
Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows

G. Krstulovic,1 P. D. Mininni,2,3 M. E. Brachet,1,3 and A. Pouquet3
1Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII,

24 Rue Lhomond, 75231 Paris, France
2Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,

1428 Buenos Aires, Argentina
3NCAR, P.O. Box 3000, Boulder, Colorado 80307-3000, USA

�Received 4 June 2008; revised manuscript received 23 February 2009; published 6 May 2009�

The dynamics of the truncated Euler equations with helical initial conditions are studied. Transient energy
and helicity cascades leading to Kraichnan helical absolute equilibrium at small scales, including a linear
scaling of the relative helicity spectrum are obtained. Strong helicity effects are found using initial data
concentrated at high wave numbers. Using low-wave-number initial conditions, the results of Cichowlas et al.
�Phys. Rev. Lett. 95, 264502 �2005�� are extended to helical flows. Similarities between the turbulent transient
evolution of the ideal �time-reversible� system and viscous helical flows are found. Using an argument in the
manner of Frisch et al. �Phys. Rev. Lett. 101, 144501 �2008��, the excess of relative helicity found at small
scales in the viscous run is related to the thermalization of the ideal flow. The observed differences in the
behavior of truncated Euler and �constant viscosity� Navier-Stokes are qualitatively understood using the
concept of eddy viscosity. The large scales of truncated Euler equations are then shown to follow quantitatively
an effective Navier-Stokes dynamics based on a variable �scale dependent� eddy viscosity.
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I. INTRODUCTION

The role played by helicity in turbulent flows is not com-
pletely understood. Helicity is relevant in many atmospheric
processes, such as rotating convective �supercell� thunder-
storms, the predictability of which may be enhanced because
of its presence �1�. However helicity, which is a conserved
quantity in the three-dimensional �3D� Euler equation, plays
no role in the original theory of turbulence of Kolmogorov.
Later studies of absolute equilibrium ensembles for truncated
helical Euler flows by Kraichnan �2� gave support to a sce-
nario where in helical turbulent flows both the energy and the
helicity cascade toward small scales �3�, a phenomena re-
cently verified in numerical simulations �4–6�. The thermal-
ization dynamics of nonhelical spectrally truncated Euler
flows were studied in �7�. Long-lasting transients due to the
effect of thermalized small-scales were shown to behave
similarly to the dissipative Navier-Stokes �NS� equation.
Note that analogous dissipative mechanisms involving small-
scale thermalization were proposed in the contexts of lattice
gases and superfluidity. The thermalizing quantities are re-
spectively discrete Boolean entities �8� in lattice gases �9�
and sound waves in superfluid turbulence �10�. Also note that
the Galerkin truncated nonhelical Euler dynamics was re-
cently found to emerge as the asymptotic limit of high-order
hyperviscous hydrodynamics and that bottlenecks observed
in viscous turbulence may be interpreted as an incomplete
thermalization �11�.

In this paper we study truncated helical Euler flows and
consider the transient turbulent behavior as well as the late
time equilibrium of the system. Here is a short summary of
our main results. The relaxation toward a Kraichnan helical
absolute equilibrium �2� is observed for the first time. Tran-
sient mixed energy and helicity cascades are found to take
place, while more and more modes gather into the Kraichnan

time-dependent statistical equilibrium. The results obtained
in �7� for nonhelical flows are extended to the helical case.
Strong helicity effects are also found using initial data con-
centrated at high wave numbers. The concept of eddy viscos-
ity, as previously developed in �7,12�, is used to qualitatively
explain differences observed between the truncated Euler
and high-Reynolds number �fixed viscosity� Navier-Stokes.
Finally, the truncated Euler large scale modes are shown to
quantitatively follow an effective Navier-Stokes dynamics
based on a �time and wave-number dependents� eddy viscos-
ity that does not depend explicitly on the helicity content in
the flow.

II. METHODS

Performing spherical Galerkin truncation at wave-number
kmax on the incompressible �� ·u=0� and spatially periodic
Euler equation �tu+ �u ·��u=−�p yields the following finite
system of ordinary differential equations for the Fourier
transform of the velocity û�k� �k is a 3D vector of relative
integers satisfying �k��kmax�:

�tû��k,t� = −
i

2
P����k��

p
û��p,t�û��k − p,t� , �1�

where P���=k�P��+k�P�� with P��=���−k�k� /k2.
This time-reversible system exactly conserves the energy

E=�kE�k , t� and helicity H=�kH�k , t�, where the energy and
helicity spectra E�k , t� and H�k , t� are defined by averaging,
respectively 1

2 �û�k� , t��2, and û�k� , t� · �̂�−k� , t� ��=��u is
the vorticity� on spherical shells of width �k=1. It is trivial
to show from the definition of vorticity that �H�k , t��
�2kE�k , t�.

We will use as initial condition u0 the sum of the two
Arnold, Beltrami, and Childress �ABC� flows in the modes
k=3 and k=4,
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u0�x,y,z� = uABC
�3� �x,y,z� + uABC

�4� �x,y,z� , �2�

where the basic ABC flow is a maximal helicity stationary
solution of Euler equations in which the vorticity is parallel
to the velocity, explicitly given by

uABC
�k� �x,y,z� =

u0

k2 ��B cos�ky� + C sin�kz��x̂

+ �C cos�kz� + A sin�kx��ŷ

+ �A cos�kx� + B sin�ky��ẑ� . �3�

The parameters will be set to A=0.9, B=1, C=1.1, and u0
= �A2+B2+C2�−1/2�1 /34+1 /44�−1/2. With this choice of nor-
malization the initial energy is E=0.5 and helicity H=3�4
� �33+43� / �34+44�=3.24.

Numerical solutions of Eq. �1� are efficiently produced
using a pseudospectral general-periodic code �13� with 5123

Fourier modes that is dealiased using the 2/3 rule �14� by
spherical Galerkin truncation at kmax=170. The equations are
evolved in time using a second-order Runge-Kutta method,
and the code is fully parallelized with the message passing
interface �MPI� library. The numerical method used is non-
dispersive and conserves energy and helicity with high accu-
racy.

III. SIMULATIONS

Figure 1 shows the time evolution of the energy and he-
licity spectra that evolve from Eq. �2� compensated by k5/3.
The plots clearly display a progressive thermalization similar
to that obtained in Cichowlas et al. �7� but with the nonzero
helicity cascading to the right.

The truncated Euler equation dynamics is expected to
reach at large times an absolute equilibrium that is a statisti-
cally stationary Gaussian exact solution of the associated
Liouville equation �15,16�. When the flow has a nonvanish-
ing helicity, the absolute equilibria of the kinetic energy and
helicity predicted by Kraichnan �2� are

E�k� =
k2

�

4	

1 − �2k2/�2 , H�k� =
k4�

�2

8	

1 − �2k2/�2 , �4�

where �
0 and �kmax�� to ensure integrability. The values
of � and � are uniquely determined by the total amount of
energy and helicity �verifying �H��2kmaxE� contained in the
wave-number range �1,kmax� �2�.

The final values of � and � �when total thermalization is
obtained� corresponding to the initial energy and helicity are
�=4.12�107 and �=7695. Therefore the dimensionless
number �2k2 /�2 is at most of the order 10−4 and Eq. �4� thus
lead to almost pure power laws for the energy and helicity
spectra, as is manifested in Fig. 1�d�. Figure 1 thus shows a
time evolving helical quasiequilibrium. The Kraichnan pre-
diction �Eq. �4�� for the high-k part of the spectra are shown
�in solid lines� in Fig. 1. The plot shows an excellent agree-
ment with the prediction.

To obtain stronger helicity effects requires a different type
of initial data. Modifying in the initial condition �Eq. �2�� the
wave numbers �3,4� to �28,30� and running with kmax=42
yields �2kmax

2 /�2=0.846. The final energy, helicity, and rela-
tive helicity spectra are displayed in Fig. 2, where strong
helicity effects are apparent. The results are again consistent
with the prediction given by Eq. �4�. However note that these
strong effects were obtained using initial data with k0
	kmax that precludes the cascading of the initial energy and
helicity to much higher wave numbers.

IV. THERMALIZED ENERGY AND HELICITY

In order to study the thermalization dynamics of the main
run presented in Fig. 1 in the spirit of Cichowlas et al. �7�,
we define kth�t� as the wave number where the thermalized
power-law zone starts. We define the thermalized energy and
helicity as
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FIG. 1. �Color online� Compensated energy �• • •� and helicity
spectra ����� with the predictions �Eq. �4��� in solid lines and
Eq. �6� in dotted lines. �a� t=4.8. �b� t=7. �c� t=10. �d� t=19.8.
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FIG. 2. �Color online� Thermalized energy at t=21 for a run
with �a� kmax=42, �b� helicity, and �c� relative helicity spectra with
the predictions �Eq. �4�� �solid lines� corresponding to initial con-
dition �2� but with wave numbers �3,4� changed to �28, 30�.
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Eth�t� = �
kth�t�

kmax

E�k,t�, Hth�t� = �
kth�t�

kmax

H�k,t� , �5�

where E�k , t� and H�t ,k� are the energy and helicity spectra.
The temporal evolutions of Eth ,Hth, and kth�t� are shown

in Fig. 3. The values of ��t� and ��t� during thermalization
can then be obtained from Eth�t�, Hth�t�, and kth�t� by invert-
ing the system of Eqs. �5� using �2

�2 kmax
2 �1.

Figures 1 and 3 clearly display a progressive thermaliza-
tion similar to that obtained in Cichowlas et al. �7� but with
the nonzero helicity cascading to the right. The low-k part of
the compensated spectrum in Fig. 1 presents a flat zone that
amounts to k−5/3 scaling for both the energy and helicity
spectra. This k−5/3 behavior was predicted by Brissaud et al.
�3� in viscous fluids when there are simultaneous energy and
helicity cascades. The energy and helicity fluxes,  and �,
respectively, determine the prefactor in the inertial range of
the spectra:

E�k� 	 2/3k−5/3, H�k� 	 �−1/3k−5/3. �6�

Helical flows have been also studied in high-Reynolds num-
ber numerical simulations of the NS equation. Simultaneous
energy and helicity cascades leading to the scaling �Eq. �6��
have been confirmed when the system is forced at large
scales �4–6�.

The energy and helicity fluxes,  and �, at intermediate
scales in our truncated Euler simulation can be estimated
using the time derivative of the thermalized energy and he-
licity: th=

dEth

dt and �th=
dHth

dt , whose temporal evolutions are
shown in Fig. 3. The predictions �Eq. �6�� for the low-k part
of the spectra are shown �in dotted lines� in Fig. 1. The plot
shows a good agreement with the data. Note that Fig. 1�a�

corresponds to t=4.8 that is just after the time when both the
maximum energy and helicity fluxes �to be interpreted below
as “dissipation” rates of the nonthermalized components of
the energy and the helicity� are achieved, see Fig. 3. In this
way Eth and Hth determine the thermalized part of the spec-
tra, while their time derivative determines an inertial range.

V. DISSIPATION AND TRUNCATED EULER

We now compare the dynamics of the truncated Euler
equation with that of the unforced high-Reynolds number NS
equation �i.e., Eq. �1� with −�0k2û��k , t� added in the right-
hand side� using initial condition �2�. The viscosity is set to
�0=5�10−4, the smallest value compatible with accurate
computations using kmax=170. A behavior qualitatively simi-
lar to that of the truncated Euler equation is obtained �see
Fig. 3�b��. However, the maxima of the energy and helicity
fluxes �or dissipation rates� occur later and with smaller val-
ues.

We referred above to dissipation in the context of the
ideal �time-reversible� flow. A proper definition of dissipation
in the truncated Euler flow is now in order. Thermalized
modes in truncated Euler are known to provide an eddy vis-
cosity �eddy to the modes with wave numbers below the tran-
sition wave number �7�. It was shown in �12� that Monte
Carlo determinations of �eddy are given with good accuracy
by the Eddy damped quasinormal Markovian �EDQNM�
two-point closure, previously known to reproduce well direct
numerical simulation results �17�. For helical flows, the
EDQNM theory provides coupled equations for the energy
and helicity spectra �18�, in which using Eq. �4� in an analo-
gous way to �12� we find a very small correction of �eddy that
depends on the total amount of helicity and is of order
��eddy /�eddy	�kmax /�	10−2. Thus the presence of helicity
does not affect significantly the dissipation at large scales
and can be safely neglected in the eddy viscosity expres-
sions. Similar results are found in a large-eddy simulation
approach to Navier-Stokes dynamics: the adjunction of heli-
cal contributions to eddy viscosity was not producing signifi-
cant changes in the results �19� �note however that such is
not the case in the presence of rotation �20��.

The eddy viscosity has a strong dependence in k and can
also be obtained, in the limit k /kmax→0, from the EDQNM
eddy viscosity of Lesieur and Schertzer �21� using here an
energy spectrum E�k�	k2. The result reads as

�eddy =

Eth

kmax

7

15�

, �7�

with �=0.36 �the one parameter of the EDQNM approach,
chosen as to recover a Kolmogorov constant as measured in
the laboratory�. The eddy viscosity �eddy is thus an increasing
function of time, see Eth�t� in Fig. 3.

The time evolution of truncated Euler and Navier-Stokes
spectra are compared in Fig. 4. At early times the value of
Eth is very small and therefore the NS viscosity �0 is larger
than �eddy, as manifested by the NS dissipative zone in Fig.
4�a�. As Eth�t� increases, both viscosities become equal �t
=2.7�. Later, at t=3.8, the Navier-Stokes spectrum crosses
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FIG. 3. �Color online� �a� Temporal evolution of Eth �−�, Hth

�·−·�, and kth�t� �¯� normalized by their respective initial values.
Etot=0.5, Htot=3.24, and kmax=170. �b� Left vertical axis: temporal

evolution of th=
dEth

dt ����� and Navier-Stokes energy dissipation

=2�0�k=1
kmaxk2E�k� �• • •�. Right vertical axis: �th=

dHth

dt ����� and NS
helicity dissipation �=�0�k=1

kmaxk2H�k� �� � ��.
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the truncated Euler one �Fig. 4�b��. The eddy viscosity �eddy
is then much larger than �0 and the truncated Euler dissipa-
tive zone lies below the NS one, see Fig. 4�c�. This behavior

is also conspicuous when the spectra are compared at maxi-
mum energy-dissipation time �t=4.4 for truncated Euler and
t=5.6 for NS�, see Fig. 4�d�. The corresponding relative he-
licity spectra H�k� / �2kE�k��, compensated by 2k, is dis-
played in Fig. 4�d�. A flat compensated spectrum in Fig. 4�d�
is apparent throughout the inertial range �up to k	25� for
both the NS and the truncated Euler runs. This amounts to a
scaling of k−1 for the relative helicity, corresponding to the
previously discussed approximate k−5/3 law for both the en-
ergy and helicity spectra. As Kraichnan predicted, in the ther-
malized range of the truncated Euler run the compensated
spectrum of relative helicity goes as k2. At small scales the
NS compensated spectrum of relative helicity grows, possi-
bly as k1/2 or steeper, indicating, as previously noted �see
Fig. 16 of Ref. �6��, that the spectrum of helicity at small
scales is dropping slower than the spectrum of energy.

The decay of relative helicity in the inertial range can be
interpreted as a recovery of mirror symmetry in the small
scales. However, in the thermalized range of the truncated
Euler run, the smallest scales have maximum helicity. These
two results taken together, along with the arguments of
Frisch et al. �11� relating bottlenecks to incomplete thermal-
ization, strongly suggest that the excess of relative helicity
observed at small scales in viscous runs �the k1/2 law of Fig.
4�d�� is related to the phenomenon of thermalization in the
ideal runs.

The different time scales of behavior of the truncated Eu-
ler and Navier-Stokes runs apparent in Figs. 3 and 4 were
qualitatively explained above in terms of the time depen-
dence of �eddy. We now proceed to check more quantitatively
the validity of an effective dissipation description of thermal-
ization in truncated Euler. To wit, we introduce an effective
Navier-Stokes equation for which the dissipation is produced
by an effective viscosity that depends on time and wave
number.

We will use the effective viscosity obtained in �12� which
is consistent with both direct Monte Carlo calculations and
EDQNM closure and is explicitly given by
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�eff�k� = �eddye
−3.97k/kmax,

with �eddy given in Eq. �7�.
We thus integrate Eq. �1� with the viscous term

−�eff�k�k2û��k , t� added to the right-hand side. The parameter
Eth that fixes the eddy viscosity in Eq. �7� is evolved using
the effective NS dissipation by

dEth

dt
= �

k=1

kmax

2�eff�k�k2E�k� . �8�

This ensures consistency between the effective NS dissipated
energy and the truncated Euler thermalized energy that
drives �eddy.

To initialize the effective NS equation we integrate the
truncated Euler Eq. �1� with initial condition �2� until the
k2-thermalized zone is clearly present �t=4.77�. The value of
Eth is then computed using Eq. �5�. The low-passed velocity
u�, defined by

u��r� = � 1

2
�1 + tanh�2��k� − kth���ûkeik·r,

is used as initial data for the effective Navier-Stokes dynam-
ics.

Results of a truncated Euler and effective NS with kmax
=85 are shown in Fig. 5. In Fig. 5�a� the energy and helicity
dissipated in effective NS �Etot−E�t� and Htot−H�t�, respec-
tively� are compared to Eth and Hth showing a good agree-
ment. Next, the temporal evolution of both energy spectra
from the initial time t=5.3 �Fig. 5�b�� to t=20 �Fig. 5�e�� is

confronted, demonstrating that the low-k dynamics of trun-
cated Euler is well reproduce by the effective Navier-Stokes
equations.

VI. CONCLUSION

In summary, we observed the relaxation of the truncated
Euler dynamics toward a Kraichnan helical absolute equilib-
rium. Strong helicity effects were found using initial data
concentrated at high wave numbers. Using low-wave-
number initial conditions, transient mixed energy, and helic-
ity cascades were found to take place. Eddy viscosity was
found to qualitatively explain the different behaviors of trun-
cated Euler and �constant viscosity� Navier-Stokes. The ex-
cess of relative helicity at small scales in the viscous run was
related to the thermalization in the ideal runs, using an argu-
ment in the manner of Frisch et al. �11�. The large scale of
the Galerkin truncated Euler were shown to quantitatively
follow an effective Navier-Stokes dynamics based on a vari-
able helicity-independent eddy viscosity. As a result, with its
built-in eddy viscosity, the Galerkin truncated Euler equa-
tions appears as a minimal model of turbulence.
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