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A new mechanism of thermalization involving a direct energy cascade is obtained in the truncated

Gross-Pitaevskii dynamics. A long transient with partial thermalization at small scales is observed before

the system reaches equilibrium. Vortices are found to disappear as a prelude to final thermalization. A

bottleneck that produces spontaneous effective self-truncation and delays thermalization is characterized

when large dispersive effects are present at the truncation wave number. Order of magnitude estimates

indicate that self-truncation takes place in turbulent Bose-Einstein condensates. This effect should also be

present in classical hydrodynamics and models of turbulence.
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The Gross-Pitaevskii equation (GPE) furnishes a dy-
namical description of superfluids and Bose-Einstein
Condensates (BEC) that is valid at very low temperatures
[1]. The GPE dynamics is known to produce an energy
cascade that leads to a Kolmogorov regime of turbulence
[2,3]. Such turbulent regimes were studied in low-
temperature experiments in superfluid 4He [4] and in
BEC [5]. The truncated GPE (TGPE), obtained by per-
forming a truncation of Fourier modes, can also describe
the (classical) thermodynamic equilibrium of homogene-
ous BEC [6]. The TGPE (microcanonical) equilibrium is
known to present (when varying the energy) a condensa-
tion transition [6,7].

In the context of classical fluids, the (conservative)
truncated Euler dynamics is known to possess long-lasting
transients describing dissipative phenomena [8]. With this
motivation, we study in this Letter the TGPE thermaliza-
tion that arises from the GPE turbulent energy cascade.
Here is a short summary of our results. Partial thermaliza-
tion is observed at small scales during a long transient
regime; vortex lines then disappear and final thermaliza-
tion sets in. A bottleneck that delays the final thermaliza-
tion is characterized when large dispersive effects are
present at truncation wave number.

The TGPE is obtained from the GPE describing a ho-
mogeneous BEC of volume V by truncating the Fourier

transform of the wave function c : ĉ k � 0 for jkj> kmax

[1,6]. Introducing the Galerkin projector PG that reads in

Fourier space PG½ĉ k� ¼ �ðkmax � jkjÞĉ k with �ð�Þ the
Heaviside function, the TGPE explicitly reads

i@
@c

@t
¼ PG

�
� @

2

2m
r2c þ gPG½jc j2�c

�
; (1)

where m is the mass of the condensed particles and g ¼
4�~a@2=m, with ~a the s-wave scattering length. Madelung’s

transformation c ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffi
�ðx;tÞ
m

q
exp½i m

@
�ðx; tÞ� relates the

(complex) wave function c to a superfluid of density
�ðx; tÞ and velocity v ¼ r�, where h=m is the Onsager-
Feynman quantum of velocity circulation around the
c ¼ 0 vortex lines [1]. When Eq. (1) is linearized around

a constant c ¼ ĉ 0, the sound velocity is given by

c ¼ ðgjĉ 0j2=mÞ1=2 with dispersive effects taking place

at length scales smaller than the coherence length � ¼
ð@2=2mjĉ 0j2gÞ1=2 that also corresponds to the vortex core
size. In the TGPE numerical simulations presented in this
Letter the density � ¼ mN=V is fixed to 1 and the physical
constants in Eqs. (1) are determined by the values of �kmax

and c ¼ 2. The quantum of circulation h=m has the value

c�=
ffiffiffi
2

p
and V ¼ ð2�Þ3.

Equation (1) exactly conserves the energy H ¼R
d3xð @22m jrc j2 þ g

2 ½PGjc j2�2Þ and the number of parti-

cles N ¼ R
d3xjc j2. Using Fourier pseudospectral meth-

ods the momentum P ¼ i@
2

R
d3xðcr �c � �crc Þ is also

conserved with dealiasing performed by the 2=3-rule
(kmax ¼ 2=3�M=2 [9] at resolution M).
We now study the thermalization of the superfluid

Taylor-Green (TG) vortex, a flow which develops from a
spatially-symmetric initial condition prepared by a mini-
mization procedure. The TGPE integrations are performed
with a dedicated pseudospectral code that uses the symme-
tries to speed up computations (see reference [2]). Up to
5123 collocation points are used and the coherence length
is determined by �kmax ¼ 1:48.
Vortices and density fluctuations are visualized on

Fig. 1. The short time behavior, see Figs. 1(a) and 1(b),
corresponds to the GPE superfluid turbulent regime pre-
viously studied in [2]. A new TGPE thermalization regime
where vortices first reconnect into simpler structures and
then decrease in size with the emergence of a thermal cloud
is present at latter times; see Figs. 1(c) and 1(d).
To further study this relaxation dynamics, we express

the energy per unit volume Etot ¼ ðH �mc2NÞ=V þ mc2

2

as the sum of three (space-averaged) parts [2]: the
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kinetic energy Ekin ¼ h12 ð
ffiffiffiffi
�

p
vjÞ2i, the internal energy

Eint ¼ hðc2=2Þð�� 1Þ2i and the quantum energy
Eq ¼ hc2�2ð@j ffiffiffiffi

�
p Þ2i. Parseval’s theorem allows us to de-

fine corresponding energy spectra; e.g., the kinetic energy
spectrum EkinðkÞ as the (solid angle integral) of j 1

2ð2�Þ3 �R
d3reirjkj

ffiffiffiffi
�

p
vjj2. EkinðkÞ can be further decomposed into

compressible Ec
kinðkÞ and incompressible Ei

kinðkÞ parts, us-
ing ð ffiffiffiffi

�
p

vjÞ ¼ ð ffiffiffiffi
�

p
vjÞc þ ð ffiffiffiffi

�
p

vjÞi with r � ð ffiffiffiffi
�

p
vjÞi ¼ 0.

The temporal evolution of Ekin, E
i
kin, E

c
kin, Eq þ Eint is

displayed in Fig. 2(a) and the corresponding energy spectra
on Figs. 2(c) and 2(d).

Three evolution phases are apparent on Fig. 2(a). The
first phase, for t & 15, corresponds to the GPE regime
previously studied in [2]. In the second phase, for 20 &
t & 70, the spectral convergence of the GP partial differ-
ential equation is lost and the dynamics is influenced
by kmax. Partial thermalization starts to take place at
large wave numbers where EkinðkÞ � k2 [see Fig. 2(c)].
Figure 2(b) shows that this phase is delayed when the
resolution is increased at constant �kmax. When t > 80
the system reaches the thermodynamic equilibrium with
equipartition of energy between Ec

kin and Eq þ Eint; see

Fig. 2(d). Finally, Ei
kin vanishes before final thermalization

[see Figs. 2(a) and 2(b)]; the total disappearance of vortices
is observed on corresponding 3D visualizations (data not
shown). Similar relaxation mechanisms are also present in
models of hydrodynamic turbulence and the truncated
Euler dynamics [8,10,11].

We now focus on a characterization of thermodynamic
equilibrium that will allow us to account for the absence of

vortices and the equipartition of energy in the final states.
Microcanonical equilibrium states are known to result
from long-time integration of TGPE [6,7]. Grand canonical
equilibrium states are given by the probability distribution
Pst½c � ¼ Z�1 exp½��ðH ��NÞ�. They allow us to di-
rectly control the temperature (instead of the energy in a
microcanonical framework). These states can be efficiently
obtained by constructing a stochastic process that con-
verges to a realization with the probability Pst½c � [12].
This process is defined by a Langevin equation consisting
in a stochastic Ginbzurg-Landau equation (SGLE):

@
@c

@t
¼ PG

�
@
2

2m
r2c þ�c � gPG½jc j2�c

�

þ
ffiffiffiffiffiffiffiffi
2@

V�

s
PG½�ðx; tÞ�; (2)

where the white noise �ðx; tÞ satisfies h�ðx; tÞ��ðx0; t0Þi ¼
	ðt� t0Þ	ðx� x0Þ, � is the inverse temperature and � the
chemical potential. Using this algorithm in [12] the micro-
canonical and grand canonical ensembles were shown
to be equivalent and the condensation transition reported
in [6,7] identified with the standard second order 
 tran-
sition (see insets on Fig. 3). Note that cp would be very

difficult to obtain from microcanonical results.
At low temperature the partition function Z can be

exactly computed by the steepest-descent method [12]. In
particular, the mean value of the condensate amplitude

reads jĉ 0j2 ¼ �
g � N

V�� f0½ 4m�
@
2k2max

�, where N ¼ k3maxV=

6�2 is the total number of modes and f0½z� ¼ 3z�
9z3=2cot�1ð ffiffiffi

z
p Þ=4.

FIG. 1 (color online). 3D visualization of density at t ¼ 5, 10,
31, and 55 at resolution 5123 [see below Fig. 2(b)]. Vortices are
displayed as red isosurfaces and clouds correspond to density
fluctuations.

FIG. 2 (color online). (a) Temporal evolution of energies Ec
kin,

Ei
kin,Ekin andEq þ Eint. At large times, the incompressible energy

vanishes and equipartition of energy betweenEkin andEq þ Eint is

observed. Resolution of 2563. (b) Temporal evolution of Ei
kin at

resolution of 643, 1283, 2563 and 5123 with constant �kmax ¼
1:48. (c)–(d) Energy spectra at t ¼ 55 and t ¼ 77 resolution 5123

and 2563, respectively.
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In numerical simulations of Eq. (2), � is adjusted to
fix the density (or the pressure p) [12]. The inverse
temperature is normalized as � ¼ N =VT. With this
choice of parametrization the 
-transition temperature
T
 is independent of N . Data from SGLE and low-
temperature calculation are confronted on Fig. 3 and seen
to be in good agreement.

The temperature dependence of the different energies
is displayed on Fig. 3. Observe that Ei

kin vanishes at tem-

peratures T=T
 & 1=2. This explains the disappearance of
vortices in Fig. 2 above as the corresponding final tem-
perature is well below T
 [see corresponding values of
energies on Fig. 2(a)]. At low-temperature equipartition
of energy between Ekin and Eq þ Eint is also apparent on

Fig. 3. Note that a larger kmax implies, by equipartition, a
lower temperature. The corresponding dissipative effects
are thus smaller explaining the thermalization delay appar-
ent on Fig. 2(b).

We now turn to the study of dispersive effects on the
thermalization of the TGPE dynamics. In order to inves-
tigate dispersive effects, the TG initial condition described

above is prepared at fixed � ¼ ffiffiffi
2

p
=20 and varying resolu-

tion: 643, 2563, and 2563. The three initial condition thus
represent the same field at different resolutions.

The evolutions of the energies of the three runs are
shown on Fig. 4(a). They are identical until t � 5 where
the run at resolution 643 starts to lose spectral convergence.
All runs appear to have completely thermalized at t � 20.
However the kinetic energy spectra corresponding to this
time, displayed on Fig. 4(b), shows clear differences be-
tween runs. The high-wave number modes are thermalized
in the 643 run but they decay at large k at higher resolu-
tions. In the 2563 run, two zones are clearly distinguished:
an intermediate thermalized range (with approximative
k2 scaling) followed, well before kmax ¼ 85, by a steep
decay zone.

The temporal evolution of EkinðkÞ for the 2563 run dis-
played in Fig. 4(c) is well represented by a fit of the form

AðtÞk2 exp½��2ðtÞk2�, where AðtÞ and kcðtÞ���1ðtÞ	kmax

are increasing functions of t. Such a behavior of the energy
spectra ensures spectral convergence and the dynamics
is thus not influenced by kmax. Furthermore, we checked
that AðtÞk3cðtÞ � Ekin for t * 20 (data not shown). This new
regime can be described as a (quasi) thermalization, with
self-truncation at wave number kc and temperature T �
E=k3c, that spontaneously establishes itself within the GP
partial differential equation dynamics when the direct
energy cascade is inhibited by a dispersive bottleneck
for the energy transfer [13].
An open question is whether thermalization is simply

delayed or, as in the Fermi-Pasta-Ulam-Tsingu problem

[15], completely inhibited in the self-truncation regime

�kmax ! 1. It is not feasible now to directly study this

limit, within the TG framework, as it requires long runs at

arbitrarily high resolution. To skip the TG cascade regime

and directly study the self-truncated thermalization regime

we use initial data generated by the SGLE instead of the

TG vortex. Towit, we use Eq. (2) with a variable truncation

wave number kinc , set to a target value of kc, smaller than
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FIG. 3 (color online). Temperature dependence of the energies
Ec
kin (stars), E

i
kin (diamonds), Ekin (circles) and Eq þ Eint (penta-

grams) at constant density. Insets: (right) Temperature depen-
dence of the condensate fraction jc 0j2=�; (left) Specific heat
cp ¼ @H

@T jp at resolution 1283.

FIG. 4 (color online). (a) Evolution of energies at � ¼ ffiffiffi
2

p
=20

and resolution 643, 1283, and 2563. (b) Energy spectrum EkinðkÞ
at t ¼ 19:8 for the three TG runs. (c) Evolution of EkinðkÞ, solid
red lines are fits of the form Ak2 exp½��2k2� (see text).
(d) Evolution of kc. Curves i–iv: � ¼ 2

ffiffiffi
2

p
=5, kinc ¼ 4, Ein ¼

0:1, 0.2, 0.4, 1; v: � ¼ ffiffiffi
2

p
=10, kinc ¼ 8, Ein ¼ 0:2; vi–viii: � ¼ffiffiffi

2
p

=5, Ein ¼ 0:1, 0.2, 0.4 [(i)–(viii) in resolution 643]; ix–xi:
Taylor-Green resolutions 643, 1283, and 2563. (e) Parametric
representation dkc=dt vs kc=kmax (same labels as d).
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the maximum truncation wave number kmax allowed by

the resolution. This SGLE-generated initial data is then

used to run the TGPE at a given value of �kc with arbi-

trarily large values of �kmax.
A number of such runs were performed at resolution 643

with various values of kinc , �, and initial energy Ein. The
result of these computations are compared with the TG
runs and displayed on Fig. 4(d). The self-truncation wave
number is explicitly determined from Ekin by the integral

formula k2c ¼ 5
3

Rkmax

0 k2EkinðkÞdk=
Rkmax

0 EkinðkÞdk. A gen-

eral growth in time of kc is apparent on Fig. 4(d) for both
the Taylor-Green runs and the SGLE-generated initial data,
showing similar behavior.

In order to check for a self-similar regime a parametric
log-log representation of dkc=dt vs kc is used on Fig. 4(e).
With this representation, a self-similar evolution kcðtÞ � t�

corresponds to a line of slope ð�� 1Þ=�. Figure 4(e)
shows transient self-similar evolutions terminated by a
vertical asymptote corresponding to logarithmic growth
(� ¼ 0). This self-truncation takes place at small values
of kc=kmax strongly suggesting that the self-truncation
happens in a regime independent of cutoff. This regime
should, in principle, be amenable to a description in terms
of wave turbulence theory along the lines of reference [16].

Let us concentrate now on estimations of order of mag-

nitude relevant to physical weakly-interacting BEC. At

very low temperature, the GPE gives an accurate descrip-

tion of the (classical) dynamics of BEC [1] at scales larger

than the mean interatomic particle distance ‘� jĉ 0j�2=3,

satisfying ~a 	 ‘ 	 �. At finite temperature [1,6],

Bogoluibov’s dispersion relation !2
BðkÞ ¼ k2gjc 0j2=mþ

k4@2=4m and the relation @!BðkeqÞ ¼ ��1 ¼ kBT imply

that phonons are in equipartition only for wave numbers

k < keq. The equipartition wave number thus satisfies

�keq � T=T� for T 	 T� and �keq �
ffiffiffiffiffiffiffiffiffiffiffi
T=T�p

for T 
 T�,
with T� ¼ ‘2T
=�

2 and T
 � @
2=kBm‘2 the condensation

temperature (see Ref. [1]). Thus physical BEC at low-

temperature have a natural cutoff for the equipartition

range given by kmax ¼ keqðTÞ.
In experimental BEC the value of �keq is large because

T�=T
 � ‘2=�2 	 1 and the corresponding TGPE has a
large �kmax. This strongly suggests that, unless over-
whelmed by other (non-TGPE) relaxation mechanisms,
the thermalization slowdown caused by the disper-
sive bottleneck should be observable. It would thus be
interesting to investigate in the future the suppression of
aspect-ratio inversion observed in recent turbulent BEC
experiments [5] in the context of the TGPE in a nonho-
mogenous trapping geometry.

In the context of classical hydrodynamics, self-
truncation can take place in fluids with dispersion, e.g.,
MHD flows with Alfvén waves [12]. Models of turbulence
of the Euler-� [17] type, where the right-hand side of the
incompressible Euler equation is multiplied by the operator
ð1� �r2Þ�1 that penalizes the energy at small scales, are
also plausible candidates for self-truncation.
In summary we investigated the thermalization dynam-

ics in turbulent BEC using the TGPE. Our main result is
that a bottleneck delays the final thermalization when large
dispersive effects are present at truncation wave number
and produces an effective self-truncation. These effects are
in principle observable in physical BEC.
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