLPE in three dimensions (3D). We follow the
spatiotemporal evolution of different initial conditions for
the density of bosons. If we start from a very-nearly uni-
form density in the truncated GPPE, this system undergoes
gravitational collapse and thermalizes to a BEC at low T.
Our SGLPE study yields a hitherto unanticipated, thermally
driven, first-order phase transition from a collapsed, compact
BEC to a tenuous Bose gas without condensation for a wide
variety of parameters in the GPPE. Finally, by a suitable
choice of initial conditions in the GPPE, we obtain a binary
condensate that comprises a pair of collapsed objects rotating
around their center of mass.

A self-gravitating BEC is described by a complex wave
function ¥ (x,t); for weakly interacting bosons, the spa-
tiotemporal evolution of ¥/ (X, ¢) is governed by the GPPE:

2
iy = —h—vzw +[GD + gl 1y,
2m
VO = [y — (ly ), ey

where m is the mass of the bosons, n = |i/|*> their number
density, @ is the gravitational potential field, G = 47w Gym?
(Gx is Newton’s constant), and g = 4wah®/m, with a the

Published by the American Physical Society


https://orcid.org/0000-0002-8573-8527
https://orcid.org/0000-0002-0618-5806
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.L022016&domain=pdf&date_stamp=2021-05-27
https://doi.org/10.1103/PhysRevResearch.3.L022016
https://creativecommons.org/licenses/by/4.0/

VERMA, PANDIT, AND BRACHET

PHYSICAL REVIEW RESEARCH 3, L022016 (2021)

s-wave scattering length. The subtraction of the mean den-
sity (||?) can be justified either by taking into account the
cosmological expansion [19,20] or by defining a Newtonian
cosmological constant [21]. By linearizing Eq. (1) around the
constant |1/|> = ng, we obtain the dispersion relation w(k) =
V—Gno/m + k>gng/m + k*(1i/2m)?2, which has been studied
in detail in Ref. [10]. This dispersion relation displays a

low-k Jeans instability for wave numbers k < ky = \/g [(1+

J1+ mi?:ﬂ /21712, In the absence of gravity (G = 0), we
identify the speed of sound ¢ = /%2 and the coherence length

m

2 . . . .
&= 2glzzom' Units relevant to astrophysics are discussed in
Ref. [14].

We solve the GPPE (1) by using the 3D Fourier
pseudospectral method, with the 2/3-rule for dealiasing
[17,18,23]: We expand the 2w periodic wave function as
V(X)) =D wem Vi exp(ik - x) and then we truncate it spec-
trally by setting i = 0 for |K| > kpax, With kmax = [N/3],
where A is the resolution and [-] denotes the integer part
[15,16]. If we introduce the Galerkin projector Pg {in Fourier
space PG[1/}k] = 0 (kmax — |k|)1ﬁk, with 6(-) the Heaviside
function}, the Fourier-truncated GPPE becomes

: h2 _
ih— = PG{—%VW + Psl(GV > + g)|w|21w}. @)
Equation (2) conserves exactly the number of particles
N = [d’x|¢|* and the energy E = Ey, + Eie + Eg, where

Eig =L [ @xIVYP, Ey =4 [&X{P6ly PP, and Eg =
Egray = gfd3x[’Pg|1ﬂ|2]V’2[Pg|1p|2].Ifwg use the 2/3-rule
for dealiasing, then the momentum P = % f Ax(YVy —

V), where the overbar denotes complex conjugation, is
also conserved [17].

This spectral truncation generates a classical-field model
that allows us to study finite-7 effects in the GPPE
(Refs. [16-18] for the GP case). We show that this spectrally
truncated GPPE can describe dynamical effects and, at the
same time, yield thermalized states, which we can obtain
by the thermalization of the long-time GPPE dynamics or
directly by using the SGLPE,

3 n?
h_w = PG{%V%& + uy — Pel(GV~? +g)|¢|2]¢}

ot
[2h
+ FPG[Q‘ (Xa t)]7 (3)

where the zero-mean, Gaussian white noise ¢(x,f) has
the variance (¢ (x, 1)¢*(x',t')) = §(t — t')6(x — x'), with B =
kBLT the inverse temperature; we tune the chemical potential
at each time step to conserve the total number of particles N.
The finite-7" SGLPE dynamics does not describe any physical
evolution; but it converges more rapidly, than does the GPPE
dynamics, toward a thermalized state (Refs. [16—18] for the
GP case). Clearly, the SGLPE leads to a state with a given
temperature, but the GPPE yields a state with a given energy.

Our pseudospectral DNSs of the GPPE (1) and SGLPE (3)
use a cubical computational domain that is (277)* periodic; we
normalize ¥ such that N = (27r)® and use units with /i = 1

TABLE I. The representative runs for which we give plots in Fig. 1.

Run R1 R2 R3 R4 RS
Type SGLPE(T =0) SGLPE GPPE GPPE GPPE
N 64 64 64 64 256
g 50 50 50 5 50
G 105 105 105 550 105

and m = 1. We list below dimensionless variables that we use;
here, Gy denotes Newton’s constant and G = 47 Gym?:

M _MJGg
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We list the parameters for different runs in Table I. We
use the following random-phase initial condition in Fourier
space: |Y| = 1 fork =0, || = 1072 /k for 1 < k < 10 and
|1ﬁk| = 0 otherwise. Note that more evolved initial conditions
have been studied in Refs. [24-27] in a cosmological context
(with Hubble expansion and g = 0). These cosmological ini-
tial condition (power spectra with a cutoff at small scales) are
defined in Section 3 of Ref. [27]. Our simple random-phase
initial conditions are sufficient for triggering the Jeans insta-
bility and then generating gravitational collapse.

In columns 1-3 of Fig. 1, we show 10-level contour plots
of |¥(x,1)|* to illustrate, at representative times, the spa-
tial organization of | (x, 1)|* that we obtain via the SGLPE
(T = 0) (top row, run R1), the SGLPE (second row, run R2),
and three GPPE runs (third row, run R3; fourth row, run R4;
fifth row, run RS); Supplemental Videos S1-S5 (Supplemental
Material [22]) show, respectively, the complete spatiotempo-
ral evolution of |y (x,1)|? for these five runs. In column 4
of Fig. 1 we give, for these runs, plots of the scaled radius

of gyration R/L = % %
gravitational energy E,n../E, (red curves) versus the scaled
time ¢/(£ /v), where E, = 2°7*(G/g*)'/*. If we tune T in the
SGLPE (3), it yields a statistically steady state whose proper-
ties (like R/L and E,,y/E,) are close to their counterparts in
the thermalized state of the GPPE (e.g., by comparing rows
2 and 3 in column 4 of Fig. 1 we see that the final state
of the SGLPE has nearly the same energy and radius as the
corresponding statistically steady GPPE state). Furthermore,
convergence to this thermalized state is more rapid in the
(canonical) SGLPE than in the (microcanonical) GPPE. To
validate our DNSs, we have checked explicitly (Supplemental
Material [22]) that, at zero temperature, our results agree
with those of the 7 = 0 study of Refs. [10,11], which yield
spherically symmetric ground states (row 1 of Fig. 1) with
radius R and N bosons. Their ground-state energy can be

(blue curves) and the scaled
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FIG. 1. Columns 1-3 show 10-level contour plots of | (x, 1)|? at representative times: SGLPE (T = 0) (top row, run R1), SGLPE (second
row, run R2), GPPE (third row, run R3), GPPE (fourth row, run R4), and 256° GPPE (fifth row, run RS; Supplemental Videos S1-S5 in the
Supplemental Material [22] show, respectively, the complete spatiotemporal evolution for these cases). Column 4: Plots of the scaled radius

. R_ 1 Jy p(ryr2dr
of gyration 7 =

where E, = 2°1*(G/g*)'/?.

. 2 2 .
approximated as E(R) = % + ‘% — (;2_1;2 and the equi-

librium radius follows from dE/dR|gr—g, =0, whence

Ry = f—;(l +./1 +487t2(§—g)2, where Rq = GNH% and R, =

‘/%;3. The details of our extensive DNSs for the GPPE

and the SGLPE are given in the Supplemental Material [22]
(see, especially, Table I there). Figure 2(a) shows plots of of
R/Rq versus a/aq for three different values of G. In Fig. 2(b)
we give plots of M/M, versus R/R, from our GPPE DNSs
for three different values of g; the trends in these plots are

7 / o plrdr (blue) and the scaled gravitational energy E,, /E, (red) versus the scaled time ¢ /(£ /v) for the different runs,

markedly different than those at 7 =0 (see Fig. 1 in the
Supplemental Material [22]). In Fig. 2(c) we plot the scaled
energies Eyy/E,, Ein/E., Eg/E, and their total E /E, versus
the scaled temperature kg7 /E, from our SGLPE DNSs; the
jumps in these curves at kgT/E, ~ 3.25 x 107> suggest a
first-order transition from a collapsed BEC to a tenuous, non-
condensed assembly.

To confirm such a transition, we carry out an SGLPE
hysteresis study, whose results are summarized in the plots
in the panels of Fig. 3. The left panel of this figure shows
R/L versus kgT /E,; we obtain the red and green curves by,

L022016-3
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FIG. 2. The plots of (a) the scaled radius of gyration (R/Rq) versus scaled scattering length (a/aq) for the GPPE Runs A1-A30, (b) the
scaled mass (M/M,) versus the scaled radius of gyration R/R, for GPPE Runs B1-B30 on a log-log scale (the dashed line indicates a scaling
exponent of 3/4), (c) the scaled energy components (Eyy/E,, Ein/Ea, Eg/E.), and the total energy (E/E,) versus the scaled temperature

ksT/E,.

respectively, increasing and decreasing kg7 /E, (often re-
ferred to as heating and cooling runs in statistical mechanics).
In these SGLPE runs, we use the final steady-state configu-
ration for ¥ (x), from the previous temperature, as the initial
condition at the next temperature; clearly, there is significant
hysteresis at the first-order transition from the collapsed-BEC
to the noncollapsed state. In the right-side panels of Fig. 3,
we show 10-level contour plots of |1/(x)|> and the associ-
ated spectra | (k)|* to illustrate, at representative points on
heating and cooling curves in the hysteresis plot, the real-
space density distribution and the k—space density spectra
(kgTJE, = 2.7 x 107> and kg T /E, = 3.62 x 107 in the top
panels (a) and (b), respectively, and kgT/E, = 2.3 x 1073
and kgT /E, = 3.16 x 107> in the bottom panels (c) and (d),
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respectively). From these density distributions and spectra,
we conclude that our system undergoes a first-order transition
from a collapsed BEC to a tenuous, noncondensed assembly.
The panel of figures at the very bottom of Fig. 3 shows that
this first-order transition occurs at g = 0 too. We expect that
this also occurs when g < 0, which is the appropriate param-
eter range for axion stars [13,14]; the g < 0 case requires a
quintic nonlinearity in Eq. (1) for stability; finite-temperature
effects can be studied for this case by using the methods that
we have described above (as we will show in future work).
Does our Fourier-truncated GPPE yield only single col-
lapsed objects? No. We now show, for the illustrative
parameter values g =20, G = 1000, and 128* collocation
points, that this GPPE can also yield long-lived states with

(c) ° 10 20

FIG. 3. Top left panel: plots of the dimensionless radius (R/L) versus the dimensionless temperature (kg7 /E,), for heating (red) and
cooling (green) runs showing a hysteresis loop. We show 10-level contour plots of | (x)|? and the associated spectra |y (k)|* to illustrate, at
representative points on heating and cooling curves in the hysteresis plot, the real-space density distribution and the k—space density spectra
[keT/E, =2.7 x 107 and kg T /E, = 3.62 x 107> in (a) and (b) of the top panels, respectively, and kgT /E, = 2.3 x 107> and kgT /E, =
3.16 x 1072 in (c) and (d) of the bottom panels, respectively]. The analogs of these plots, for the case g = 0, are shown in the panels at the
very bottom. In the bottom left panel we use |Eg| at T = 0 to make the temperature dimensionless.
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FIG. 4. Ten-level contour plots of the [y (x, t)|* (a) at t = 0.018, (b) at t = 0.025, and (c) at t = 0.03, for the initial condition for v (x, t)
given in Eq. (1) of the Supplemental Material [22], showing the rotating binary system (see Supplemental Video S6 in the Supplemental

Material).

temporal oscillations. In particular, by using an initial condi-
tion with two rotating spherical compact objects, the truncated
GPPE dynamics yields a rotating binary system, which we
depict at representative times in Fig. 4 and in Supplemental
Video S6 in the Supplemental Material [22] (this also gives
the initial data).

In astrophysics, temperature effects are expected to be
extremely small as cosmological dark matter, away from col-
lapsed structures, is very cold. However, typical dark matter,
in today’s universe, is found principally as collapsed-dark-
matter haloes, whose temperature is determined just by the
properties of the halo [28]. The maximal mass of stable BEC
stars is insensitive to the temperature of the matter. However,
the mass of the boson star, with a relatively large radius, can
depend significantly on the temperature of the boson matter
[29].

We have presented a first-principles computational study
of the possibility of taking into account thermal effects in
superfluid gravitational systems by using spectral truncation.
The results have been given in terms of dimensionless scaled
temperature

Should a concrete astrophysical situation be studied us-
ing a quantitative spectrally truncated model, the physical
temperature scale could be estimated as done for G =0 in
Ref. [30], which shows that the classical truncated dynamics
is a good approximation to the physical dynamics only for
phonon modes with a high occupation number; these modes
are in equipartition at that given temperature. The basic idea
to match the physical temperature is to count these modes
and adjust the truncation wave number accordingly. We must
generalize the study of Ref. [30] to the G > 0 case to adjust

the physical temperature scale in a quantitative study. This
will be addressed in future work.

Our study goes well beyond earlier studies [31] that
employ the Thomas-Fermi approximation and include finite-
temperature effects at the level of a noninteracting Bose gas
(g = 0). We have shown that the truncated GPPE can be used
effectively to study the graviational collapse of an assembly
of weakly interacting bosons at finite temperature. Our study
of this collapse shows that there is a clear, thermally driven
first-order transition from a noncondensed bosonic gas, at
high T, to a condensed BEC phase at low T'; this transition
should be contrasted with the continuous BEC transition in the
weakly interacting Bose gas, which is described by the GPE,
in the absence of gravitation. Furthermore, we have shown
that gravitationally bound, rotating binary objects can be ob-
tained in our GPPE simulations. Therefore, our work opens
up the possibility of carrying out detailed finite-temperature
studies of self-gravitating bosonic systems, which are poten-
tially relevant for studies of dark-matter candidates like boson
stars and axions.

We note that a GP-Poisson system has been used, in 2D
and at T = 0, in the context of ultracold plasmas, which have
electrostatic interactions, instead of gravity; here, the Poisson
equation is essentially the same as in our paper; however,
in electrostatics, like charges repel, whereas masses have
an attractive gravitational interaction. We refer the reader to
Refs. [32,33] for a discussion of this 2D system at 7 = 0.

We thank DST, CSIR (India), and the Indo French Center
for Applied Mathematics IFCAM) for their support.
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