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Effective Dissipation and Turbulence in Spectrally Truncated Euler Flows
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A new transient regime in the relaxation towards absolute equilibrium of the conservative and time-
reversible 3D Euler equation with a high-wave-number spectral truncation is characterized. Large-scale
dissipative effects, caused by the thermalized modes that spontaneously appear between a transition wave
number and the maximum wave number, are calculated using fluctuation dissipation relations. The large-
scale dynamics is found to be similar to that of high-Reynolds number Navier-Stokes equations and thus
obeys (at least approximately) Kolmogorov scaling.
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Turbulence has been observed in inviscid and conserva-
tive systems, in the context of (compressible) low-
temperature superfluid turbulence [1–3]. This behavior
has also been reproduced using simple (incompressible)
Biot-Savart vortex methods, which amount to Eulerian
dynamics with ad hoc vortex reconnection [4]. The pur-
pose of this Letter is to study the dynamics of spectrally
truncated 3D incompressible Euler flows. Our main result
is that the inviscid and conservative Euler equation, with a
high-wave number spectral truncation, has long-lasting
transients that behave just as those of the dissipative
(with generalized dissipation) Navier-Stokes equation.
This is so because the thermalized modes between some
transition wave number and the maximum wave number
can act as a fictitious microworld providing an effective
viscosity to the modes with wave numbers below the
transition wave number.

We thus study general solutions to the finite system of
ordinary differential equations for the complex variables
v̂�k� [k is a 3D vector of relative integers �k1; k2; k3�
satisfying sup�jk�j � kmax]
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p
v̂��p; t�v̂��k� p; t�; (1)

where P ����k�P���k�P�� with P�������k�k�=
k2 and the convolution in (1) is truncated to sup�jk�j �
kmax, sup�jp�j � kmax, and sup�jk� � p�j � kmax.

This system is time reversible and exactly conserves the
kinetic energy E �

P
kE�k; t�, where the energy spectrum

E�k; t� is defined by averaging v on spherical shells of
width �k � 1,

E�k; t� �
1

2

X
k��k=2<jk0j<k��k=2

jv̂�k0; t�j2: (2)

The discrete Eq. (1) is classically obtained [5] by per-
forming a Galerkin truncation [v̂�k� � 0 for sup�jk�j �
kmax] on the Fourier transform v�x; t� �

P
v̂�k; t�eik�x of a

spatially periodic velocity field obeying the (unit density)
05=95(26)=264502(4)$23.00 26450
three-dimensional incompressible Euler equations,

@tv� �v � r�v � �rp; r � v � 0: (3)

The short-time, spectrally converged truncated Eulerian
dynamics (1) has been studied [6,7] to obtain numerical
evidence for or against blowup of the original (un-
truncated) Euler Eq. (3). We study here the behavior of
solutions of (1) when spectral convergence to solutions of
(3) is lost. Long-time truncated Eulerian dynamics is rele-
vant to the limitations of standard simulations of high-
Reynolds number (small viscosity) turbulence that are
performed using Galerkin truncations of the Navier-
Stokes equation [8].

Equation (1) is solved numerically using standard [9]
pseudospectral methods with resolution N. The solutions
are dealiased by spectrally truncating the modes for which
at least one wave-vector component exceeds N=3 (thus a
16003 run is truncated at kmax � 534). This method allows
the exact evaluation of the Galerkin convolution in (1) in
only N3 logN operations. Time marching is done with a
second-order leapfrog finite-difference scheme, even and
odd time steps are periodically recoupled using fourth-
order Runge-Kutta.

To study the dynamics of (1), we use the so-called
Taylor-Green [10] single-mode initial condition of (3)
uTG � sinx cosy cosz, vTG � �uTG�y;�x; z�, wTG � 0.
Symmetries are employed in a standard way [11] to reduce
memory storage and speed up computations. Runs were
made with N � 256, 512, 1024, and 1600.

Figure 1 displays the time evolution (top) and resolution
dependence (bottom) of the energy spectra. Each energy
spectrum E�k; t� admits a minimum at k � kth�t�< kmax, in
sharp contrast with the short-time (t � 4) spectrally con-
verged Eulerian dynamics (data not shown, see [7,11]). For
k > kth�t� the energy spectrum obeys the scaling law
E�k; t� � c�t�k2 (see the dashed line at the bottom of the
figure). The dynamics thus spontaneously generates a scale
separation at wave number kth�t�. Figure 1 also shows that
kth slowly decreases with time. For fixed k inside the k2
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FIG. 2 (color online). Time evolution of kth (left vertical axis)
and Eth (right vertical axis) at resolutions 2563 (circle 	), 5123

(triangle 4), 10243 (cross �), and 16003 (cross +).
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FIG. 1 (color online). Energy spectra. Top: resolution 16003 at
t � �6:5; 8; 10; 14� (�, +, 	, *); bottom: resolutions 2563 (circle
	), 5123 (triangle 4), 10243 (cross �), and 16003 (cross +) at
t � 8. The dashed lines indicate k�5=3 and k2 scalings.
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scaling zone E�k; t� increases with time but E�k; t� de-
creases with time for k close (but inferior) to kth�t�.

The traditionally expected [5,12] asymptotic dynamics
of the system is to reach an absolute equilibrium, which is a
statistically stationary exact solution of the truncated Euler
equations, with energy spectrum E�k� � ck2. Our new
results (see Fig. 1) show that a time-dependent statistical
equilibrium appears long before the system reaches its
stationary state. Indeed, the early appearance of a k2

zone is the key factor in the relaxation of the system
towards the absolute equilibrium: as time increases, more
and more modes gather into a time-dependent statistical
equilibrium, which itself tends towards an absolute
equilibrium.

Since the total energy E is constant, the energy dissi-
pated from large scales into the time-dependent statistical
equilibrium is given by

Eth�t� �
X

kth�t�<k

E�k; t�: (4)

The time evolutions of kth and Eth are presented in Fig. 2.
The figure clearly displays the long transient during which,
for all resolutions, kth decreases and Eth increases with
time. Note that, at all times, kth increases and Eth decreases
with the resolution.

Since the energy of the time-dependent equilibrium
increases with time, the modes outside the equilibrium
26450
lose energy. The presence of a time-dependent equilibrium
thus induces an effective dissipation on the lower k modes.

We now estimate the characteristic time of effective
dissipation ��kd� of modes kd close to kth�t� by assuming
time-scale separation and studying, at each time t, the
relaxation towards the time-independent absolute equilib-
rium characterized by Eth�t� and kmax. The existence of a
fluctuation dissipation theorem (FDT) [13,14] ensures than
dissipation around the equilibrium has the same character-
istic time scale as the equilibrium correlation functions
hv̂��k; t�v̂��k0; 0�i [brackets denote equilibrium statistical
averaging over initial conditions v̂��k0; 0�]. Defining this
time scale �C as the parabolic decorrelation time

�2
C@tthv̂��k; t�v̂��k

0; 0�ijt�0 � hv̂��k; 0�v̂��k0; 0�i; (5)

time translation invariance allows one to express the
second-order time derivative as �h@tv̂��k; t� �
@t0 v̂��k0; t0�ijt�t0�0. Using expression (1) for the time de-
rivatives reduces the evaluation of �C to that of an equal-
time fourth-order moment of a Gaussian field with corre-
lation hv̂��k; t�v̂���k; t�i � AP���k� [5] where A �
Eth=�2kmax�

3. The only nonvanishing contribution is a
one loop graph [8,15]. The correlation time �C associated
with wave number k is found in this way [14] to obey the
simple scaling law

�C �
C

k
�������
Eth

p ; (6)

where C � 1:433 82 is a constant of order unity. The time
scale �C is the eddy turnover time at wave number kth.
Because of Kolmogorov (K41) behavior (see below) the
evolution of Eth is governed by the large-eddy turnover
time. The assumption of time-scale separation made above
is thus consistent.

This strongly suggests the introduction of an effective
generalized Navier-Stokes model for the dissipative dy-
2-2
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namics of modes k close to kth�t�. To wit, we make the
ansatz "�k; t� � ��jkjE�k; t�, where �� �

�������
Eth

p
=C and

"�k; t� � �@E�k; t�=@t is the spectral density of energy
dissipation

"�t� �
dEth�t�
dt

: (7)

Assuming that this dissipation takes place in a range of
width �kd around kd, we estimate the total dissipation "

��kdE�kd��kd. This, together with E�kd� 
 k2

dEth=k3
max

yields the relation

kd 


�
"

E3=2
th

�
1=4
k3=4

max: (8)

The consistency of this estimation of effective dissipation
with the results displayed in Fig. 2 requires that kd 
 kth.
The ratio kth=kd is displayed in Fig. 3. It is seen to be of
order unity and is reasonably constant in time and resolu-
tion independent (at least for N > 256).

Thus the small-scale modes between kth and kmax act as a
fictitious thermostat providing, via the FDT, an effective
viscosity to the large-scale modes with wave numbers
below kth. Note that spontaneous equilibration happening
in conservative isolated systems, such as the one studied in
this Letter, should not be confused with equilibration re-
sulting from interaction with the thermalized degrees of
freedom of the molecules constituting a physical fluid.
Indeed, the reversible dynamics of the isolated system (1)
spontaneously generates both the wave number at which
the fictitious thermostat begins and its temperature.

The previous results indicate scale separation between
conservative large-scale and dissipative small-scale dy-
namics. Furthermore, the scale separation increases with
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FIG. 3 (color online). Time evolution of the ratio kth=kd at
resolutions 2563 (circle 	), 5123 (triangle 4), 10243 (cross �),
and 16003 (cross +).
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resolution. This strongly suggests that large-scale behavior
may be identical to that of high-Reynolds number standard
Navier-Stokes equations, which is known [8] to obey (at
least approximately) K41 scaling.

The energy dissipation rate (7) shown on Fig. 4 (top, left
axis) is in good agreement with the corresponding data for
the Navier-Stokes Taylor-Green flow (see Ref. [11], Fig. 7,
and Ref. [8], Fig. 5.12). Both the time for maximum energy
dissipation tmax ’ 8 and the value of the dissipation rate at
that time "�tmax� ’ 1:5� 10�2 are in quantitative agree-
ment. Furthermore, the long-time quasilinear behavior of
"�1=3 (shown on the right axis) is compatible with K41
self-similar decay "�t� 
 L2

0t
�3.

A confirmation for K41 behavior around tmax is dis-
played in Fig. 4 (bottom). The value of the inertial-range
exponent n, obtained by low-k least squares fits of the
logarithm of the energy spectrum to the function c�
n log�k�, is close to 5=3 (horizontal dashed line) when t ’
tmax. The �5=3 exponent is also shown as the left dashed
line on the bottom of Fig. 1, where the dissipative effects
can be traced back to the energy spectrum decreasing faster
than k�5=3 at intermediate wave numbers.
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FIG. 4 (color online). Temporal evolution. Top: energy dissi-
pation " (left vertical axis) and "�1=3 (right vertical axis);
bottom: k�n inertial-range exponent n at resolutions 2563 (fit
interval 2 � k � 12, circle 	), 5123, (fit interval 2 � k � 14,
triangle 4), 10243 (fit interval 2 � k � 16, cross �), and 16003

(fit interval 2 � k � 20, cross +).
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The mixed K41-absolute equilibrium spectra have al-
ready been discussed in the wave turbulence literature
(e.g., [16]) and have more recently been studied in con-
nection with the Leith model of hydrodynamic turbulence
[17]. In this context, small-scale thermalization may have
some bearing on the so-called bottleneck problem if the
dissipation wave number approaches kmax.

Note that the dynamics of spectrally truncated time-
reversible nonlinear equations has also been investigated
in the special cases of 1D Burgers-Hopf models [18] and
2D quasigeostrophic flows [19]. A central point in these
studies was the nature of the statistical equilibrium that is
achieved at large times. Several equilibria are a priori
possible because both (truncated) 1D Burgers-Hopf and
2D quasigeostrophic flow models admit, besides the en-
ergy, a number of additional conserved quantities. The 3D
Euler case is of a different nature because (except for
helicity that identically vanishes for the flows considered
here) there is no known additional conserved quantity [8]
and the equilibrium is thus unique. The central problem in
truncated 3D Eulerian dynamics is therefore the mecha-
nism of relaxation towards equilibrium, as studied in this
Letter.

In summary, our main result is that the spectrally trun-
cated Euler equation has long-lasting transients behaving
just like those of the dissipative Navier-Stokes equation.
The small-scale thermalized modes act as a fictitious mi-
croworld providing an effective viscosity to the large-scale
modes. These dissipative effects were estimated using a
new exact result based on fluctuation dissipation relations.
Furthermore, the solutions of the truncated Euler equations
were shown to obey, at least approximately, K41 scaling. In
this context, the spectrally truncated Euler equations ap-
pear as a minimal model of turbulence.

We acknowledge discussions with D. Bonn, U. Frisch,
and Y. Pomeau. The computations were carried out on the
NEC-SX5 computer of the Institut du Développement et
des Ressources en Informatique Scientifique (IDRIS) of
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