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Decay Rates in Attractive Bose-Einstein Condensates
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Attractive Bose-Einstein condensates are investigated with numerical continuation methods capturing
stationary solutions of the Gross-Pitaevskii equation. The branches of stable (elliptic) and unstable
(hyperbolic) solutions are found to meet at a critical particle number through a generic Hamiltonian
saddle node bifurcation. The condensate decay rates corresponding to macroscopic quantum tunneling,
two and three body inelastic collisions, and thermally induced collapse are computed from the exact
numerical solutions. These rates show experimentally significant differences with previously published
rates. Universal scaling laws stemming from the bifurcation are derived. [S0031-9007(99)08550-6]
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Experimental Bose-Einstein condensation (BEC) in
ultracold vapors of 7Li atoms [1] opened a new field in the
study of macroscopic quantum phenomena. Condensates
with attractive interactions are known to be metastable
in spatially localized systems, provided that the number
of condensed particles is below a critical value Nc [2].
Various physical processes compete to determine the
lifetime of attractive condensates. Among them one can
distinguish macroscopic quantum tunneling (MQT) [3,4],
inelastic two and three body collisions (ICO) [5–7], and
thermally induced collapse (TIC) [4,8]. The MQT and
TIC contributions were evaluated in the literature using
a variational Gaussian approximation to the condensate
density. However, this approximation is known to be
in substantial quantitative error—e.g., as high as 17%
on Nc [3,9]—when compared to the exact solution
of the Gross-Pitaevskii (GP) equation. Experimentally,
the recent observations of Feshbach resonances in BEC
of sodium atoms offer new possibilities to investigate
the dynamics of condensates with negative scattering
lengths close to zero temperature (in the nK range)
[10]. Reliable theoretical evaluations of the lifetime of
metastable condensates are thus needed for quantitative
comparisons with experiments.
The basic goal of the present Letter is to numerically

compute the bifurcation diagram of the stationary solu-
tions of the GP equation. Both the stable (elliptic) and
unstable (hyperbolic) branches of solutions will then be
used to obtain decay rates and compare them to the known
(Gaussian approximation) ones. At low enough tempera-
ture, neglecting the thermal and quantum fluctuations, a
Bose condensate can be represented by a complex wave
function c!x, t" that obeys the dynamics of the GP equa-
tion [11,12]. Specifically, we consider a condensate of
N particles of mass m and (negative) effective scat-
tering length a in a radial confining harmonic potential
V !r" ! mv2r2#2. Using variables rescaled by the natu-
ral quantum harmonic oscillator units of time t0 ! 1#v

and length L0 !
p

h̄#mv: t̃ ! t#t0, x̃ ! x#L0, and ã !
4pa#L0, the condensate is described by the action
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The Euler-Lagrange equation corresponding to A is our
working form of the Gross-Pitaevskii equation:
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We use the following experimental data corresponding
to 7Li atoms in a radial trap: m ! 1.16 3 10226 kg,
a ! 223.3a0 (with a0 the Bohr radius), and
v ! !vxvyvz"1#3 ! 908.41 s21. These values yield
ã ! 25.74 3 1023. With these parameters (3) is a
mean-field approximation expected to be very reliable.
Note that we ignore the contributions of noncondensed
atoms. They interact with the condensate only through
a nearly constant background density term, inducing no
significant change in the dynamics of the system [13].
Stationary states of (3) corresponding to minima of E

at a given value of N are obtained by integrating to
relaxation the diffusion equation
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(4)
where the Lagrange multiplier m is fixed by the condition
≠N #≠t̃ ! 0. Note that dynamical solutions of (3) are
only affected by m through a homogeneous rotating phase
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factor eimt̃ . Pseudospectral methods [14] are used to
solve (4). The radially symmetric c!r, t̃" is expanded
as c!r , t̃" !

PNR#2
n!0 ĉ2n!t̃"T2n!r#R", where Tn is the nth

order Chebyshev polynomial and ĉNR is fixed to satisfy
the boundary condition c!R, t̃" ! 0. The results reported
below were generated with R ! 4 and NR ! 256. To
integrate (4) we use the time stepping scheme
c!t̃ 1 s" ! Q21$c!t̃" 2 s%r2c#2 1 !ãjcj2 2 m"c&' ,

(5)
where Q ! 1 2 s=2#2. This relaxation method is
equivalent to that used in [9] and can only reach the
stable stationary solutions of (4).
In order to numerically compute the full bifurcation dia-

gram of (4) we also capture the previously unknown un-
stable stationary solutions using Newton branch following
[15,16]. We start from a stable state obtained by relaxing
(4) at a small value of N . We search for fixed points
of (5), a condition strictly equivalent to the stationarity
of (3). Calling c! j" the value of the field c over the jth
collocation point, we look for c! such that f! j"!c!" (
c!

! j"!t̃ 1 s" 2 c!
! j"!t̃" ! 0. At every Newton step we

numerically solve
P

k%df! j"#dc!k"&dc!k" ! 2f! j"!c", for
dc!k" [17], where s controls the preconditioning of the
Newton step [18]. Once the converged stationary solu-
tions of (3) are obtained, 2idF #dc is linearized around
them. The eigenvalues ln of the corresponding linear op-
erator are computed by constructing and diagonalizing the
associated matrix [16]. When the smallest absolute value
l is purely imaginary, jlj is the (adimensionalized) en-
ergy of small excitations.
The values of the energy functional E and the (smallest

absolute value) square eigenvalue l2 versus particle
number N are shown as solid lines in Fig. 1 (top and
bottom, respectively). The eigenvalues are imaginary on
the metastable elliptic lower branch (l2 , 0) and real on
the unstable hyperbolic upper branch (l2 . 0). Using
(1) on stationary solutions we obtain dE#dN ! m.
Thus m is the slope of E and the lower branches E2,
l2

2 (respectively, upper branches E1, l2
1) are scanned

for m . mc (respectively, m , mc). The point m ! mc
determines the maximum number of particles N ! Nc
for which stationary solutions exist. We have checked
that all the other pairs of eigenvalues are imaginary on
both branches (data not shown).
This qualitative behavior is the generic signature of a

Hamiltonian saddle node (HSN) bifurcation defined, at
lowest order, by the normal form [19]

meffQ̈ ! d 2 bQ2, (6)
where d ! 1 2 N #Nc is the bifurcation parameter.
The critical amplitude Q is related to the radius of the
condensate [16] and the parameters b and meff can be
linked to critical scaling laws. Indeed, defining the appro-
priate energy E ! E0 1 meff "Q2#2 2 dQ 1 bQ3#3 2
gd, it is straightforward to derive from (6), close to the

FIG. 1. Stationary solutions of the GP equation versus particle
number N . Top: value of the energy functional E1 on the
stable (elliptic) branch and E2 on the unstable (hyperbolic)
branch. Bottom: square of the bifurcating eigenvalue (l2

6);
jl2j is the energy of small excitations around the stable branch.
Solid lines: exact solution of the GP equation. Dashed lines:
Gaussian approximation.

critical point d ! 0, the universal scaling laws

E6 ! Ec 2 Eld 6 EDd3#2, (7)

l2
6 ! 6l2

Dd1#2, (8)

where Ec ! E0, El ! g, ED ! 2#3
p

b, and l2
D !

2
p

b#meff. The dynamical content of the HSN normal
form (6) can be understood by the following considera-
tions. The phase space is separated in two regions by a
separatrix (homoclinic orbit) that starts and ends at the
hyperbolic fixed point. Trajectories inside the separatrix
remain bounded near the elliptic fixed point. If the con-
densate is taken beyond the separatrix by a perturbation
(e.g., thermal excitations or quantum tunneling, see be-
low), it will fall into unbounded (hyperbolic) trajectories
and collapse. AsN approachesNc, the bounded region
around the elliptic fixed point is reduced and the conden-
sate becomes more unstable. At N ! Nc the elliptic
fixed point meets the hyperbolic fixed point and the sepa-
ratrix disappears. No stationary condensate can be formed
forN . Nc.
The results obtained with the Gaussian approximation

for the condensate density [20,21] are also shown in Fig. 1
as dashed lines. These approximate results can be ob-
tained analytically by the following procedure: Insert-
ing c!r , t̃" ! A!t̃" exp%2r2#2r2

G!t̃" 1 ib!t̃"r2& inside the
action (1) yields a set of Euler-Lagrange equations for
rG!t̃", b!t̃", and the (complex) amplitude A!t̃". The sta-
tionary solutions of the Euler-Lagrange equations produce
the following values [16]:

N !m" !
4
p

2p3!28m 1 3
p

7 1 4m2"
7jãj !22m 1

p
7 1 4m2"3#2

, (9)

E ! N !m" !2m 1 3
q

7 1 4m2"#7 . (10)
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N is maximal atN G
c ! 8

p
2p3#j55#4ãj for m ! mG

c !
1#2

p
5. Linearizing the Euler-Lagrange equations around

the stationary solutions, we obtain the eigenvalues [16]

l2!m" ! 8m2 2 4m
q

7 1 4m2 1 2 . (11)

As apparent in Fig. 1, the exact critical N E
c ! 1258.5

is smaller than the Gaussian one N G
c ! 1467.7 [3,9].

The critical amplitudes corresponding to the Gaussian
approximation can be computed from (9) and (10). One
finds Ec ! 4

p
2p3#j53#4ãj, ED ! 64

p
p3#j59#4ãj, and

l2
D ! 4

p
10. For the exact solutions, we obtain the

critical amplitudes by performing fits on the data. One
finds ED ! 1340 and l2

D ! 14.68. Thus, the Gaussian
approximation captures the bifurcation qualitatively but
with quantitative 17% error on Nc [9], 24% error on ED,
and 14% error on l2

D. Figure 2 shows the physical origin
of the quantitative errors in the Gaussian approximation.
By inspection it is apparent that the exact solution is well
approximated by a Gaussian only for small N on the
stable (elliptic) branch.
The TIC decay rate GT is estimated using the formula

[22]

GT #v ! jl1#2pj exp%2h̄v!E1 2 E2"#kBT & , (12)

where h̄v!E1 2 E2" is the (dimensionalized) height of
the nucleation energy barrier, T is the temperature of the
condensate, and kB is the Boltzmann constant. Note that
the prefactor characterizes the typical decay time which is
controlled by the slowest part of the nucleation dynamics:
the top-of-the-barrier saddle point eigenvalue l1 and not
l2 as used in [4]. However, near the bifurcation both
eigenvalues scale in the same way and the behavior of GT
can be obtained directly from the universal saddle node
scaling laws (7) and (8). Thus the exponential factor and
the prefactor vanish, respectively, as d3#2 and d1#4.
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FIG. 2. Condensate density jcj2 versus radius r, in reduced
units (see text). Solid lines: exact solution of the GP equa-
tion. Dashed lines: Gaussian approximation. Stable (elliptic)
solutions are shown for particle number N ! 252 (a) and
N ! 1132 (b). (c) is the unstable (hyperbolic) solution for
N ! 1132 (see inset).

We estimate the MQT decay rate using an instanton
technique that takes into account the semiclassical trajec-
tory giving the dominant contribution to the quantum ac-
tion path integral [3,4]. We approximate this so-called
bounce trajectory by the solution of the equation of mo-
tion d2q!t"#dt2 ! 2dV !q"#dq starting and ending at the
fixed point qf of the phase space where E !qf" ! E2.
V !q" is a polynomial such that 2V !q" reconstructs the
Hamiltonian dynamics. Fixing q ! 0 at the top, E1

point, the reconstruction condition implies the relations
V !0" ! 2E1, V !qf" ! 2E2, ≠2

qV !0" ! jl1!N "j, and
≠2

qV !qf" ! 2jl2!N "j that uniquely determines V !q" !
a0 1 a2q2 1 a3q3 1 a4q4. We thus obtain a semiana-
lytical polynomial expression with coefficients determined
from the values presented in Fig. 1. Once V !q" and the
bounce point qb [V !qb" ! V !qf"] are known, the MQT
rate is estimated as

GQ
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jl2jy2
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4p
exp

"
24p

2

Z qb
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q
V !q" 2 V !qf" dq

#
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(13)
where y0 is defined by the asymptotic form of the bounce
trajectory q!t" [4]: q!t" ) qf 1 !y0#jl2j" exp%2jl2tj&.
Universal scaling laws can be derived close to criticality
from (6), (7), and (8). The exponential factor in (13)
follows the same scaling as

p
jE 2 E2j dq. It therefore

vanishes as
p

d3#2 d1#2 ! d5#4. From the asymptotic
form of q!t", dq follows the same law as y0#jl2j. Thus
y0 ) d3#4 and the prefactor vanish as

p
d1#4 d3#4 ! d7#8.

Note that these universal scaling laws agree with those
already derived in the Gaussian case in [3].
The TIC (12) and MQT (13) decay rates obtained for

the exact and Gaussian stationary states are shown in
Fig. 3. To validate these results we checked that the
Gaussian TIC decay rates computed in [8] are found when
we (incorrectly at a finite distance from criticality) replace
l1 by l2 in Eq. (12) (data not shown). We also checked
that our Gaussian MQT decay rate agrees with the one
previously computed in [3].
The ICO atomic decay rates are also shown in Fig. 3.

They are evaluated using the formula dN #dt ! fC!N "
with fC!N " ! K

R
jcj4 d3x̃ 1 L

R
jcj6 d3x̃, where

K ! 3.8 3 1024 s21 and L ! 2.6 3 1027 s21. Note
that the ICO rate can be evaluated from the stable
branch alone as done in [5,6]. In order to compare the
particle decay rate fC!N " to the condensate collective
decay rates obtained for TIC and MQT, we compute the
condensate ICO half-life as t1#2!N " !

RN
N #2 dn#fC!n"

and plot t21
1#2 in Fig. 3.

It is apparent by inspection of Fig. 3 that for a given
value ofN the exact and Gaussian approximate rates are
dramatically different. We now compare the relative im-
portance of the different exact decay rates. At T # 1 nK
the MQT effect becomes important compared to the ICO
decay in a region very close toN E

c (d # 8 3 1023) as it
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FIG. 3. Condensate decay rates versus particle number. ICO:
inelastic collisions. MQT: macroscopic quantum tunneling.
TIC: thermally induced collapse at temperatures 1 nK (1),
2 nK (2), 50 nK (3), 100 nK (4), 200 nK (5), 300 nK (6), and
400 nK (7). The inset shows the details of the crossover region
between quantum tunneling and thermal decay rate. Solid lines:
exact solution of the GP equation. Dashed lines: Gaussian
approximation.

was shown in [3] using Gaussian computations but evalu-
ating them with the exact maximal number of condensed
particles N E

c . Considering thermal fluctuations for tem-
peratures as low as 2 nK, it is apparent in Fig. 3 (see in-
set) that the MQT will be the dominant decay mechanism
only in a region extremely close to Nc (d , 5 3 1023)
where the condensates will live less than 1021 s. Thus,
in the experimental case of 7Li atoms, the relevant effects
are ICO and TIC, with crossover determined in Fig. 3.
In summary, we found both the elliptic and hyperbolic

exact stationary solutions of the GP equation, showing the
presence of a generic HSN bifurcation. The Gaussian am-
plitudes for bifurcation scaling laws were found to be in
substantial ($14%) error. The decay rates for the pro-
cesses of MQT, ICO, and TIC were computed from the
exact GP solutions. They were shown to obey univer-

sal scaling laws. Experimentally significant quantitative
differences were found between the exact and Gaussian
approximate rates. Future experimental determinations of
decay processes should thus be compared to the present
GP based rates.
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