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Radiation and vortex dynamics in the nonlinear Schrodinger equation
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Sound emission produced by the interaction of several vortices in a two-dimensional homogeneous system
obeying the nonlinear Schrodinger (NLS) equation is considered. The radiation effect is explicitly computed in
terms of assumed vortex motion. The results are applied to a simple test case of two corotating vortices. The
prediction is compared to the result of numerical simulations of the NLS equation. The numerical data give

support to the estimate of radiation.

DOI: 10.1103/PhysRevE.78.026601

I. INTRODUCTION

Strong turbulent effective dissipation has been observed
to take place in inviscid and conservative systems, in the
context of (compressible) low-temperature superfluid turbu-
lence [1,2]. Vortices are thus subject to some significant dy-
namical dissipation mechanism. It has been suggested that
sound emission from the vortices is the major decay process
[3-5]. Detailed mechanisms are fully three dimensional
(3D). They involve initial vortex reconnection followed by
secondary excitation of long-wavelength helical waves,
known as Kelvin waves, along the vortex line and their sub-
sequent decay into sound waves [6]. It appears that evaluat-
ing these complicated 3D effects from first principles is a
formidable task at the present time.

The purpose of the present paper is to compute the sim-
pler analogous problem in two dimensions. We thus consider
sound emission produced by the interaction of several vorti-
ces in a 2D homogenous system obeying the nonlinear
Schrodinger (NLS) equation.

Our main result is that the far field, and thus the radiation
effect can be directly computed in terms of an assumed vor-
tex motion [see Eq. (17)]. These main formulas are then
applied to the simple test case of two corotating vortices,
reproducing theoretical estimates of the same test case [7,8],
and the prediction is compared to the result of numerical
integrations of the NLS equation.

The paper is organized as follows. In Sec. II we establish
the basic proprieties of the NLS equation and recall the gen-
eral expression for the field produced by moving vortices.
Section III is devoted to the derivation of explicit trajectory-
dependent expressions for the radiative contribution to the
far field and the radiated energy flux. Section IV contains the
determination of vortex trajectories by numerical solutions of
the NLS and the comparison with theoretical predictions.
Discussion and conclusions are finally given in Sec. V.

IL. NONLINEAR SCHRODINGER EQUATION

We consider the nonlinear Schrodinger equation (NLSE)
written with the physically relevant parameters: the coher-
ence length ¢ and the sound velocity c,
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This equation has Galilean invariance with the transforma-
tion ¢Ax,t) — lﬁ(x—vt,t)ei(”'x‘vz’/z) and it also has a Lagrang-
ian structure from which we can calculate an energy-
momentum  tensor and the conserved quantities
corresponding to space-time translations [4].

We can map the NLSE to hydrodynamics equations using
the Madelung transformation defined by

Wx,1) = \p(x,1) exp(z’ q\s’%:;) ) . (2)

Replacing Eq. (2) in the NLSE (1) and separating real and
imaginary parts we get

7
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We recognize here the continuity equation (3) for a fluid of
density p and velocity v=V ¢ and the Bernoulli equation (4),
except for the last term which is usually called quantum
pressure since it has no analog in standard fluid mechanics (it
is proportional to 7 in the superfluidity context and it can be
neglected when the semiclassical limit is taken).

We note that, if the function ¢ has a zero, the density p is
well defined but the phase ¢ is undefined. The existence of a
zero requires the real and the imaginary parts of ¢ to vanish
simultaneously and consequently these kind of singularities
generically appear as curves in 3D and points in 2D. These
topological defects have the Pproperty that their circulation is
a multiple of 47a (a=c&/V2), and for this reason they are
called quantum vortices in the context of superfluidity. In 2D
a stationary vortex solution centered at the origin can be
constructed in polar coordinates (p,6) using the ansatz
p(r,0)=py(r)* and &(r,60)=2amé, with m e Z the vortex
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charge. The function py(r) satisfies the equation

#py lap, 1 m?
e (B B
with boundary conditions py(0)=0, py()=1. This equation
can be solved numerically and one finds that p, is an increas-
ing function in [0, ]. The region where the function is much
smaller than 1, the core of the vortex, increases with m for
fixed & and c.

Replacing p from (4) into (3) we obtain the exact equation
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where T'(p)=(c2&/2)A\p/ \p. Far from the vortex, the field
is almost constant and we can perturb it by putting
p=1+2s. If we consider long-wavelength propagative distur-
bances the appropriates scalings are

p=o(1),

s=o(e),

0 0
—=o0(e), —=o0(e),
P (€) P (e)

1

with € a small parameter. We obtain:

C2§2
I'(s)= T[As—sAs— (V) +0(e)] (5)
and then
ar & s o
?t +V. (FV d)) = TAE +0(65) =- TA2¢+0(65).

Finally we find in the leading order

L T AL, ((V¢)2 )
(%z—chS_— o"tA¢_ ot -V 2 Ve
22
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Equation (6) was derived in [9] and it is invariant under
Galilean transformations.

Near the vortex [7] and considering the asymptotic pro-
prieties of pé in the core it is possible to show that

ar
E+V'(FV¢)=O(E3). (7)
Hence, to the lowest order, the phase satisfies a wave equa-

tion with a boundary condition in its circulation:

12¢

o

=Ad, (8)

PHYSICAL REVIEW E 78, 026601 (2008)

j V¢ -dl=dmma, 9)
C

where m is an integer, a=cé&/ \5, and C is a circuit around the
center of the vortex, i.e., the point in 2D where the field
vanishes.

In the case of a moving vortex of charge m, trajectory R(r)

and velocity R(?) it is possible to give a formal expression of
the time derivative of the solution of Egs. (8) and (9) [10].
Introducing a branch of discontinuity and using the Green
function of the wave equation, this expression reads

Ly

. c o 4G
¢(x,t)=47rame~f dt'Ri(t’);[x—R(t’),t—t'],
o X

(10)

where ¢;; is the Levi-Civita symbol (€),=1=~¢, €;=¢€x

=0) and G is the two-dimensional Green function,
cOc(t—t")—|x=x'|)

2Vt —1') = |x—x']2

Glx—x't—t')=- (11)

We remark the well-known fact (Huygens principle) that
in even dimensions the Green function of the wave equation
does not have a local support as it is the case in odd dimen-

sions; this implies from formula (10) that the value of ¢ at a
given time depends on all the past history of the vortex.
Because of this we can expect nonlocal expressions in the far
field.

III. FAR FIELD

We now turn to the derivation of an expression for the
field far away from the center of the moving vortex (far
field). This expression will allow us to characterize the ra-
diation emitted by a vortex describing an arbitrary trajectory.
Our calculation will be done in the limit of small velocities,
v <<c, and we shall assume that the vortex is constrained to
move in a bounded domain in which case all divergence in
the integrals are avoided. As we have pointed out the NLS
equation can be derived from a Lagrangian from which we
can construct an energy-momentum tensor and a Poynting
vector S in order to calculate the energy flux. The radiation
can be expressed by

2

J=limf S-nrdé. (12)
r—o 0

where S at the leading order reads S=(d¢/ )V [4]. In the

far-field approximation V¢-fi can be replaced by ¢/c, and
therefore the only nonvanishing contributions come from
terms of order O(1/vr) in the time derivative of the phase.

In order to express Eq. (10) as a function of the trajectory
we can formally write

. N .
P(x,1) = 47Tame,»j£f dr' d*yR(t")

XG(x=y,t—1t")8(y-R(")) (13)

and perform the & expansion
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To calculate the vortex-trajectory-dependent integral in
Eq. (10) we define for an arbitrary function W:C—C and a
function f:R — R" the W derivative of f by

d “d PR
W(Bz)f(t)= f ﬁW(Biw)f(w)e"‘” (15)

where f‘ is the Fourier transform of f and S an arbitrary
parameter.

Replacing Eq. (14) in Eq. (13) and using the definition
(15) we obtain (see Appendix A for details)

rd) . d)\ .
¢(x t) 2am€, |: <K0< d[)Rl) —ajk(K()(fE)Rle)]
2 {la (K (££>RRR)
+ 2ame; 2 Cik\ Frol Ly [

1 rd) .
_gajklm Ky I RRRR, )|+ -, (16)

where all trajectories are iy,
=d"/0x; dx;,* -+ dx; and K, (z) is the modified Bessel function
of the second kind.

When z—, Ky(z)~\m/2ze~ the K, derivative of the
first term of Eq. (16) can be evaluated as

rd / .
K (_E>R (1) = 7ETEc?t—1/2e_(r/c)d/d’R,~(t) +0o(r?)
r
=/ 757 SgmnR (1) + o)
;

where t,=f—r/c is the retarded time. Thus the radiative con-
tribution of the two lowest orders of Eq. (16) is explicitly
given by

. 21T Ri
d(x,t) =— am\[ —¢; c! n(7 12
r €/ im,
2 R.R
—am\|—€; c”zﬁjﬁko?tzxz(l—zk>
r c

We remark the important difference between this formula
(17) and the radiation formulae for moving electrons in three
dimensions [11]. Here one finds that in the lowest order the
field depends of the %-derivative of the vortex trajectory in-
stead of the 2-derivative which appears in the 3D case [12].
We also note that all the functions are evaluated at the re-
tarded time and the fractional derivatives that appear here put
in evidence the nonlocality of the 2D Green function, i.e.,
one must know the whole trajectory of the vortex from
t=—00 to t=t, in order to calculate Eq. (17). Now using (17)
together with the expression of the flux of energy (12) yields
after a straightforward calculation

evaluated at 1, O

(17)

l:tr
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2m*a’ 2m*a?m? : :
J= —|& 32R|? + ——0p2(R;R;)p2(RR )N iy
c? c

(18)

where Njjy= (1/w)fé“el76"“nwjnﬂnld0 This explicit for-
mula for the radiation of a moving vortex in terms of its
trajectory is one of our main results.

In the case of a single uniformly rotating vortex,
R(f)=ae', the formula can be simplified. The term |d,32R|?
is given by

|9;32R|? = f

XR(w))R*(wp)ei@1=22)

dw, dw,

- (l 1)%/2(_“” )3/2

_f ?%l 1)3/2(— iw2)3/2(a277)2e”r(w1_w2)

X 8w, — w) 8w, — ) = a’w’,

and therefore the lower-order term of Eq. (18) reads

2m2a2772

C2

a’*w® =m* 7 EM v, (19)

where we have reintroduced ¢ and & and defined the Mach
number M=aw/c.

We shall apply now this result to the case of two rotating
vortices, separated by a distance 2a, with the same unitary
charge (m=1). It is well known that in the incompressible
approximation the vortices will rotate in a perfect circle one
around the other with a frequency w=a/a?. For two vortices
the total far field produced is just the superposition of the
field produced by each one, taking into account their charges
which here are equal. In the case of two rotating vortices
their trajectories are symmetric and then the odd power of R
in Eq. (16) vanishes. Hence we get to the lowest order

. rd\ .
¢(.x,[) =- 4aEljajk(K0(ZE>Rle)

=2aa’wRe

. 4e? 2 2 2
X{e’z“’(’_g{ az) K()(l—wr) +1—wK0(1—wr>]}
c c cr c
(20)

Note that the wavelength A=27c/w of waves emitted by
the vortex appears explicitly in formula (20) and the incom-
pressible limit a<<r<<\ is easily obtained using the
asymptotic of Ky(z) for small z (see Appendix A). It reads

2
¢=—8awa— cos 2(wt — 6) (21)

which is the well-known first order of the multipolar expan-
sion [7,8]. The next orders can be obtained similarly.

The radiative far field is obtained in the limit a <<\ <<r
and yields, using Eq. (12), the energy lost due to radiation,
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J=167%a?

w=87cEM w. (22)

a*w?
r

Note that this energy flux is very small. If we now make an
energy balance between the radiated energy J and the varia-
tion of energy due to a change in the distance between the
vortex, we can obtain a simple equation for the radius a. At
lowest order the energy is simply & =% Jdx(V¢)?. For two
vortices separated a distance 2a the interaction part of the
energy, after some algebra, reads [7,8]

Ep=—4mc*E In 2a. (23)

Thus d&;,/dt=—J leads to an evolution equation for the
radius:

da_mef 1
dt - 2\/5 (15.

(24)

From this  equation we obtain the law a(z)
=[aS+(3m/ V2)&ct]"® which shows that the vortex distance
increases, but very slowly. This result was obtained in 1966
by Klyatskin [8] using a matching between a compressible,
but vortex independent far field and an incompressible near
field. Note that there are some misprints in the literature [7,8]
which lead to erroneous values of prefactor in formula (24);
see [15] for details.

Because of the very simple form of the terms in develop-
ment (16) one can get ¢ explicitly at any order in M. This
explicit series reads (see Appendix B):

x,1) = 2 M (25)
n=1

with

. B mCw 1 " (2n 1/
bpn(x,1) = — 4o/ ; —(271—1)!2(:)(1)(”_1) I

XCOS[Z(n —1)(0-wt) + §<2n - %)} (26)

and it follows that the total radiated power can be expanded
as

i (=M (2n>( 2m )
J=167a?
““’zg(zn_l)z(zm_n% 1 )\i4m=n
% (I’l _ l)2(n+m)—1 (27)
2 4 6
=167T2a2M4w<1—4M Mt 1sTm
3 4 18
91783M"
0 (28)

This series has a finite radius of convergence equal to M,
=0.667; hence we can expect that radiation effects in the
NLSE will be well described by (28) only for lower values of
M.
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FIG. 1. (Color online) Radiation of a vortex pair with an initial
separation of 2a=2.53¢ (M=0.56, A\=0.2493). Run of NLSE with
absorbing boundaries (see below) using 512% Fourier modes.

IV. NUMERICAL DETERMINATION OF RADIATION
AND VORTEX TRAJECTORIES

To numerically the integrate NLSE, we will use using
standard [13] pseudospectral methods. In order to work with
complex periodic fields (which must have zero total topo-
logical charge) we place the two rotating vortices within a
box of mirror symmetries. Equation (1) is solved numerically
using pseudospectral methods that were specially tailored to
the mirror symmetries of the initial data in order to gain on
both computer time and central memory storage. The corre-
sponding Fourier pseudospectral algorithms are described in
detail in Ref. [4].

The 27r-periodic fields are symmetric by reflection on the
lines x=0, 7 and y=0, 7 that constitute the boundaries of the
so-called impermeable box. We prepare an initial condition
by letting a charge-2 vortex, situated at the center of the
impermeable box, evolve under the Ginzburg-Landau real
(GLR) dynamics [which can be easily obtained from
Eq. (1) by performing a Wick rotation 7=it]. The vortex
then splits into two single-charge vortices and the GLR
dynamics is continued until they reach a distance 2a
(see Ref. [4] for details). These initial data are then evolved
under NLS dynamics (1). The physical parameters are

c=0.0625, ¢£=0.0177, 0.0089, 0.0044, 0.0022, and
5122,1024%,20482,4096 Fourier modes are used, respec-
tively.

A typical result with 512> Fourier modes is shown on
Fig. 1, where we plot the density p=|¢{> and emitted waves
can be clearly observed. Note that the wavelength
N=c2m/ w=0.2493 is illustrated by a double arrow.

The vortex trajectories are determined by the following
procedure. First a rough location is found by seeking the grid
point with minimum density p. In a second step Newton
iterations are used in order to determine the precise location
of the vortex by solving the equation #{(x)=0. A typical vor-
tex trajectory obtained in this way, with an initial separation

026601-4



RADIATION AND VORTEX DYNAMICS IN THE ...

PHYSICAL REVIEW E 78, 026601 (2008)

) 0.7 .
161 a) b) ——NLS
0.65 — NLS+Abs
1.50}
0.6¢
1.58¢
= 0.55¢
> 157} =
= o5}
1.56¢ .
0.45} FIG. 2. (Color online) (a) Vor-
1.55¢ tex trajectory with an initial sepa-
0.4r ration of 2a=2.18¢. (b) Temporal
1.54¢ ‘ ‘ ‘ ‘ 0.35 ‘ ‘ ‘ evolution of Mach number with
1.54 1.56 1.58 1.6 ) 50 100 150 200 and without absorbing boundaries.
X t Initial separation of 2a=2.18&. (c)
Temporal evolution of a(z)®—a
x 107" for different Mach numbers. (d)
<) 0.022351 9 Temporal evolution of a(r) with
Mach number M=0.077. Inset:
4r 0.02230! Temporal eVQIution of a(t)/ay af-
ter the transient. (a) and (b) use
©o3 0.022251 5122 Fourier modes and (d) and
3 = (c) 4096°.
S T 0.02220( 1.0008
S 2f ——— M=0.255 1.0006
M=0.2 0.02215) 1.0004
i1 ng'lf’ 1.0002 e
 Me007 0.02210 1 -o
ok ‘ ‘ Prediction 10 20 80
0 5 10 15 20 0 10 20 30
t—t t

of 2a=2.18¢, is plotted on Fig. 2(a). It is apparent on the
figure that the vortex follows a spiral trajectory, with a very
weak increase of its radius at each turn.

There are two natural time scales in the problem. The first
one corresponds to the transient adaptation to the initial con-
dition and it is of the order of the time for the wave coming
from one vortex to travel to the other. Thus, an inferior
bound is #,=2a/c depending on the original separation 2a.
The second time scale corresponds to the time taken by the
waves produced by the vortices placed in neighbor imperme-
able cells to arrive at another cell. It can easily be estimated
as t,,=/c. In the present numerical calculations these values
are 1,=0.5-5 and #,=50. The temporal evolution of the
Mach number M=aw/c is plotted in Fig. 2(b); note that the
transient time ¢, and the arrival of waves at ¢,,=50 (vertical
dashed line) are clearly observed.

During the transient time the vortices emit a large amount
of sound that significantly perturbs the vortex trajectories
when it arrives at the neighbor cells, as can be seen in Fig.
2(b). In order to isolate the vortex we added absorption in the
border of the cell, performing a modified GLR step between
each NLS step. The GLR modified step consists in the GLR
equation with the right-hand side modulated by a function
that is null almost everywhere except near the border. The
results of absorption are also shown in Fig. 2(b). Note that
oscillations are effectively reduced without significant modi-
fication of the vortex trajectories before ¢,

In Fig. 2(c) the radius as a function of time is displayed
for different initial conditions. Note that the slope increases

when the Mach number M diminishes, as well as the oscil-
lations.

Figure 2(d) displays the temporal evolution of the radius
corresponding to the run with the smallest Mach number.
Note that the total increase of the radius after the transient
time is less than 0.08% [see inset in Fig. 2(d)]. This explains
the large fluctuation in the corresponding curve in Fig. 2(c).

We now turn to the comparison of the results of the nu-
merical integrations of the NLSE with the theoretical predic-
tion (24). To wit, we measure the relative variation of M in a
fraction B of turns of the vortex pair for each trajectory (ob-
tained with different £ and resolutions). This turnover time is
simply T=27/w=2m\2a*/cé and from the theoretical pre-
diction (24) it follows that

M(BT) = My[1 +24B7*My] "0 ~ M(1 — 4B M)
(29)

for M small. Note that the Mach numbers can be expressed
directly using & and a by M=§/ \2a.

Each initial condition obtained using GLR dynamics is
evolved under the NLSE for more than a turn of the vortices.
The mean value of [1-M(BT)/My]/(4BmMg) (over the
NLS evolution) for different values of Mach number and
resolutions is plotted in Fig. 3 The value of S is always
between 1/8 and 1. It is chosen in each case in order to
obtain clear data.

The error bars shown for small Mach number in Fig. 3 are
produced by the oscillation of the trajectories [see Fig. 2(c)].
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FIG. 3. (Color online) Relative variation of [1-M(BT)/M,]/(4Bm>Mj) as a function of M. Solid line is the theoretical prediction (28),
with limit 1 for M — 0. Inset: same plot in log-log scale. Runs with 4096> (@), 20482, (X), and 1024? (+) Fourier modes.

These errors can be reduced by taking lower values of ¢ at
constant M, but the resolution must then be increased in
order to well resolve the vortex. Thus, with a fixed resolution
it is impossible to go to arbitrarily lows values of the Mach
number. However, using up to 4096 Fourier modes, the val-
ues seem to approach well the theoretical prediction as the
Mach number decreases, as is apparent in the inset of Fig. 3.
On the other hand, for the computed intermediate values of
M, the data are not in good agreement, even when using the
high orders in M of the series (28). It is clear that at these
intermediate Mach numbers the dispersive effects of the
NLSE, which were not taken into account in our computa-
tion, become relevant.

V. CONCLUSION

Our main result for the radiation far field directly ex-
pressed in terms of vortex motion [Egs. (25)—(28)] was vali-
dated by comparison with the result of numerical simulations
of the NLS equation in a simple test case. The numerical data
showed that the relative variation of AM/M* in a fraction of
turns is below the theoretical prediction at intermediate val-
ues of M. However, the data also display a clear tendency for
AM/M?* to increase in the small Mach number limit, in a
way that seems consistent with reaching the theoretical
value.
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APPENDIX A: FAR-FIELD CALCULATION

Formulas (13) and (14) are concerned with integrals of
the type

o0 o) o) d . o
J dr'f(t")G(x,t—t') = dt’f Z—wf(w)el“” Gx,t—t")
o o 2T
iwt

- e ro
o 2 c

where K,(z) is the modified Bessel function of the second
kind [14]. We can use the K|, derivative in order to give a
formal expression; hence

In the last expression, the function K|, is understood as a

functional operator applied in Fourier space. We now use the
series expansion around z=2 of the function K,

dw A
= ;Tf(w)

1 d
dr' f(t")G(x,t—1") = ;TK()(fd—t)f(t). (A1)

— =32

T 1
Ky(2) = \/;e‘z<z‘”2 -—z

9
2 + _Z—S/Z + O(Z—7/2)> ,

128

and the fractional derivative Eq. (A1), becomes

(fi) _\/E [(r)-uz l<f>_3/2
K, o f(2) = 5 . (9S—|/2f—8 dg-3nf

C
9 r =5/2
(—) Og-sinf + -+
C

+—
128
where t,=t—r/c. Formula (16) is directly obtained by replac-
ing Eq. (14) in Eq. (13), using Egs. (A1) and (A2) and noting
that (9G/z9yk=—c9G/c9xk.
In order to get the multipolar expansion we write the se-
ries expansion of K(z) for z=0:

, (A2)

Ii‘
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Ky(z) = —In(z) + In(2) — vz + i[— In(z) + In(2) — yg + 1]

+o(zY (A3)

with y;=0.572 215 6... the Euler-Mascheroni constant. The
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M= (n—=1)1 702 dt i Jn
4a TTc o R
= e 2y Gt

multipolar expression (21) follows directly from Egs. (20) X Jet /z(Rj R,-R;), (B1)
and (A3). L2 L
where we have used that, in the radiative limit,
APPENDIX B: SERIES EXPANSION
(-—)f( )= \/ a 12 (8)| 5=,
In this appendix we compute the series (25). Let n be an
even number; from Eq. (13) it is apparent that the contribu- and thus J; = —; C 14,
tion of order M" to the series is coming from the term LetI', eC be such that R,=Re(T'e'"); then
|
> 1 . iwt _ T —iot iwt | T ,—iot iwt | T it
Rj R, R, = Sp(iol; e — il e )L e + I; e7) - (I; £+ T ™),
. . 4
leRjZ (l Jl 12 an ne + C. C)
[0} — ) _ ) — .
+ ?( lFJIF-/Z . anel(n_z)wt + lrj]rjz e anel(n_z)wt + c+ lrjlrj2 e anel(n_z)wt + C.C.)
+ —( i0; Tp oo Ty @9 D, T T oo Ty 09 e T T T T @9 ce) + oo
= r r in=2n2)wt ...
+ ( leJ2 jn/Zan/2+l ane + + C.C.) . (B2)
We can directly check that
= i Lol i1y = €50 gL,
A . i
jol1 jol_‘jl—lae ! .
ﬁ]F] = ae_ig,
L= ae’,

and thus each term inside each parenthesis in the right-hand side of Eq. (B2) has the same value. We see in (B2) that the

contribution with the frequency (n—2[)w has [ terms (of the

total of n) with I" conjugate and thus () ways of choosing them.

Hence

n

. e R R --R. = wanR n in(wt,—6) n i(n=2)(wt,—6) - i(n—=2n/2)(wt,—6) (B3)
ejﬂjlnj() njn jl j2 j" =- 2”_1 € 0 e + 1 e + + E e
2
wd" n/2 n ‘
= i (Z Re(e!=20et=0), (B4)
=0

From (B1) we obtain
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n n/2
. n .
bt =[5 ([ st
r n-— .

=0

_4 wwc(ﬂ)” 1
TN 2 e ) 2T —

and finally formula (25) follows directly.

(’; )(n — 21y V2R (122D w1,~0)) (B5)

The total radiated power (28) is easily obtained by noting that

0

for all n,m,l,k integer.

26
f dHcos[(n —20)(wt,— 6) + §<n - %)]cos[(m —2k) (et - 0) + %T(m - 1)} = T8y 2tk €O ;—T(n —m)

2
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