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Statistical theory of reversals in two-dimensional confined turbulent flows
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It is shown that the truncated Euler equation (TEE), i.e., a finite set of ordinary differential equations for
the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur
within the turbulent regime of a confined two-dimensional flow obeying Navier-Stokes equation (NSE) with
bottom friction and a spatially periodic forcing. The random reversals of the NSE large-scale circulation on the
turbulent background involve bifurcations of the probability distribution function of the large-scale circulation.
We demonstrate that these NSE bifurcations are described by the related TEE microcanonical distribution which
displays transitions from Gaussian to bimodal and broken ergodicity. A minimal 13-mode model reproduces these
results.
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The formation of large-scale coherent structures is widely
observed in atmospheric and oceanic flows and ascribed to
the nearly bidimensional nature of these flows. Kraichnan
showed that in two-dimensional (2D) turbulence, the energy
is transferred from the forcing scale to larger scales due
to the conservation of both energy and enstrophy by the
inviscid dynamics [1]. In a confined flow domain and without
large-scale friction, the energy accumulates at the largest
possible scale, thus generating coherent structures in the form
of large-scale vortices.

It has been observed in laboratory experiments that the
large-scale circulation generated by forcing a nearly 2D flow
at small scale can display random reversals [2]. The large-scale
velocity has a bimodal probability density function (PDF) with
two symmetric maxima related to the opposite signs of the
large-scale circulation. This regime bifurcates from another
turbulent regime with a Gaussian velocity field with zero mean
when the large-scale friction is decreased. When the friction is
decreased further, the reversals become less and less frequent
and a condensed state with most of its kinetic energy in the
large-scale circulation is reached [3]. A similar sequence of
transitions is observed in numerical simulations of the 2D
Navier-Stokes equation (NSE) with large-scale friction and
spatially periodic forcing [4].

These transitions correspond to bifurcations of a mean flow
on a strongly turbulent background for which no theoretical
tool exists so far. We show in this Rapid Communication that
the truncated Euler equation (TEE), i.e., a finite set of ordinary
differential equations (ODEs) for the amplitude of the large-
scale modes without forcing and dissipation, can correctly
describe these transitions. To wit, we compare the dynamical
regimes observed in numerical simulations of the 2D NSE
with the ones obtained with the TEE when the characteristic
scale k−1

c of the initial conditions is changed, with kc = √
�/E

where E is the kinetic energy of the flow and � is its enstrophy
(integrated squared vorticity).
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The dimensionless 2D NSE reads for an incompressible
velocity field u = ∇ × (ψ ẑ),

∂ψ

∂t
− 1

∇2
{ψ,∇2ψ} = − 1

Rh
ψ + 1

Re
∇2ψ + fψ, (1)

where ψ(x,y,t) is the stream function and {f,g} = ∂xf ∂yg −
∂xg∂yf is the usual Poisson bracket. The first term on the
right-hand side represents the frictional force in the bottom
boundary layer and ∇ × (fψ ẑ) is the spatially periodic forcing,
explicitly given by fψ = 1

144 sin(6 x) sin(6 y).
To model flow confinement we use free-slip boundary

conditions; therefore, the stream function can be Fourier
expanded as

ψ(x,y) =
∑
m,n

ψ̂m,n sin(mx) sin(ny), (2)

for x and y in the [0,π ] domain. The nondimensional param-
eters are the Reynolds number, Re = UL/ν and Rh = τU/L,
which represents the ratio of the inertial term to the friction on
the bottom boundary. Here, U is a characteristic large-scale
velocity, L is the length of the square container, ν is the
kinematic viscosity, and 1/τ is the damping rate related to the
friction. The above equation has been made dimensionless
using the length scale L and the velocity scale U .

We perform direct numerical simulations (DNSs) of Eq. (1),
using standard pseudospectral methods [5] with N2

c colloca-
tion points and 2/3 circular dealiasing: kmax = Nc/3. Time
stepping is performed with a second-order, exponential time
differencing Runge-Kutta method [6]. DNSs of the NSE (1)
are carried out for Re = 3000/π2 and Re = 5000/π2 with
Nc = 256. Very long time integration is needed to accumulate
reliable statistics for the reversals, which become rare with an
increase in Rh (see below).

Direct time recordings of the amplitude of the lowest wave
number mode of the stream function, ψ̂1,1, are displayed in
Fig. 1(a) for Re = 5000/π2 and different values of Rh [7]. For
Rh = 10, the amplitude of the large-scale circulation fluctuates
around zero and its PDF is Gaussian (not shown). When Rh
is increased, a first transition is observed within the turbulent
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FIG. 1. Flow transitions: Time series of ψ̂1,1 obtained from the DNS of the (a) Navier-Stokes equation (NSE) for different values of Rh
and Re = 5000/π 2, and (b) truncated Euler equation (TEE) for different values of kc. ψ̂NSE

1,1 and ψ̂TEE
1,1 have been divided by 104 and 102,

respectively. (c) Plot of kc = √
�/E versus Rh from the DNS of the NSE for two different Reynold’s numbers Re = 3000/π2 (blue circles)

and Re = 5000/π 2 (red crosses). Inset: Log-linear plots of the PDFs of ψ̂T EE
1,1 for different values of kc. (d) Log-linear plots of the PDFs of

ψ̂1,1 for different values of kc obtained from the finite-mode minimal model based on the TEE; the lines on top of these PDFs indicate the
estimation from our analytical method.

regime and can be characterized by a change of the shape of
the PDF that becomes bimodal. ψ̂1,1 fluctuates around two
nonzero most probable opposite values and displays random
transitions between these two states [see Fig. 1(a2)]. This
corresponds to random reversals of the large-scale circulation
on a turbulent background. The mean waiting time between
successive reversals increases with Rh [see Fig. 1(a3)] and
finally a large-scale circulation with a given sign becomes
the dominant flow component [see Fig. 1(a4)]. This is the
condensed state described by Kraichnan [1,8]. The regime
with random reversals of the large-scale circulation is therefore
located in parameter space between the condensed states and
the turbulent regime with Gaussian velocity PDFs as observed
in experiments [3].

We now consider the approach introduced by Lee [9] and
developed by Kraichnan [1,8] that relies on the 2D TEE. They
showed that the Euler equation, truncated between a minimum
and a maximum wave number, gives a set of ODEs for the

amplitudes of the modes that follow a Liouville theorem [9].
For 2D flows, the kinetic energy E and the enstrophy �

(integrated squared vorticity) are conserved; therefore, the
Boltzmann-Gibbs canonical equilibrium distribution is of the
form P = Z−1 exp(−αE − β�), where Z is the partition
function and α and β can be seen as inverse temperatures,
determined by the total energy and enstrophy. Using this
formalism, Kraichnan [1,8] derived the absolute equilibria
of the energy spectrum E(k) and showed the existence of
different regimes depending on the values of α and β. On
the other hand, microcanonical distributions are defined by
δ(E − E0)δ(� − �0), where E0 and �0 are respectively the
energy and enstrophy of the initial conditions, and should be
used to compute the PDFs in the reversal and condensed state
(see below).

The TEE is obtained by performing a circular Galerkin
truncation at wave number kmax of the incompressible, Euler
equation ∂ψ

∂t
− 1

∇2 {ψ,∇2ψ} = 0, which is Eq. (1) without
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forcing or dissipation. The TEE in spectral space reads

∂ψ̂k

∂t
= 1

k2

∑
p,q

(p × q)q2ψ̂pψ̂qδk,p+q (3)

with δk,r the Kronecker delta and with Fourier modes satisfying
ψ̂k = 0 if |k| � kmax. Note that, because of the free-slip
boundary conditions, Eq. (2), the Fourier modes ψ̂k are
real numbers. This truncated system exactly conserves the
quadratic invariants, energy and enstrophy, given in Fourier
space by E = 1

2

∑
k |uk|2 and � = 1

2

∑
k k2|uk|2 [10].

For TEE we take kmax as a free parameter and the same
stream function expansion as that used for the NSE (2), thus the
numerical integration method is the same as the one described
above for the NSE. In both cases, the minimum wave number
is kmin = √

2. We use an initial velocity field with an energy
spectra E(k) = k/(α + βk2), where by varying α and β we can
obtain different flow regimes in accordance with Kraichnan’s
absolute equilibrium predictions. We introduce a wave number
kc given by k2

c = �/E, which acts as an important control
parameter of the system.

We next consider the results obtained using the TEE (3)
with kmax = kf (the NSE forcing wave number) and initial
conditions with different values of kc. Figure 1(b) shows
the transitions between different turbulent regimes when kc

is decreased. The corresponding PDFs of ψ̂1,1 obtained for
different values of kc are displayed in the inset of Fig. 1(c). We
observe the transition from Gaussian to bimodal PDF when kc

is decreased and then the transition to the condensed regime
with a given sign of the large-scale circulation.

For NSE at large Re, the effect of the large-scale friction
is to stop the inverse cascade before reaching the scale of the
flow domain. Rh thus determines the largest scale of the flow
and its associated wave number kc = (�/E)1/2. Increasing Rh
(decreasing bottom friction) should thus increase the largest
flow scale and decrease kc. Figure 1(c) indeed shows that kc

monotonously decreases when Rh is increased and weakly
depends on Re. When Rh is large (small friction), the kinetic
energy accumulates at the scale of the flow domain and the
condensed state is obtained.

Although we do not have a quantitative agreement between
the transition values of kc for the TEE and NSE [see Fig. 1(c)],
the same sequence of transitions is observed in both cases.
Figure 1(d) shows that this qualitative agreement is maintained
even for a truncation wave number as low as kmax = 2

√
5.

This truncation leads to only 13 ODEs for the amplitudes of
the large-scale modes (see the Appendix). We emphasize that
this minimal set of ODEs provides a noteworthy qualitative
description of the transitions between the different turbulent
regimes observed in DNSs and experiments.

The TEE model (3) is a finite number of quadratic nonlinear
ODEs for real variables yi [see the remark following Eq. (3)
about the amplitudes of the Fourier modes noted yi hereafter
to simplify the notations] that conserve both the energy E(t) =∑n

j=0 bE(j )y2
j and the enstrophy �(t) = ∑n

j=0 b�(j )y2
j (see

the Appendix). By making use of the identities

(2π )2δ(bEy2 − E)δ(b�y2 − �)

=
∫ ∞

−∞
dpEdp�eipE (bEy2−E)+ip�(b�y2−�) (4)

and ∫ ∞

−∞
ei(pEbE+p�b�)y2

dy =
√

π√−i(bEpE + b�p�)
(5)

we can write the total microcanonical phase space volume

V =
∫ n∏

j=0

dyj δ

⎛
⎝ n∑

j=0

bE(j )y2
j − E

⎞
⎠δ

⎛
⎝ n∑

j=0

b�(j )y2
j − �

⎞
⎠

(6)

as

V =
∫ ∞

−∞
dpEdp�eLV (pE,p�) (7)

with

LV =
n∑

j=0

log

( √
π√−i[pEbE(j ) + p�b�(j )]

)

+ ipE(−E) + ip�(−�) − 2 log(2π ). (8)

We now apply the steepest descent method [11,12] to the
integral in Eq. (7). This procedure yields

V(pE,p�) = 2πeLV
[

det(∂2LV/∂pE
∂p�

)
]−1/2

, (9)

which furnishes an explicit parametric expression for V at
the saddle point (pE,p�) [13] corresponding to kc = √

�/E,
with the values of energy and enstrophy given by the saddle
conditions

E(pE,p�) = i

n∑
j=0

bE(j )

2[pEbE(j ) + p�b�(j )]
,

�(pE,p�) = i

n∑
j=0

b�(j )

2[pEbE(j ) + p�b�(j )]
. (10)

We can estimate in the same way the phase space volume
for a fixed value of y0 by retracing the steps from Eqs. (6)
to (9), but with the product and sums going from 1 to n instead
of 0 to n. By combining these parametric representations, we
obtain explicit expressions for the normalized PDFs of y0 that
are displayed as lines in Fig. 1(d) and are in good agreement
with the numerical results [14].

Note that canonical distributions with quadratic invariants
are Gaussian. When there is condensation of energy at
large scale, only a few modes are present and then the
canonical distribution has no reason to reproduce the mi-
crocanonical distribution results [15]. Indeed, k2

c = �/E < 5
with � = (12 + 12)2y2

0 + (12 + 22)2y2
1 + · · · and E = (12 +

12)y2
0 + (12 + 22)y2

1 + · · · implies that y0 �= 0. Thus the mi-
crocanonical PDF of y0 has to obey p(0) = 0 for k2

c < 5
which forbids reversals of the large-scale circulation. This
represents ergodicity breakdown. Our above results show that
this breakdown is preceded by an ergodicity delay, in the sense
that p(0) becomes very small [16–18].

We now consider in more detail the regime with random
reversals of the large-scale circulation and its transition to
the condensed regime for which the flow no longer explores
the whole phase space, keeping a given sign of the large-scale
circulation. As shown above [compare Figs. 1(a) and 1(b)], the
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FIG. 2. Reversals: Log-linear plot of the mean waiting time τ

between successive reversals versus Rh, obtained from our DNSs
of NSE for Re = 5000/π 2 (blue circles). Inset: Plot of the reversal
frequency 1/τ versus kc from the DNSs of TEE; it shows that the
reversal frequency decreases linearly with kc with a critical k∗

c � 4.06,
below which the reversals are not observed for the integration time.

mean waiting time τ between successive reversals increases
when Rh is increased in the NSE; respectively, kc is decreased
in the TEE. However, the divergence of τ does not follow
the same law for the NSE and the TEE. Figure 2 shows an
exponential increase of τ with Rh in the NSE, whereas a fit
of the form τ ∝ (kc − k∗

c )−1 with k∗
c � 4.06 is observed in the

TEE (see inset of Fig. 2). The latter result is expected since
there exists a critical value of kc below which reversals are not
possible in order to fulfill the conservation of both E and �.
We thus expect that τ becomes infinite for a finite value of
kc. A similar trend is not observed in the NSE for τ versus
Rh. This cannot be explained using the relation between kc

and Rh displayed in Fig. 1(c) that is roughly linear close to
the transition to the condensed regime. In contrast to the TEE,
the NSE does not involve conserved quantities that prevent
reversals, even when Rh is large. In addition, all the modes
above kf that are suppressed in the TEE can act as an additional
source of noise in the NSE and trigger reversals.

Although it can be expected that viscous dissipation is
negligible for the dynamics of large scales, it is remarkable
that taking into account the effect of large-scale friction by
selecting the value of �/E in the initial conditions of the TEE
is enough to describe the bifurcations of the large-scale flow
using a small number of modes governed by the Euler equation.
Thus, one discards the huge number of degrees of freedom
related to small-scale turbulent fluctuations. In addition,
equilibrium statistical mechanics, using the microcanonical
distribution related to the TEE, correctly describes the PDF
of the large-scale velocity in the different turbulent regimes.
Transitions between different mean flows are widely observed
in turbulent regimes, the most famous example being the drag
crisis for which the wake of a sphere becomes narrower. Using
the Navier-Stokes equation with noisy forcing [19] is a way
to describe this type of transition. The TEE as presented here,
can provide an alternative method to describe the dynamics
of large scales in turbulence and to model a bifurcation of the
mean flow on a strongly turbulent background.
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APPENDIX

We give here explicitly the set of 13 ODEs for the amplitudes of the Fourier modes ψ̂m,n that define the TEE in the case
kmax = 2

√
5. Note that ψ̂m,n are real numbers because of the free-slip boundary conditions (see text).

dψ̂11

dt
= 1

2
[(2ψ̂12 + 5ψ̂14)ψ̂23 + ψ̂13(2ψ̂22 + 5ψ̂24) − 2ψ̂22ψ̂31 − ψ̂32(2ψ̂21 + 5ψ̂41) + 3ψ̂33(ψ̂24 − ψ̂42) − 5ψ̂31ψ̂42], (A1)

dψ̂12

dt
= 1

20
[25ψ̂13ψ̂21 + 54ψ̂14ψ̂22 + ψ̂11(9ψ̂21 − 11ψ̂23) + 25ψ̂21ψ̂31 + 21ψ̂23ψ̂31 + 56ψ̂24ψ̂32 − 39ψ̂21ψ̂33

+ 49ψ̂31ψ̂41 + 9ψ̂33ψ̂41], (A2)

dψ̂21

dt
= 1

20
[−49ψ̂13ψ̂14 − ψ̂11(9ψ̂12 − 11ψ̂32) − 21ψ̂13ψ̂32 − ψ̂12(25ψ̂13 + 25ψ̂31 − 39ψ̂33) − 9ψ̂14ψ̂33

− 54ψ̂22ψ̂41 − 56ψ̂23ψ̂42], (A3)

dψ̂22

dt
= 1

4
[−9ψ̂12ψ̂14 − 4ψ̂11(ψ̂13 − ψ̂31) + 5ψ̂14ψ̂32 + 9ψ̂21ψ̂41 − 5ψ̂23ψ̂41], (A4)

dψ̂13

dt
= 1

10
{ψ̂11(6ψ̂22 − 9ψ̂24) + 7ψ̂21(3ψ̂14 + 2ψ̂32) + 11ψ̂32ψ̂41 + ψ̂31[4ψ̂22 + 25(ψ̂24 + ψ̂42)]}, (A5)
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dψ̂31

dt
= 1

10
{−14ψ̂12ψ̂23 − 11ψ̂14ψ̂23 − 21ψ̂12ψ̂41 − ψ̂11(6ψ̂22 − 9ψ̂42) − ψ̂13[4ψ̂22 + 25(ψ̂24 + ψ̂42]}, (A6)

dψ̂23

dt
= 1

52
[35ψ̂12ψ̂31 + 77ψ̂14ψ̂31 + ψ̂11(3ψ̂12 − 75ψ̂14 + 55ψ̂32) + 90ψ̂22ψ̂41 + 42ψ̂24ψ̂41 + 120ψ̂21ψ̂42], (A7)

dψ̂32

dt
= 1

52
{−ψ̂11(3ψ̂21 + 55ψ̂23 − 75ψ̂41) − 7ψ̂13(5ψ̂21 + 11ψ̂41) − 6[20ψ̂12ψ̂24 + ψ̂14(15ψ̂22 + 7ψ̂42)]}, (A8)

dψ̂14

dt
= 1

68
[−35ψ̂13ψ̂21 + 18ψ̂12ψ̂22 + 55ψ̂11ψ̂23 − 33ψ̂23ψ̂31 + 50ψ̂22ψ̂32 + 117ψ̂21ψ̂33 − 15ψ̂33ψ̂41 + 98ψ̂32ψ̂42], (A9)

dψ̂41

dt
= 1

68
[−18ψ̂21ψ̂22 − 50ψ̂22ψ̂23 − 98ψ̂23ψ̂24 + 35ψ̂12ψ̂31 − 55ψ̂11ψ̂32 + 33ψ̂13ψ̂32 − 117ψ̂12ψ̂33 + 15ψ̂14ψ̂33], (A10)

dψ̂24

dt
= 1

10 [8ψ̂12ψ̂32 + 2ψ̂11(ψ̂13 + 6ψ̂33) + 7ψ̂23ψ̂41 + 18ψ̂22ψ̂42], (A11)

dψ̂42

dt
= 1

10
[−8ψ̂21ψ̂23 − 18ψ̂22ψ̂24 − 2ψ̂11ψ̂31 − 7ψ̂14ψ̂32 − 12ψ̂11ψ̂33], (A12)

dψ̂33

dt
= −3

2
[ψ̂14ψ̂21 − ψ̂12ψ̂41 + ψ̂11(ψ̂24 − ψ̂42)]. (A13)

The dynamical evolution of the above set of ODEs conserves the total energy and enstrophy, which are given by

E = (12 + 12)ψ̂2
11 + (12 + 22)ψ̂2

12 + (22 + 12)ψ̂2
21 + (22 + 22)ψ̂2

22 + (32 + 12)ψ̂2
31 + (12 + 32)ψ̂2

13 + (22 + 32)ψ̂2
23

+ (32 + 22)ψ̂2
32 + (12 + 42)ψ̂2

14 + (42 + 12)ψ̂2
41 + (22 + 42)ψ̂2

24 + (42 + 22)ψ̂2
42 + (32 + 32)ψ̂2

33 (A14)

and

� = (12 + 12)2ψ̂2
11 + (12 + 22)2ψ̂2

12 + (22 + 12)2ψ̂2
21 + (22 + 22)2ψ̂2

22 + (32 + 12)2ψ̂2
31 + (12 + 32)2ψ̂2

13 + (22 + 32)2ψ̂2
23

+ (32 + 22)2ψ̂2
32 + (12 + 42)2ψ̂2

14 + (42 + 12)2ψ̂2
41 + (22 + 42)2ψ̂2

24 + (42 + 22)2ψ̂2
42 + (32 + 32)2ψ̂2

33. (A15)

[1] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
[2] J. Sommeria, J. Fluid Mech. 170, 139 (1986).
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