
VOLUME 84, NUMBER 10 P HY S I CA L R EV I EW LE T T ER S 6 MARCH 2000

Subcritical Dissipation in Three-Dimensional Superflows
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Three-dimensional (3D) superflows past a circular cylinder are studied by numerically integrating the
nonlinear Schrödinger equation. 3D initial data are built from the two-dimensional (2D) stationary vortex
nucleation solutions. Quasistationary half-ring vortices, pinned at the sides of the cylinder, are generated
after a short time. On a longer time scale, either 3D vortex stretching induces dissipation and drag, or the
vortex is absorbed by the cylinder. The corresponding 3D critical velocity is found to be well below the
2D one. The implications for experiments in Bose-Einstein condensed gas and low-temperature helium
are discussed.
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Dilute Bose-Einstein condensates have been recently
produced experimentally [1]. The dynamics of these com-
pressible nonlinear quantum fluids is accurately described
by the nonlinear Schrödinger equation (NLSE), also called
the Gross-Pitaevskii equation [2], allowing direct quan-
titative comparison between theory and experiment [3].
The NLSE can also be considered to describe the dynam-
ics of superfluid 4He, at temperatures low enough for the
normal fluid to be negligible. In the homogeneous two-
dimensional (2D) NLSE flow past a disk, Frisch et al. [4]
found the existence of a transition to dissipation due to the
periodic emission of pairs of counterrotating vortices. This
transition was shown to occur at a critical Mach number
Mc

2D always greater than 0.35 [5]. Vortex formation and
pressure drag aboveMc

2D were extensively studied [6]. In a
recent experiment, Raman et al. have studied dissipation in
a Bose-Einstein condensed gas by moving a blue detuned
laser beam through the condensate at different velocities
[7]. In their inhomogeneous condensate, they observed a
critical Mach number for the onset of dissipationMc

2D!1.6.
The main problem addressed in this Letter is the

characterization of an intrinsically three-dimensional (3D)
vortex stretching mechanism in the superflow around a
cylinder. Such a mechanism is made plausible by recent
3D NLSE simulations and experiments in 4He [8] demon-
strating the existence of vortex stretching and inertial
range Kolmogorov scaling in superfluid turbulence. This
3D mechanism generates drag and can be responsible
for the subcritical (below Mc

2D) dissipation observed by
Raman et al. [7].
We study the effect of a moving cylinder of diameter D

in a 3D superfluid at rest described by the action
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where c is a complex field and c̄ is its conjugate. The
coherence length j and the speed of sound c (for a mean

fluid density r0 ! 1) are the physical parameters charac-
terizing the superfluid. The energy F reads

F ! E 2 "P ? "U , (2)
where
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is the superfluid momentum. The repulsive potential
V #r$ ! #Vo!2$ &tanh"4#r 2 D!2$!!% 2 1' represents the
cylinder, whose velocity "U is imposed by the "P ? "U
term. In the calculations presented below, Vo ! 10 and
! ! j. With these values, the field inside the cylinder
is negligible #jcj ( 0$ and the boundary layer is well
resolved with a mesh adapted to the coherence length.
The NLSE is the Euler-Lagrange equation correspond-

ing to (1),
≠c

≠t
! i

cp
2 j

"V# "x$c 2 jcj2c 1 j2=2c% 1 "U ? =c ,

(4)
where V# "x$ ! 1 2 V #j "xj$.
The NLSE (4) can be mapped into two hydrodynamic

equations by applying Madelung’s transformation: c !p
r exp#if!

p
2 cj$, where r and "y ! =f 2 "U are the

fluid density and velocity relative to the cylinder. We
thus obtain the continuity equation ≠r!≠t 1 = ? #r "y$ !
0 and the Bernoulli equation ≠f!≠t 1 "y 2!2 2 "U 2!2 1
c2"r 2 V#"x$% 2 c2j2=2pr!pr ! 0. The last term of
this equation is a dispersive supplementary “quantum pres-
sure” term that is relevant only at length scales smaller than
j. Note that the NLSE (4) admits vortical solutions of
characteristic core size (j. These are topological defects
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(zeros) of the complex field c and thus appear as points in
2D and lines in 3D.
In our previous studies [5], the bifurcation diagram of

stationary solutions to the NLSE describing a 2D superflow
around a disk were obtained using Fourier pseudospectral
methods and continuation techniques. In Fig. 1, the energy
(2) of the stationary solutions is presented as a function of
the Mach numberM ! j "Uj!c for different values of j!D.
The stable #0V $ and unstable symmetric #2V $ and asym-
metric #1V $ branches are connected through a primary
saddle node and a secondary pitchfork bifurcation. While
0V corresponds to a laminar flow, 1V and 2V display one
and two vortices, respectively, near the sides of the cylin-
der. The corresponding dynamics was studied by numeri-
cal integrations of the NLSE (4). Beyond the saddle-node
critical Mach number Mc

2D , no stationary solution exists
and (dissipative) periodic vortex nucleation occurs. No
subcritical dissipation was observed in this 2D system. The
value of Mc

2D was found to depend on j!D, with a lower
bound at Mc

2D ( 0.35, reached in the limit j!D ! 0 [5].
We used the 2D laminar stationary solution c0V #x, y$

(corresponding to branch 0V ) and the one-vortex unstable
stationary solution c1V #x, y$ (branch 1V ) to construct
the 3D initial condition c3D#x, y, z$ ! fI#z$c1V #x, y$ 1
"1 2 fI#z$%c0V #x, y$. The function fI#z$, defined by
fI#z$ ! &tanh"#z 2 z1$!Dz% 2 tanh"#z 2 z2$!Dz%'!2, takes
the value 1 for z1 # z # z2 and 0 elsewhere (Dz is an
adaptation length). The surface jc3Dj ! 0.5 is shown in
Fig. 2a, for j!D ! 0.025, j "Uj!c ! 0.26, and Dz !
2
p

2 j in the "Lx 3 Ly 3 Lz% periodicity box (Lx!D !
2.4

p
2 p, Ly!D ! 1.2

p
2 p, and Lz!D ! 0.4

p
2 p).

The cylinder surface and the initial condition vortex line,
with both ends pinned to the left side of the cylinder, are
apparent in the figure.
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FIG. 1. Plot of the energy of the stationary solutions [F #M$ 2
F #0$, per unit vertical length] versus Mach number #M !
j "Uj!c$ for j!D ! 1!10, 1!20, 1!40. Stable branch: solid line
#0V $. Unstable asymmetric branch: dashed line #1V $. Un-
stable symmetric branch: long-dashed line #2V $. The saddle-
node bifurcation is marked by Mc

i , with Mc
1 #1!10$ ! 0.429,

Mc
2 #1!20$ ! 0.4, and Mc

3 #1!40$ ! 0.383.

The resulting dynamical evolution is obtained by inte-
grating the NLSE, with a 3D version of the code used in
our previous studies [5]. It can be schematically described
in terms of short-time and long-time dynamics.
Under short-time dynamics, the initial pinned vortex line

rapidly contracts, evolving through a decreasing number of
half-ring-like loops, down to a single quasistationary half
ring (see Figs. 2b–2d). If the initial vortex line is long
enough to contract to quasistationary half rings, the evolu-
tion always takes place near the plane perpendicular to the
flow. If the vortex line is too small, it moves upstream and
collapses against the cylinder.
The diameter d of a stationary vortex ring in an infinite

Eulerian flow with no obstacle is given by [9]

j "Uj!c ! #
p

2 j!d$ "ln#4d!j$ 2 K% , (5)

where j "Uj is the flow velocity at infinity and the vortex
core model constant K ( 1 is obtained by fitting the nu-
merical results in [10]. This equation can be used to check
that the half-ring state (Fig. 2d) is quasistationary. Indeed,
the local flow velocity y in a low-Mach number Eulerian
flow around a cylindrical obstacle varies from y ! j "Uj at
infinity to y ! 2j "Uj at both sides of its surface. For the
values used in Fig. 2, local velocities therefore range from
y ! 0.25 to y ! 2 3 0.25. Equation (5) implies that

FIG. 2. Short-time dynamics of a vortex pinned to the cylinder
for run 6 (see Table I below). The surface jcj ! 0.5 is shown
at times (a) t ! 0, (b) t ! 40

p
2 j!c, (c) t ! 60

p
2 j!c, and

(d) t ! 80
p

2 j!c. Note that the half ring formed on (d) has the
diameter needed to be approximately stationary [see text below
Eq. (5)].
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TABLE I. General characteristics of all runs. The horizon-
tal periodicity lengths are Lx!D ! 2.4

p
2 p and Ly!D !

1.2
p

2 p. The adimensional drag coefficient Cx is indicated
when vortex stretching takes place (NS: no stretching), except
for run 6 [see text below Eq. (7)].

Run M DM tendc!j j!D Lz!D Cx

1 0.30 7% 300
p

2 0.05 0.8
p

2 p 1.0
2 0.35 9% 250

p
2 0.05 2.4

p
2 p 0.5

3 0.22 9% 250
p

2 0.04 0.8
p

2 p 0.4
4 0.25 4% 625

p
2 0.04 0.8

p
2 p 0.9

5 0.25 12% 225
p

2 0.033 0.8
p

2 p 0.6
6 0.26 23% 300

p
2 0.025 0.4

p
2 p *

7 0.35 9% 50
p

2 0.1 0.8
p

2 p NS
8 0.30 7% 150

p
2 0.067 0.8

p
2 p NS

9 0.37 0% 75
p

2 0.067 0.8
p

2 p NS
10 0.25 4% 150

p
2 0.05 0.8

p
2 p NS

11 0.15 20% 150
p

2 0.033 0.8
p

2 p NS

the diameter of a stationary half ring should be bounded
by d#y ! 0.25$ ! 18.8j and d#y ! 2 3 0.25$ ! 6.3j.
The diameter d ) 9j measured on the half ring observed
in Fig. 2d is thus consistent with its quasistationary
behavior. The diameter of the half ring shown below
in Fig. 3 (inset), d ) 7.6j, is similarly found to be

FIG. 3. Top (a) and side (b) views of the stretched vortex
pinned to the cylinder at the end of run 2 (see Table I). The
inset shows the corresponding quasistationary half-ring solution
obtained at t ! 40

p
2 j!c.

between the corresponding bounds d#0.35$ ! 11.4j and
d#2 3 0.35$ ! 3j.
On a longer time scale, the quasistationary half ring can

evolve in two opposite ways: it starts moving either up-
stream or downstream. When the half ring is driven down-
stream, the vortex loop is continuously stretched while
the pinning points move towards the back of the cylin-
der. When the half ring moves upstream, it eventually
collapses against the cylinder, generating a laminar super-
flow. In order to distinguish between the two situations
we have carried out 3D runs summarized in Table I. Most
runs were performed at Mach numbersM slightly different
from that of the 2D stationary solutions M2D . The value
of DM ! #M 2 M2D$!M is indicated in the table. These
3D computations are rather expensive, e.g., to integrate the
NLSE up to the situation in Fig. 3b (run 2) necessitates a
resolution of 256 3 128 3 256 and 25 hours of CPU on
a Cray 90 machine.
Figure 3 shows the long-time dynamics for a stretch-

ing case: run 2 of Table I. The inset in Fig. 3b pictures
the corresponding quasistationary half ring for size com-
parison. Note that, as the vortex loop grows, its rear part
remains oblique to the flow (see Fig. 3a).
The runs of Table I are displayed schematically in

Fig. 4. The runs with vortex stretching are labeled by
circles and those without by 3. All runs were performed
at Mach numbers below Mc

2D#j!D$, indicated in Fig. 4 as
a solid line. The experimental [7] critical Mach number
and value of j!D are marked by an asterisk.
For 1!30 , j!D , 1!20, there is a frontier between

the dissipative and nondissipative cases that can be drawn
approximately as the dashed line in Fig. 4, which corre-
sponds to the expression Rs ! 5.5 with

Rs * j "UjD!cj ! MD!j . (6)
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FIG. 4. Parametric study of vortex stretching in a Mach num-
berM versus j!D log-log diagram. Circles: stretching; crosses:
no stretching (labels are run numbers of Table I). The asterisk
represents the experiment reported in [7]. The solid line is the
2D saddle-node bifurcation Mach number Mc

2D as a function of
j!D and the dashed line represents Eq. (6) (see text).

2193



VOLUME 84, NUMBER 10 P HY S I CA L R EV I EW LE T T ER S 6 MARCH 2000

This superfluid “Reynolds” number is defined in the same
way as the standard (viscous) Reynolds number Re *
j "UjD!n (with n the kinematic viscosity). In the superfluid
turbulent #Rs ¿ 1$ regime, Rs was shown to be equiva-
lent to the standard (viscous) Reynolds number Re [8].
Note that, for a Bose condensate of particles of mass m,
the quantum of velocity circulation around a vortex, G !
2p

p
2 cj, has the Onsager-Feynman value G ! h!m (h

is Planck’s constant) and the same physical dimensions
L2T21 as n.
In order to study quantitatively the transition to dissipa-

tion, we define the nondimensional drag

Cx ! 2#dj "P j!dt$!r0j "Uj2S , (7)

where the surface S facing the flow is the diameter D of
the cylinder times the height of the vortex loop obtained
at the end of the run. Typically, the superfluid momentum
(3) as a function of time (data not shown) first oscillates
during the short-time dynamics. In the case of vortex
stretching it then grows linearly. In this case, d "P !dt is
estimated by a linear fit to "P . The case of run 6 is special.
Although vortex stretching took place, it was impossible
to reliably determine Cx because the height of the vortex
loop kept on growing during the run. This may be due
to the lower value of Lz!D in this run. The values of Cx
are displayed in Table I. The obtained order-one values
of Cx demonstrate that 3D vortex stretching is an efficient
dissipative mechanism.
In our numerical system, the initial vortex loop was im-

posed extrinsically. In an experimental setting, fluctuations
strong enough to nucleate the initial vortex loop are needed
to commence vortex stretching. The vortex nucleation by
thermal or quantum fluctuations has been studied by dif-
ferent groups [11,12]. Ihas et al. proposed a nucleation
barrier formed by an unstable stationary vortex loop that is
pinned to the walls bounding the superflow. Interestingly,
this solution is equivalent to the quasistationary half-ring
solution towards which our numerical system is driven
naturally before starting vortex stretching.
In summary, our numerical results demonstrate the pos-

sibility of a subcritical (belowMc
2D) and efficient #Cx ( 1$

drag mechanism, based on 3D vortex stretching. Our com-
putations were performed for values of j!D comparable
to those in Bose-Einstein condensed gas experiments [7].
In the context of superfluid 4He flow, the experimental
critical velocity is known to depend strongly on the sys-
tem’s characteristic size D. It is often found to be well

below the Landau value (based on the velocity of roton
excitation) except for experiments where ions are dragged
in liquid helium. Feynman’s alternative critical velocity
criterion Rs ( log#D!j$ is based on the energy needed to
form vortex lines. It produces better estimates for vari-
ous experimental settings but does not describe the vortex
nucleation mechanism [9]. It would be very interesting
to determine experimentally the dependence of the critical
Mach number on the parameter j!D and the nature (2D
or 3D) of the excitations.
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