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The celebrated Kardar-Parisi-Zhang (KPZ) equation describes the kinetic roughening of stochastically
growing interfaces. In one dimension, the KPZ equation is exactly solvable and its statistical properties are
known to an exquisite degree.Yet recent numerical simulations in the tensionless (or inviscid) limit of theKPZ
equation [C. Cartes et al., The Galerkin-truncated Burgers equation: Crossover from inviscid-thermalized to
Kardar–Parisi–Zhang scaling, Phil. Trans. R. Soc. A 380, 20210090 (2022).; E. Rodríguez-Fernández et al.,
Anomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equation, Phys. Rev. E 106,
024802 (2022).] unveiled a new scaling, with a critical dynamical exponent z ¼ 1 different from the KPZ one
z ¼ 3=2. In this Letter, we show that this scaling is controlled by a fixed point which had been missed so far
and which corresponds to an infinite nonlinear coupling. Using the functional renormalization group (FRG),
we demonstrate the existence of this fixed point and show that it yields z ¼ 1. We calculate the correlation
function and associated scaling function at this fixed point, providing both a numerical solution of the FRG
equations within a reliable approximation, and an exact asymptotic form obtained in the limit of large wave
numbers. Both scaling functions accurately match the one from the numerical simulations.
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The Kardar-Parisi-Zhang (KPZ) equation is remarkable
for the large variety of systems in which it arises. Originally
derived to model the kinetic roughening of stochastically
growing interfaces [1], the KPZ equation has turned out to
describe the universal properties of systems as different as
various growing interfaces [2–5], equilibrium disordered
systems [6], or turbulence in infinitely compressible fluids
[7]. Perhaps even more striking is its recent observation in
purely quantum systems, such as exciton-polariton con-
densates [8] or Heisenberg quantum spin chains [9,10]. The
ubiquity of the KPZ equation promotes it to a fundamental
model for nonequilibrium critical phenomena and phase
transitions [11–14].
After more than two decades of intense efforts both

in the mathematics and statistical physics communities, the
one-dimensional (1D) KPZ equation has been solved
exactly, and its statistical properties are now extensively
charted [15]. In 1D, the critical exponents of the KPZ
equation, roughness exponent χ and dynamical exponent z,
are fixed by the symmetries to the exact values χ ¼ 1=2
and z ¼ 3=2. The two-point correlation function has
been calculated exactly [16]. The probability distribution
of the KPZ height fluctuations is known, and reveals a
sensitivity to the global geometry of the interface, while
unveiling a deep connection with random matrix theory
[15]. Many other properties are also known, such as the
short-time behavior or the large deviation theory, to cite
a few. However, the 1D KPZ equation still reserves its
surprises.

In a recent paper [17], the authors performed numerical
simulations of the 1D Burgers equation [18], which exactly
maps to the KPZ equation, and studied the limit of
vanishing viscosity (inviscid limit). They unveiled a cross-
over to a new scaling regime, characterized by a dynamical
exponent z ¼ 1, different from the KPZ value z ¼ 3=2. The
same result was reported in [19] in the equivalent tension-
less limit of the KPZ equation, and also in [20] in a strongly
interacting 1D quantum bosonic system. This scaling is
absent in the current understanding of the 1D KPZ
equation. In this Letter, we fill this gap, and provide the
theoretical explanation of this missing scaling, using the
functional renormalization group (FRG). In the renormal-
ization group framework, the KPZ scaling is controlled by a
fixed point, termed the KPZ fixed point. Another fixed
point exists, the Edwards-Wilkinson (EW) fixed point,
which corresponds to the KPZ equation with vanishing
nonlinearity [21]. We show that the tensionless or inviscid
limit of the KPZ equation is controlled by a third unex-
plored fixed point, which features the z ¼ 1 critical
dynamical exponent. We calculate the scaling function at
this fixed point, and show that it very accurately coincides
with the scaling function computed in the numerics.
Let us first justify on simple grounds the existence of this

third fixed point. The KPZ equation gives the dynamics of a
real-valued height field hðt;xÞ with x∈Rd:
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where ν, λ, and D are three real parameters and η is
a Gaussian noise of zero mean and correlations
hηðt;xÞηðt0;x0Þi ¼ 2δðt − t0Þδdðx − x0Þ. In fact, by rescal-
ing the time and the field, one can show that this equation
only depends on one parameter g≡ λ2D=ν3 (or equiva-
lently on the Reynolds number in the context of the Burgers
equation). Note that we assume, as in [17], the existence of
an UV cutoff scale, such that the solutions of (1) remain
well defined in the inviscid limit and thermalize to the
equilibrium distribution [17,22].
Within the RG framework, following Wilson’s original

idea, one progressively averages out fluctuations, shell by
shell in wave numbers, starting from the high (ultraviolet
UV) wave number modes [23]. One thus obtains the
effective theory for the low (infrared IR) wave number
modes, i.e., at large distances. When the system is scale
invariant, this corresponds to a fixed point of the RG flow.
Thus, the KPZ rough interface is described by an IR fixed
point, the KPZ one, which is fully attractive in 1D and is
characterized by z ¼ 3=2 and χ ¼ 1=2.
At zero nonlinearity λ ¼ g ¼ 0, the Eq. (1) becomes the

EWequation, and there exists the corresponding fixed point
describing the linear system, characterized in 1D by z ¼ 2
and χ ¼ 1=2. This fixed point is repulsive, i.e., IR unstable.
This is schematically depicted in Fig. 1. From a topological
viewpoint, it is clear that there should also exist another
fixed point, in the limit g → ∞, which is IR unstable (and
UV stable). Moreover, let us emphasize that the inviscid
limit is equivalent to the limit g → ∞. It is therefore
plausible that this third fixed point governs the KPZ
equation in this limit, and we call it the inviscid Burgers
(IB) fixed point. We show in this Letter that it is indeed the
case, and that this fixed point yields z ¼ 1. Since it is
genuinely nonperturbative, a method such as the FRG is
required to study it.
Functional renormalization group for the KPZ

equation.—The FRG is a modern and powerful implemen-
tation of the RG, which allows for both functional and
nonperturbative calculations [24], and is widely used in
many domains [25,26]. For the KPZ equation, the FRG
yields the strong-coupling fixed point describing the KPZ
rough phase in any dimension [27], whereas perturbation
theory, even resummed to all orders, fails to access it in
d ≥ 2 [28]. In 1D, the scaling function associated with the
two-point correlation function calculated from FRG com-
pares at a high precision level with the exact result [29].
Moreover, it can be extended to arbitrary dimensions where

it allowed for the calculation of the scaling function and
other properties in d > 1 [30–32]. We thus employ this
method to investigate the IB fixed point.
The starting point of the FRG is the KPZ field theory,

which can be obtained from a standard procedure intro-
ducing a response field h̃ [33–36], and reads

Z½J � ¼
Z

DhDh̃e−SKPZ½φ�þ
R
t;x

J ·φ

SKPZ½φ� ¼
Z
t;x

�
h̃

�
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where φ ¼ ðh; h̃Þ, J ¼ ðJ; J̃Þ are the sources, and
R
t;x ≡R

dtddx [37]. The FRG formalism consists in progressively
integrating the fluctuations in Z, by suppressing the
contribution of low wave number modes q ¼ jqj ≲ κ,
where κ is the RG scale, in the functional integral. This
is achieved by adding to SKPZ a quadratic term of the form
ΔSκ½φ� ¼ 1

2

R
φiRκ;ijφj, whereRκ is a 2 × 2matrix, whose

elements Rκ;ij are called cut-off functions or regulators.
They are required to be large Rκ;ijðqÞ ∼ κ2 at low wave
numbers q ≲ κ such that these modes are damped in the
functional integral, and to vanishRκ;ijðqÞ ¼ 0 at high wave
numbers q≳ κ such that these modes are unaffected. Its
precise form is unimportant (we refer to [38] for technical
details, which also includes the additional Refs. [39–50]).
In the presence of ΔSκ, Z becomes κ dependent, and one
defines the effective average action Γκ, as the Legendre
transform ofWκ¼ lnZκ, i.e., Γκ¼−Wκþ

R
t;xJ ·ψ−ΔS½ψ �,

where Ψ ¼ ðψ ; ψ̃Þ ¼ hφi. The ΔS½ψ � term, with the
requirement that the cutoff functions diverge at the micro-
scopic scale κ ¼ Λ and vanish at κ ¼ 0, ensures that Γκ

identifies with the microscopic KPZ action (2) at κ ¼ Λ,
and becomes the full Γ, which encompasses all the
statistical properties of the system, in the limit κ → 0.
The evolution of Γκ with the RG scale in between these two
scales is given by the Wetterich exact RG equation [24]

∂κΓκ ¼
1

2
Tr

Z
∂κRκ ·Gκ; Gκ ≡

h
Γð2Þ
κ þRκ

i
−1
; ð3Þ

where Γð2Þ
κ is the Hessian of Γκ. The power of the FRG

formalism is that this equation can be solved using non-
perturbative and functional approximation schemes [26].
Flow diagram of the 1D KPZ equation.—Let us confirm

the existence of the IB fixed point. For this, the simplest
approximation, which consists in considering the flow of
the original parameters ν, λ, and D only, suffices. The
corresponding ansatz for Γκ reads

Γκ ¼
Z
t;x

�
ψ̃

�
∂tψ − νκ∇2ψ −

λκ
2
ð∇ψÞ2

�
−Dκψ̃

2

�
: ð4Þ

FIG. 1. The three fixed points of the KPZ equation, the KPZ
one, which is IR stable, and the EW and IB ones, which are both
IR unstable, UV stable. Red arrows indicate the RG flow.
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From this ansatz, one deduces, measuring in units of κ,
that the frequency scales as ω ∼ κ2νκ, and that the
fields have scaling dimensions ½ψ̃ � ¼ ðκdþ2D−1

κ νκÞ1=2 and
½ψ � ¼ ðκd−2Dκν

−1
κ Þ1=2. One can show that the coupling λ is

not renormalized, i.e., λκ ¼ λ at all scales, due to the
statistical tilt symmetry of the KPZ equation, or equiv-
alently the Galilean invariance of the Burgers equation
[29,51]. Defining the anomalous dimensions ηνκ ¼ −∂s ln νκ
and ηDκ ¼ −∂s lnDκ, with s ¼ lnðκ=ΛÞ the RG “time,”
one deduces that the critical exponents are obtained as
z ¼ 2 − ην� and χ ¼ ð2 − d − ην� þ ηD� Þ=2, where � denotes
fixed-point values [27]. One then defines the dimensionless
effective coupling ĝκ ¼ κd−2λ2Dκ=ν3κ . Its flow equation is
given by ∂sĝκ ¼ ĝκðd − 2 − ηDκ þ 3ηνκÞ. The expressions of
ηνκ and ηDκ are obtained from projecting the exact flow
equation (3) onto the ansatz (4). The calculation is detailed
in [38]. At a finite fixed point 0 < ĝ� < ∞, one thus finds
the exact identity zþ χ ¼ 2, whereas the exponent values
are not constrained if ĝ� vanishes or diverges. Moreover, in
1D, the accidental time-reversal symmetry further imposes
that Dκ ¼ νκ [29,51], and thus ηDκ ¼ ηνκ ≡ ηκ, which leads
to χ ¼ η� ¼ 1=2. We require this symmetry to be preserved
for all values of ν, such that the inviscid limit corresponds
to a joined limit ν → 0, D → 0 with ν=D fixed, as in [17].
This yields that the stationary solution is a Brownian in
space and χ ¼ 1=2 for all ν. The flow equation for ĝκ also
possesses the two fixed-point solutions ĝ� ¼ 0 and ĝ� ¼ ∞.
In order to render this more explicit, let us change the
variable to ŵκ ¼ ĝκ=ð1þ ĝκÞ. The flow equation for ŵκ

reads ∂sŵκ ¼ ŵκð1 − ŵκÞð2ηκ − 1Þ. The explicit equation
for ηκ can be found in [38], which shows that it vanishes for
ŵκ ¼ 0. It is manifest that this equation possesses the three
following fixed-point solutions: (i) EW with ŵ� ¼ 0,
η� ¼ 0 and thus zEW ¼ 2, (ii) KPZ with 0 < ŵ� < 1,
η� ¼ 1=2 and thus zKPZ ¼ 3=2, (iii) IB with ŵ� ¼ 1.
However, η� is not fixed in this case by the fixed point
condition ∂sŵκ ¼ 0 and has to be calculated from the flow.
While it provides the confirmation of the scenario sche-
matically depicted on Fig. 1, this simple approximation is
not sufficient to reliably conclude on the value of zIB
(see [38]). We now show how to determine this value.
FRG flow equations within the NLO approximation.—In

order to have a quantitative description of the three fixed
points, we resort to a refined approximation, introduced
in [30] and called next-to-leading-order (NLO) approxi-
mation. The NLO ansatz consists in replacing in (4) the
effective parameters νκ and Dκ by full effective functions
fνκðω; pÞ and fDκ ðω; pÞ, respectively. In 1D, the time-
reversal symmetry imposes fνκ ¼ fDκ ≡ fκðω; pÞ, and there
is only one anomalous dimension ηκ ¼ −∂s lnDκ. The
corresponding NLO equations are derived in [38]. We
numerically solve the flow equation for the dimensionless
function f̂κðω̂; p̂Þ ¼ fκ(ω=ðκ2DκÞ; p=κ)=Dκ, together with
the equation for ĝκ and ηκ, on a discretized grid ðω̂; p̂Þ

starting from the initial condition f̂Λðω̂; p̂Þ ¼ 1 and ĝΛ at
the microscopic scale κ ¼ Λ. The numerical integration is
detailed in [38]. For any initial value ĝΛ, the flow reaches in
the IR the KPZ fixed point. One can compute from it the
correlation function C̄ðϖ; pÞ ¼ F ½hðhðt0;x0Þ − hðt;xÞÞ2i�
(with F the Fourier transform) as C̄ðϖ̂; p̂Þ ¼ 2f̂�ðϖ̂; p̂Þ=
ðϖ̂2 þ p̂4f̂�

2ðϖ̂; p̂ÞÞ. The dynamical exponent can
be probed through the half-frequency, defined as
Ĉðϖ̂1=2ðpÞ; p̂Þ ¼ Ĉð0; p̂Þ=2, which shows the expected
KPZ scaling ϖ1=2 ∼ p̂3=2. Fourier transforming the corre-
lation function back in time, one obtains that the data for
Cðt̂; p̂Þ=Cð0; p̂Þ all collapse onto a single curve when
plotted as a function of pt2=3, which defines the universal
KPZ scaling function. We show in Fig. 2 that the NLO
scaling function compares accurately with the exact result
from [16]. It reproduces in particular the negative dip

FIG. 2. Results from the numerical integration of the FRG flow
equations within the NLO approximation, obtained from the UV
flow at either small (EW) or large (IB) initial coupling ĝΛ, and from
the IR fixed point (KPZ). Half-frequency ω1=2 (shifted vertically
for visibility) as a function of p, showing the three dynamical
scaling exponents z ¼ 3=2 for KPZ, z ¼ 2 for EW, and z ¼ 1 for
IB. Associated scaling functions fKPZ, fEW, and fIB, compared
respectively with the exact results from [16], with the analytical
solution [38], and with numerical simulations from [17].
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followed by a stretched exponential tail with superimposed
oscillations.
Although the flow always reaches in the IR the KPZ fixed

point, irrespectively of the initial value of ĝΛ, the beginning
of the flow, referred to as the UV flow, is sensitive to it. For
small initial values ĝΛ ≪ ĝ�, the UV flow is dominated by
the EW fixed point, while for large ĝΛ ≫ ĝ�, it is controlled
by the IB one. We compute the corresponding correlation
functions, half-frequency, and scaling functions by focusing
on the UV flow starting from either ĝΛ ¼ 10−4 or ĝΛ ¼ 104.
The results are displayed in Fig. 2. The half-frequency
clearly shows two other scaling regimes besides the KPZ
one, which are z ¼ 2 for EW, and z ¼ 1 for IB. The EW
scaling function exactly matches the expected result [38] up
to numerical precision. The IB scaling function is in close
agreement with the data from the simulations of [17], at least
for pt≲ 4, featuring in particular the observed negative
dip [38]. This confirms that the IB fixed point indeed yields a
critical exponent z ¼ 1. We have thus unveiled the theo-
retical origin of the missing scaling.
Exact asymptotic form of the IB scaling function.—The

previous results were derived within the NLO approxima-
tion of the FRG. We now show that we can in fact prove the
z ¼ 1 scaling in the UV, and obtain an exact asymptotic
form of the scaling function, by considering the limit of
large wave number p. The proof is in close analogy with the
derivation presented in [52–54] for the Navier-Stokes (NS)
equation. In this case, it was shown that the flow equation
for any n-point correlation function CðnÞ can be closed
exactly in the limit of large wave numbers pi ¼ jpij. The
closure relies on two fundamental ingredients. The first one
is the presence of ∂κRκ in the exact FRG flow equations,
which ensures that they can be safely expanded in the limit
of large pi (see [38] for details). The second one is the
existence of extended symmetries, which exactly fix the
expression of the expanded vertices entering the flow
equation at large pi. Moreover, it turns out that the resulting
closed flow equation for any CðnÞ can be solved at the
fixed point. This solution gives the exact time dependence
of CðnÞðfti;pigi¼1;nÞ in the limit of large pi [53]. These
results were precisely confirmed for the two- and three-
point functions by direct numerical simulations [55,56].
Moreover, these simulations showed that the regime of
validity of the large p expansion starts at wave numbers
larger, but not too far from the inverse integral scale, which
means that it encompasses wave numbers within the
universal inertial range down to the dissipative range.
To simply exploit the analogy with the NS case, let us

consider the action for the Burgers equation in 1D

SBurgers ¼
Z
t;x

n
v̄
h
∂tvþ v∂xv − ν∂2xv

i
−Dð∂xv̄Þ2

o
;

where the form of the noise follows from the mapping with
the KPZ equation [57,58]. This action shares with the NS

one an extended symmetry which is the time-dependent
Galilean symmetry: ðt;x;vÞ→ ðt;xþ eðtÞ;v− ėðtÞÞ, where
eðtÞ is an arbitrary infinitesimal time-dependent vector.
Indeed, this transformation does not leave the Burgers or
NS actions strictly invariant, but their variations are linear
in the fields. In such a case, one can derive exact relations,
called Ward identities, amongst the vertices ΓðnÞ. The Ward
identities for the Galilean extended symmetry entail that
each n-point vertex with a zero-wave vector associated with
a velocity field is exactly given in terms of (n − 1)-point
vertices [38,53,59]. It turns out that in 1D, the Burgers
action also admits a time-dependent shift symmetry, which
is simply v̄ → v̄þ ēðtÞ. This only holds in 1D because the
advection term can be written in this dimension only as a
total derivative. This extended symmetry also yields a set of
exact Ward identities, which entail that each n-point vertex
with a zero-wave vector associated with a response velocity
field exactly vanishes. All these identities are explicitly
derived in [38].
After a calculation, reported in [38], which is lengthy but

very similar to [52], one obtains that the flow equation for
the two-point function Cκðt; pÞ is exactly closed in the limit
of large p. Moreover, it can be solved at the fixed point,
leading to the explicit form

Cðt; pÞ ¼ Cð0; pÞ ×
�
expð−μ0ðptÞ2Þ t ≪ τ

expð−μ∞p2jtjÞ t ≫ τ
; ð5Þ

where μ0; μ∞ are nonuniversal constants, and τ is a typical
timescale [38]. Let us first focus on the small time expres-
sion. It shows that the data for Cðt; pÞ=Cð0; pÞ should
collapse when plotted as a function of pt. Thus, it demon-
strates the z ¼ 1 dynamical scaling exponent. This behavior
is reminiscent of the effect of random sweeping in 3D
turbulence, although for the 1D Burgers equation, the large
scales do not dominate. Furthermore, it gives the asymptotic
form of the associated scaling function, which is simply a
Gaussian. This result is compared in Fig. 3 with the data
from the numerical simulations of [17], using μ0 as a fitting

0 1 2 3 4 5 6 7 8 9
pt
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f IB

numerics
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FIG. 3. Asymptotic form of the IB scaling function obtained
from the solution of the exact FRG flow equation at large
wave number and small time, compared with the numerics
from [17].
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parameter. The numerical data are accurately described by
the Gaussian, as was already argued in [17], at small pt≲ 4,
before the negative dip which is not featured by the
Gaussian, but is reproduced by the NLO solution. Let us
now turn to the large timebehavior. In the numerical data, the
initial Gaussian decay is such that the scaling function
rapidly reaches numerical noise level, preventing one from
resolving the large time regime and accessing the crossover
at large time. However, one can notice that the quality of the
collapse deteriorates at large pt≳ 4, which signals a change
of behavior, as expected from the theoretical prediction (5)
of a p2t scaling at large time. This would require a better
resolution to be further investigated.
Conclusion.—We have shown that the 1D KPZ equation,

although exactly solvable, still reveals unforseen features,
as we demonstrated the emergence of a new scaling z ¼ 1.
This scaling arises from the inviscid Burgers fixed point
which, although unstable in the IR, controls the UV
behavior of the correlation function when the initial non-
linearity is large enough. We established this scaling by
numerically solving the FRG flow equations within the
NLO approximation, and by obtaining the exact asymptotic
form of the correlation function in the limit of a large wave
number.
The probability distributions of height fluctuations are

not easily accessible within the FRG formalism. The
distributions in the inviscid limit have been studied numeri-
cally in [17,19] which showed that they are non-Gaussian,
but differ from the Tracy-Widom distributions expected at
the KPZ fixed point. We hope our findings will trigger new
works to obtain exact results on the distributions at the new
fixed point. They also open up uncharted territory, which is
the UV, or large nonlinearity, scaling behavior of the KPZ
equation in higher dimensions.
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