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A generalization of the 3D Euler-Voigt-α model is obtained by introducing derivatives of arbitrary order β

(instead of 2) in the Helmholtz operator. The β → ∞ limit is shown to correspond to Galerkin truncation of the
Euler equation. Direct numerical simulations (DNS) of the model are performed with resolutions up to 20483

and Taylor-Green initial data. DNS performed at large β demonstrate that this simple classical hydrodynamical
model presents a self-truncation behavior, similar to that previously observed for the Gross-Pitaeveskii equation
in Krstulovic and Brachet [Phys. Rev. Lett. 106, 115303 (2011)]. The self-truncation regime of the generalized
model is shown to reproduce the behavior of the truncated Euler equation demonstrated in Cichowlas et al.
[Phys. Rev. Lett. 95, 264502 (2005)]. The long-time growth of the self-truncation wave number kst appears to
be self-similar. Two related α-Voigt versions of the eddy-damped quasinormal Markovian model and the Leith
model are introduced. These simplified theoretical models are shown to reasonably reproduce intermediate time
DNS results. The values of the self-similar exponents of these models are found analytically.
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I. INTRODUCTION

Classical Galerkin-truncated systems have been studied
since the early 1950s in fluid mechanics. In this context, the
(time reversible) Euler equation describing spatially periodic
classical ideal fluids is known to admit, when spectrally
truncated at wavenumber kmax, absolute equilibrium solutions
with Gaussian statistics and equipartition of kinetic energy
among all Fourier modes [1–4]. Furthermore, the dynamics of
convergence toward equilibrium involves a direct energy cas-
cade toward small scales and contains (long-lasting) transient
that mimic (irreversible) viscous effects that are produced by
the “gas” of high-wave-number partially thermalized Fourier
modes generating (pseudo) dissipative effects [5–7].

In the case of superfluids, the relevant equation is the
so-called truncated (or Galerkin-projected) Gross-Pitaevskii
equation (TGPE). In the TGPE case, absolute equilibrium can
also be obtained by a direct-energy cascade, in a way similar
to that of the truncated Euler case, with final thermalization
accompanied by vortex annihilation. Furthermore, increasing
the amount of dispersion produces a slowdown of the energy
transfer at small scales, inducing a bottleneck and a partial
thermalization that is independent of the truncation wave
number and takes place below a “self-truncation” wave number
kst(t) that is observed to slowly increase with time [8–10].

The purpose of the present paper is to find and study such
self-truncation phenomena in the simpler context of classical
hydrodynamics of an ideal fluid. This is obtained by using
equation of motion of the Euler type. To wit, we study here
a simple generalization of the standard 3D Euler-Voigt-α
(nondissipative) model [11,12].

Note that various dissipative Navier-Stokes-Voigt-α reg-
ularizations have been proposed in the last decade as effi-
cient subgrid-scale models in order to address the classical
turbulence closure problem, both in hydrodynamics [13] and
in magnetohydrodynamics [14]. Results on the regularity
properties of this type of dissipative models are given in
Ref. [15] and the statistical solutions are shown to converge
to those of Navier-Stokes (when α → 0) in Refs. [16,17]. For
large values of α, dissipative Voigt models are known to inhibit
and reduce the transfer of energy to the small scales.

Compared to the Euler equations, the conservative 3D
Euler-Voigt-α model also penalizes the formation of small
scales. We show that this penalization is enough to produce
a self-truncation regime. Our main findings are that the
self-truncation regime of this generalized model reproduces
the behavior of the truncated Euler equation [5]. The long-time
behavior of the energy spectrum appears to be self-similar.

To understand this self-similarity we further introduce two
different models that are α-Voigt versions of the eddy-damped
quasinormal Markovian (EDQNM) model [4,18] and the Leith
model [19], respectively. Both models are shown to present
behaviors that are similar to that of the Euler-Voigt-α model.
The relative simplicity of these models allows us to determine
the analytical values of the self-similar exponents.

The paper is organized as follows. Section II is devoted
to our generalized model. Basic definitions of the Euler-
Voigt-α model are given in Sec. II A. Numerical methods and
performed computations are detailed in Sec. II B. Our results
on the self truncation regime are described in Sec. II C. The
long-time behavior is studied in Sec. II D. Related theoretical
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models are presented in Sec. III. Section III A is devoted to
the αV-EDQNM model and Sec. III B to the αV-Leith model.
Finally, our main results are summarized in Sec. IV, where we
give our conclusions.

II. EULER-VOIGT-α MODEL

A. Definition of the model

The standard 3D Euler-Voigt-α model [11,12] is a partial
differential equation for the 3D velocity field u(x,y,z,t) that
explicitly reads

(1 − α2∇2)
∂u
∂t

= −(u · ∇)u − ∇p

∇ · u = 0. (1)

The operator −α2∇2 ∂
∂t

(as we will see later) suppresses the
formation of scales smaller than α. The associated wave
number to this scale is denoted kα = α−1. We refer to the
operator in Eq. (1) as the α term.

Let us now define the generalized 3D Euler-Voigt-α model:

[
1 + (−α2∇2)

β
2
]∂u
∂t

= −(u · ∇)u − ∇p,

∇ · u = 0, (2)

where the power β is an even integer. We refer to β as the
penalization exponent as its increase enhances the suppression
of small-scale generation. When α = 0, the generalized model
Eq. (2) reduces to the standard 3D incompressible Euler
equations:

∂u
∂t

+ u · ∇u = −∇p, ∇ · u = 0. (3)

We consider here spatially periodic solutions defined in
the domain $ = [0,2π ]3. The kinetic energy spectrum E(k,t)
associated to Eq. (3) is defined as the sum over spherical shells,

E0(k,t) = 1
2

∑

k∈Z3
k−1/2<|k|<k+1/2

|̂u(k,t)|2, (4)

and the energy,

E0 = 1
2(2π )3

∫

$

|u(x,t)|2d3x = 1
2

∑

k∈Z3

|̂u(k,t)|2,

is independent of time when u satisfies the 3D Euler Eq. (3).
The conserved energy associated to the generalized Euler-
Voigt-α model Eq. (2) is straightforward to obtain and reads
in physical space,

Eα = 1
2(2π )3

∫

$

u ·
[
1 + (−α2∇2)

β
2
]
u d3x,

and in spectral space,

Eα = 1
2

∑

k∈Z3

[1 + (αk)β]|̂u(k,t)|2. (5)

Consequently, the generalized energy spectrum is defined as

Eα(k,t) = 1
2

∑

k∈Z3
k−1/2<|k|<k+1/2

[1 + (αk)β]|̂u(k,t)|2. (6)

In the following, we refer to Eα(k,t) as the energy spectrum
and E(k,t) as the kinetic energy spectrum. Equations (2) also
conserve the generalized helicity:

Hα = 1
2

∑
[1 + (αk)β] û(k,t) · ω̂(−k,t). (7)

In this work we only consider flows with Hα = 0.
Let us remark that the differential operator multiplying the

right-hand side of our generalized 3D Euler-Voigt-α model
Eq. (2) can be written in Fourier space as 1 + (αk)β = 1 +
(k/kα)β . The formal limit β → ∞ of Eq. (2) thus corresponds
to a standard spherical Galerkin truncation [û(k) = 0 for |k| >
kmax] of the Euler Eq. (3) at kmax = kα . Note that a somewhat
similar generalization (but involving the use of a high power of
the Laplacian in the dissipative term of forced hydrodynamical
equations) have been studied in Ref. [20].

It is well known that the truncated Euler equation admits
statistically stationary solutions given by the microcanonical
distribution determined by the invariants [1,3]. These solutions
are the so-called absolute equilibrium and lead to equipar-
tition of energy among Fourier modes. The Euler-Voigt-α
model considered as a truncated system, also admits absolute
equilibrium solutions. When fully thermalized, Fourier modes
can be described by the canonical Gibbs distribution û(k) ∼
Z−1 exp {−βEα[û]}, where Z is the partition function.1 As
the invariant energy is quadratic, the absolute equilibrium is
Gaussian and the Fourier modes are independent. This leads
to the spectra

Eα(k) = 3Eαk2

k3
max

, or E(k) = 3Eαk2

k3
max(1 + αβkβ)

. (8)

The large-scale behavior of the kinetic energy spectrum thus
depends on the value of the penalization exponent β as E(k) ∼
k2−β . Therefore, in thermal equilibrium the small scales of u
(i.e., k ≫ kα) are penalized when β > 0.

Taking into account that, in Fourier space, the differential
operator in Eq. (2) can be defined for real values of β ! 0,
the choice β = 11/3 yields an absolute equilibrium E(k) ∼
k−5/3 and thus a fully thermalized field following Kolmogorov
scaling. In the same vein, choosing in two-dimensions β = 2/3
also yields Kolmogorov scaling, this time for the equipartition
of enstrophy. This can represent an interesting alternative to
the fractal decimation method that was used in Ref. [21].

B. Numerical method

The generalized 3D Euler-Voigt-α Eq. (2) are solved
numerically using standard [22] pseudospectral methods with
resolution N . Time marching is performed using a second-
order Runge-Kutta scheme and the solutions are spherically
dealiased by suppressing, at each time step, the modes for
which the wave vector exceeds two-thirds of the maximum
wave number N/2 (thus, a 20483 run is truncated at |k| >
kmax = 682; see, e.g., Ref. [23], for details on the numerical
method).

1Incompressibility must be taken into account when writing the
Gibbs distribution; see Ref. [1].
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TABLE I. List of runs of the generalized 3D Euler-Voigt-α
model Eq. (2) with Taylor-Green initial data Eq. (9) and maximum
integration time tmax.

Run Res. β kα tmax Run Res. β kα tmax

Euler 1024 − − 30 11 2048 2 100 15
1 1024 2 20 50 12 2048 2 200 15
2 1024 2 40 50 13 2048 4 50 15
3 1024 2 80 50 14 2048 4 100 15
4 1024 4 20 50 15 2048 4 200 15
5 1024 4 40 50 16 2048 6 50 15
6 1024 4 80 50 17 2048 6 100 15
7 1024 6 20 50 18 2048 6 200 15
8 1024 6 40 50 19 512 2 4 2300
9 1024 6 80 50 20 512 4 4 2300
10 2048 2 50 15 21 512 6 4 2300

We consider here solutions of Eq. (2) that correspond to the
so-called Taylor-Green (TG) [24] (2π -periodic) initial data
u(x,y,z,0) = uTG(x,y,z), with

uTG = [sin(x) cos(y) cos(z), − cos(x) sin(y) cos(z),0]. (9)

The simulations reported in this paper were performed using a
special purpose symmetric parallel code developed from that
described in Refs. [23,25–27]. The code uses the symmetries
of the Taylor-Green initial data to speed-up computations and
optimize memory usage. The workload for a time step is
(roughly) twice that of a general periodic code running at a
quarter of the resolution. Specifically, at a given computational
cost, the ratio of the largest to the smallest scale available
to a computation with enforced Taylor-Green symmetries is
enhanced by a factor of 4 in linear resolution. This leads to a
factor of 32 savings in total computational time and memory
usage. The code is based on FFTW and a hybrid MPI-OpenMP
scheme derived from that described in Ref. [28]. At resolution
20483 we used 512 MPI processes, each process spawning 8
OpenMP threads.

When compared with standard Euler Eq. (3) runs that were
performed in Ref. [23], the only computational advantage of
the the generalized 3D Euler-Voigt-α model Eq. (2) stems from
the much weaker Courant-Friedrichs-Lewy (CFL) condition
Uk 't < C on the time step 't , which is conditioned by
k = kα = α−1 rather than k = kmax, when kα ≪ kmax. We
have performed a number of high-resolution runs that are
summarized in Table I. The CFL condition 't kα ∼ 0.1 was
enough to ensure both stability and energy conservation up to
0.3% in the worst case.

C. Self truncation

A first indication on the dynamics of the generalized Euler-
Voigt-α model Eq. (2) with Taylor-Green initial data Eq. (9)
is given by the behavior of the Energy spectra for a run at
resolution 10243 with β = 4 and kα = 80 (run 6, Table I) that
is displayed in Fig. 1.

Different regimes are clearly observed. First the energy
is transferred toward small scales as in the standard Euler
equation evolution (t " 5). Then the energy reaches the wave
number kα = 80 and the α term in Eq. (2) starts to suppress
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FIG. 1. (Color online) Temporal evolution (indicated by arrows)
of the energy spectrum Eα(k) for β = 4 and kα = 80. Resolution
10243 (kmax = 342). The dashed lines respectively display the Kol-
mogorov k−5/3 and the equipartition k2 scaling. The self-truncation
wavenumber is indicated by the small vertical arrow.

the energy transfer for k > kα . As a consequence, the energy
piles up around this wave number, similar to the truncated
Euler case with a cutoff ∼ kα . A compatible Kolmogorov k−5/3

scaling is observed at large scales (t = 15), followed by a
partially thermalized zone in k2 extending up to kst. The wave
number kst(t) then slowly grows from its initial value kα until it
eventually reaches the simulation cutoff kmax. For t → ∞ the
system fully thermalizes independently of the parameters (data
not shown) and the spectrum is then described by the absolute
equilibrium Eq. (8). It is conspicuous that for k > kst the energy
quickly decays and the partial thermalization regime is thus
independent of the simulation cutoff kmax. We thus refer to
kst as the self-truncation wave number. A further discussion
and justification for its name will be given later [see below,
paragraph following Eq. (10)].

Figure 2 displays the spectra of simulations at resolution
20483 for different values of β and kα taken at time t = 10.2.2

The self-truncation is apparent for the smaller kα at all values
of β and, for larger β ! 4, at all values of kα . The three ranges
delimited by the thermalization wave number kth and the self-
truncation wave number kst are clearly visible [see Fig. 2(c)]
at this high resolution. Formally, these zones correspond
to the Kolomogorov regime (k ≪ kth), the thermalization
range (kth ≪ k ≪ kst), and the exponential energy decay (k ≫
kst). It is remarkable that, at this intermediate time (t = 10.2),
the β = 6 case appears to be already behaving somewhat like
what is expected of the β = ∞ limit. Indeed, Fig. 2(c) is
reminiscent of the previously studied truncated-Euler case (see
Fig. 1 of Ref. [5]). Of course, in the truncated Euler case no
third decreasing zone exists as, when β = ∞, Eα(k) = 0 for
k > kα . In order to make the comparison with the β = ∞ limit
more quantitative, following Ref. [5], we have computed the
thermalized energy Eth(t) =

∑
kth(t)<k E(k,t) and the effective

2Throughout this paper (unless explicitly stated otherwise), the
colors blue, green, and red will be used in plots to denote β = 2, 4, 6,
respectively.
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FIG. 2. (Color online) Energy spectrum Eα(k) versus k for β = 2
and kα = 50, 100, and 200 at t = 10.2. (b) Same conditions than in (a)
but β = 4. (c) Same conditions as in (a) but β = 6. The dashed-black
lines correspond to Kolmogorov scaling Eα(k) ∼ k−5/3 and energy
equipartition Eα(k) ∼ k2. The thermalization wave number kth and
self-truncation kst are indicated by arrows in (c).

dissipation ε(t) = dEth(t)
dt

. The time evolutions of kth, Eth, and
ε are presented on Fig. 3. The agreement with the truncated
Euler data appears to be good (compare with Figs. 2 and 4 in
Ref. [5]). These quantities do not appreciably depend on the
value of β.

In Refs. [5,29], an effective generalized Navier-Stokes
model for the dissipative dynamics of modes k close to
kth(t) was suggested for the original Euler case with fixed
truncation at k = kmax. In this case, the effective viscosity of
the model was given by νeff =

√
Eth/kmax. If we assume that

the generalized large-β case behaves similarly to the Euler
case truncated at kst, we find that the dissipative wave number
kd should be given by

kd ∼ ε1/4(
√

Eth/kst)−3/4. (10)

The consistency of this estimation of the effective dissipation
with the results displayed in Figs. 3(a)–3(c) requires that
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FIG. 3. (Color online) Temporal evolution of (a) kth, (b) Eth, (d)
ϵ = ∂Eth

∂t
, (e) kth/kd with kd estimated based on the self-truncation

wave number kst; see Eq. (10).

kd ∼ kth. The ratio kth/kd is displayed on Fig. 3(d). It is indeed
of order unity and reasonably constant in time. Thus, the
large-β dynamics of Eq. (2) is seen to emulate the dynamics
of the Euler equation, spectrally truncated at kmax = kst. For
this reason, we call the regime where this behavior takes place
the self-truncation regime.

In the self-truncation regime, the energy spectrum Eα(k)
sharply decreases for for k > kst (see Fig. 2). In order to
quantify this behavior we have used the so-called analyticity
strip (AS) method [30]. Let us recall that the idea is to monitor
the “width of the analyticity strip” δ(!0) as a function of
time, effectively measuring a “distance to the singularity” [31].
Using spectral methods [22], δ(t) is obtained directly from the
high-wave-number exponential falloff of the spatial Fourier
transform of the solution [32]. The AS method has been used
to numerically study putative Euler singularities (see, e.g.,
Ref. [23] for implementation details). The common procedure
is to perform a least-square fit at each time t on the logarithm
of the energy spectrum Eα(k,t), using the functional form

ln Eα(k,t) = ln C(t) − n(t) ln k − 2k δ(t). (11)

Energy spectra are fitted on the intervals 2 < k < k∗ for t < 2
and on the interval 300 < k < min(k∗,kmax) for t > 2, with
k∗ = inf {k | E(k) < 10−32} denotes the beginning of roundoff
noise. The fit presented in Fig. 4(a) in good agreement with
the data.

The time evolution of the fit parameter δ is displayed in
Fig. 4(b), where it is compared with the exponential in time
law δ(t) = 2.7e−t/0.56 followed by the Euler equation (see
Ref. [23]). The horizontal lines show the value of the length
2/kmax (dashed) and 2/kα (dotted-dashed). It is apparent that
the model follows the Euler dynamics as long as δkα ≫ 1.
The measure of the fit parameters is reliable as long as
δ(t) remains larger than a few mesh sizes (δkmax ≫ 1), a
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FIG. 4. (Color online) (a) Exponential decay of Eα(k) at t = 7.8.
(b) Time evolution of energy spectrum fit parameter δ of Eq. (11):
Horizontal lines correspond to δkmax = 2 (dashed black line) and
δkα = 2 (dot-dashed black line). Exponential law (dot black line)
δ = 2.7 exp(−t/0.56) from Ref. [23].

condition required for the smallest scales to be accurately
resolved and spectral convergence ensured. Thus the dimen-
sionless quantity δkmax is a measure of spectral convergence.
Therefore, the self-truncation solutions are solution of the full
partial differential Eq. (2) and not of the spectrally truncated
system.

From the mathematical point of view, Eq. (2) can be
considered as ordinary differential equation as the right-hand
side can be shown to be a bounded continuous Lipschitz
map between Banach spaces. In this case, existence and
regularity can be proved using the same techniques as in
(finite-dimensional) ordinary differential equations [33].

D. Long-time behavior of kst

The self-truncation observed in Fig. 2 is accompanied by a
very slow growth of kst until it reaches the simulation cutoff
kmax. Such a behavior was also observed in the dispersive
self-truncation of the truncated Gross-Pitaevskii equation in
two [10] and three [8,9] dimensions. In the Gross-Pitaevski
case, the self-truncation wave number kst was shown to obey
a power-law scaling:

kst(t) ∼ tη, t ≫ 1. (12)

Figure 5 displays the temporal evolution of kst for different
values of β and kα . The wave number kst is determined by the
weighted average kst =

√
(5/3)

∑
k Eα(k,t)k2/Eα . With this

definition, in the case of the absolute equilibrium Eq. (8) we
obtain kst = kmax. Bear in mind that kst is defined for all times,
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FIG. 5. (Color online) Time evolution of kst(t) at resolution
10243 (see Table I). (a) Different values of β for kα = 20. The crosses
show the Euler evolution of kst (α = 0). (b) β = 4 and different values
of kα . The horizontal dashed lines represent the values of kα/kmax.

even before the self-truncation starts to take place. It is in fact
proportional to the inverse of the Taylor microscale [32].

Figure 5(a) compares kst(t) for different values of the
penalization exponent β with kα = 20 (lower three curves) and
kα = 80 (upper three curves). For short times, when kst < kα ,
the temporal evolution of kst is, as expected, independent of
β. Furthermore, for the very short times, the penalization of
small scales introduced by the α-term in the Euler-Voigt-α
model is negligible and thus kst is also independent of kα as
the dynamics is given by the (standard) Euler equation (black
curve with crosses).

A behavior compatible with a power law is observed at long
times. It is apparent that the exponent seems to depend on the
value of β, though the data do not allow a clear determination
of the exponent η. The power-law behavior is contaminated by
the initial dynamic as it is actually expected to have the form
kst(t) ∼ (t − t0)η, where t0 is the time when self-truncation
starts. Simulations where t ≫ t0 and kst ≪ kmax are difficult
to reach with the present choice of parameters and resolution.

In order to explore such power-law behavior a series of runs
(19–21, see Table I) have been performed in resolution 5123

and at small value of kα = 4. With this choice of parameter,
self-truncation starts at low wave numbers (∼kα) and thus no
Kolmogorov scaling can be observed. However, such a choice
allows very long temporal integrations (up to t = 2300) and to
clearly observe the power-law behavior of kst, as apparent in
the inset of Fig. 5. The value of the exponent clearly depends
on the penalization exponent β. The values measured for η are
displayed in Table II.
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TABLE II. Values of the exponent η of the self-truncation wave
number kst(t) ∼ tη [see Eq. (12)] obtained from direct numeri-
cal simulation of the Euler-Voigt-α model Eq. (2), αV-EDQNM
[Eqs. (14)–(17)], and αV-Leith model (r = 2) [Eq. (24)].

β = 2 β = 4 β = 6

αV-Euler 0.5 ± 6 × 10−3 0.25 ± 3 × 10−3 0.07 ± 5 × 10−3

αV-EDQNM 0.33 ± 5 × 10−5 0.11 ± 9 × 10−5 0.085 ± 1 × 10−4

αV-Leith 0.33 ± 10−6 0.15 ± 2 × 10−4 0.09 ± 9 × 10−6

The power law observed for kst strongly suggests looking
for self-similar behavior of the energy spectrum Eα(k,t), where
the only temporal dependence of the spectrum is given by
kst(t). A self-similar form of the energy spectrum compatible
with the conservation law Eq. (5) is given by

Eα(k,t) = E0

kst(t)
-

[
k

kst(t)

]
, (13)

where E0 is a constant with dimension of energy. The function
-(z) is expected to behave as -(z) ∼ z2 for z ≪ 1 and
exponentially decay for z ≫ 1. Figure 6 displays kst(t)Eα(k,t)
as a function of k/kst(t), where the tendency to converge
toward a self-similar distribution is confirmed for long times.
The assumption of self-similarity implicitly supposes that the
scale α is very small. Such hypothesis is valid only for long
times such that kα ≪ kst(t) ≪ kmax. Discrepancies with the
full self-similar form are certainly due to the finite values of
the infrared and ultraviolet cutoff of the simulation. In order
to develop further this idea, in the next sections we introduce
two theoretical models that allow us to obtain both a clear
numerical support of self-similarity and an analytic expression
for the self-truncation exponent η.

k/k
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k st
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m
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t
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FIG. 6. (Color online) Temporal evolution of the self-similar
function -[k/kst(t)] = Eα(k,t)kst(t) [see Eq. (13)] for β = 4 and
kα = 4. Data from direct numerical resolution of Eq. (2) at resolution
5123. The inset shows the temporal evolution of kst(t)/kmax for
different values of β.

III. THEORETICAL MODELS

A. Eddy-damped quasi-Markovian Euler-Voigt-α model

A popular model of turbulence is the so-called eddy-
damped quasi-Markovian closure [4,18]. It was derived in the
1960–’70s and is based on statistical closure of the velocity
correlations in Fourier space plus some ad-hoc modeling of
the dissipative time scales. It furnishes an integrodifferential
equation for the spectrum E(k,t). EDQNM has been proved
to be a powerful theoretical and numerical tool in the past 30
years as it allows us to achieve a very large scale separation.
It was also shown by Bos and Bertoglio [29] that EDQNM
reproduces well the dynamics of the truncated Euler equation,
including the k−5/3 and k2 scalings together with the relaxation
to equilibrium. It was also used in Ref. [34] to give an analytic
prediction of the effective viscosity acting on the large scales
of truncated Euler flows.

The extension of EDQNM model to the Euler-Voigt-α case
is straightforward. First, following Orszag derivation [4] but
using Eq. (2), we directly find

∂E(k,t)
∂t

= 1
1 + αβkβ

TNL(k,t), (14)

where the nonlinear transfer TNL is modeled as

TNL(k,t) =
∫ ∫

△
.kpq(xy + z3)

[
k2pE(p,t)E(q,t)

1 + αβkβ

− p3E(q,t)E(k,t)
1 + αβpβ

]
dp dq

pq
. (15)

In Eq. (15), △ represents a strip in (p,q) space such that the
three wave vectors k, p, and q form a triangle. x, y, and z,
are the cosine of the angles opposite to k, p, and q. .kpq is a
characteristic time defined as

.kpq = 1 − exp [−(ηk + ηp + ηq)t]
ηk + ηp + ηq

. (16)

The standard EDQNM equations are recovered by setting
α = 0. Absolute equilibrium Eq. (8) is a stationary solution
of Eq. (14) that satisfies detailed balance (no flux solution).
The eddy-damped inverse time ηk is defined as

ηk = λ′

√∫ k

0

s2E(s,t)
1 + αβsβ

ds. (17)

In the limit α → 0 the standard eddy-damped inverse time is
recovered [35]. Note that for β → ∞, the standard eddy time is
also recovered for k < kα = 1/α, whereas ηk = 0 for k > kα ,
consistently with the dynamics of the truncated Euler equation,
as for k > kmax the dynamics is frozen. The constant λ defines
a timescale and we use the standard value λ = 0.36. The
truncation is imposed by omitting all interactions involving
waves numbers larger than kmax in Eq. (15). The main differ-
ence between Eqs. (14)–(17) and the standard EDQNM model
comes from the penalization terms that inhibit the energy
transfer and modifies the straining. Indeed, Eqs. (14) and (15)
can be rewritten as the standard EDQNM equations for the
generalized spectrum Eα by redefining the characteristic time
Eq. (16) as .̃kpq = .kpq/(1 + αβkβ)(1 + αβpβ)(1 + αβqβ ).
The evolution of Eα is thus like the one of E in the standard
EDQNM model but with a local modification of the energy
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FIG. 7. (Color online) (a) Energy spectra Eα(k) at t = 3.5 of
the αV-EDQNM model, for different values of β, obtained with
kα = 104 and kmax = 43 918 (corresponding to resolution 131 072,
with 14.2 points per octave). (b) Temporal evolution of the self-
similar function -[k/kst(t)] = Eα(k,t)kst(t) for β = 4 and kα = 5
and kmax = 692 (28.4 points par octave). The inset (b.1) shows the
temporal evolution of kst(t) for different values of β. The inset (b.2)
shows the αV-EDQNM (red dashed line) and αV-Leith (solid green
lines) theoretical prediction Eqs. (19) and (26) for the self-truncation
exponent η and numerical data from Table II.

transfer term. We refer to Eqs. (14)–(17) as αV-EDQNM
model.

A number of simulations of the αV-EDQNM equation has
been performed and give a behavior that is similar to that of the
DNS of the full Euler-Voigt-α model, including comparable
time scales. Figure 7(a) displays the energy spectrum for
β = 2, 4, 6 and kα = 104 for a simulation with kmax = 43 918
(and 14.2 points per octave).

Figure 7(a) shows that the three zones observed in the Euler-
Voigt-α model (see Fig. 2), are also apparent in αV-EDQNM
model spectra, with scaling laws extending for more than two
decades. In the same spirit as in the Euler-Voigt-α DNS runs
with a smaller value of kα = 5 have been performed, allowing
a clear determination of the self-truncation exponent η. The
values are presented in Table II. Analogously to the Euler-
Voigt-α DNS, we look for a self-similar behavior of the energy
spectrum. The collapse is manifest in Fig. 7(b), where the
self-similar form [Eq. (13)] is displayed for β = 4. The αV-
EDQNM model allows for directly looking for such self similar

behavior and find the exponent η by counting powers. Indeed,
introducing the self-similar form and the variable z = k/kst(t)
in Eq. (13) in the eddy-damped inverse time Eq. (17) we find

ηz(t) = λE
1/2
0 kst(t)

√∫ z

0

-(z′)z′2

[1 + αβkst(t)βz′β]2
dz′. (18)

The eddy-damped inverse time can thus be expressed as
ηz = λE

1/2
0 kstI (z,αkst). Assuming that I (z,αkst) ∼ (αkst)γ ,

we obtain for the characteristic time in the self-similar form
.zkzpzq

∼ k
−1−γ
st . In the same way, the nonlinear transfer term

Eq. (15) is found to scale with the self-truncation number as
TNL ∼ k

−1−γ+3−2−3β
st . Equating the left- and right-hand sides

of Eq. (14) we obtain k̇stk
−2
st ∼ k

−γ−3β
st . Finally, the scaling

kst(t) ∼ tη leads to

η = 1
3β − 1 + γ

. (19)

The exponent γ can be computed using the ansatz -(z) =
z2 exp [−z] and it reads γ = − min [β,5/2]. The theoretical
prediction confronted with the data are presented in good
agreement in the inset (b.2) of Fig. 7.

B. α-Voigt Leith model

Let us now introduce another model that shares the same
dynamics properties as Euler-Voigt-α. It is a spectral diffusion
model that generalizes the so-called Leith model [19]. The
original Leith model is a phenomenological nonlinear (local)
spectral diffusion equation for the energy spectrum that
admits the stationary solutions corresponding to an absolute
equilibrium and Kolmogorov scaling. When forcing and
dissipation is added to the model, a steady-state containing
mixture of constant flux and thermal equilibrium was observed
in Ref. [36]. It also known to posses self-similar solutions [37].

The simplest generalization of the Leith model to take into
account the α-term that conserves the total energy Eα(k) is
given by

∂E

∂t
= − 1

(1 + αβkβ)
∂F

∂k
, (20)

where F (k) is a spectral (nonlinear) flux. Following Leith’s
original derivation, we assume that the spectral flux is defined
in terms of a diffusion coefficient D(k) and a potential Q(k)
such that

F (k) = −γ k2D
∂Q

∂k
. (21)

Assuming locality in the flux, by dimensional analysis we
obtain

D = k9/2−m(E/k2)n(1 + αβkβ)p, (22)

Q = km(E/k2)3/2−n(1 + αβkβ)q . (23)

The dimensionless coefficient γ sets the global timescale and
n,m, q, p are free parameters to be determined. The first
constraint is given by the no-flux solution or the absolute
equilibrium Eq. (8). Imposing that F (k) = 0 for the absolute
equilibrium Eα(k) ∼ k2 leads to m = 0 and n = 3/2 − q.
The second constraint is for the Kolmogorov-like solution
Eα ∼ k−5/3. Imposing that for such solutions the flux is given
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by F = ϵ/(1 + αβkβ)r , we obtain p = 3/2 − q − r , r being a
free parameter. Such a flux can be easily interpreted in the limit
of large β. Indeed, for k ≪ kα the α term is negligible, and the
flux becomes constant. The Kolmogorov phenomenology is
thus recovered. On the other hand, for k ≫ kα the flux vanishes
as expected. Taking into account the previous constraints, we
obtain a family of a diffusive αV-Leith models indexed by the
parameter r:

∂Eα

∂t
= 2qγ

3
∂

∂k

[
k13/2

(1 + αβkβ)r
∂

∂k

(
E3/2

α k−3)
]
. (24)

The standard Leith model is recovered by setting β = 0 and
rescaling the time. Note that Eq. (24) can be reinterpreted
as a standard nonlinear diffusion equation for the generalized
energy spectrum Eα by introducing the triple decay time τα

3 (k)
(see, e.g., Ref. [38]). In terms of τα

3 (k), Eq. (24) reads

∂Eα

∂t
= 2qγ

3
∂

∂k

[
τα

3 (k)k7 Eα

∂

∂k
(k−2Eα)

]
, (25)

where the triple decay time is given by τα
3 (k) = τα

NL(k)/(1 +
αβkβ)r with the eddy turnover time defined as τα

NL(k) =
[k3/2E

1/2
α ]−1.3 Different choices of τα

3 could be used to model
for instance in magnetohydrodynamics flows the presence of
Alfvén waves [38].

The solutions of the αV-Leith model Eq. (24) indeed
reproduce the ones of the Euler-Voigt-α equations. Figure 8(a)
displays the energy spectrum for different values of β and
r = 2. The Kolmogorov k−5/3, the equilibrium k2 regimes,
and the fast decay for large k is manifest. The absence of
a dissipative zone is apparent in Fig. 8(a), when compared
both with the αV-EDQNM case [see Fig. 7(a)] and the Euler
Voigt-α model (see Fig. 2). This is certainly due to the locality
in Fourier space of the αV-Leith model.

As in the previous models, we look for self-similar solution
of Eq. (24). Introducing Eq. (13) into Eq. (24) we obtain in the
limit of k ≫ kα for the self-truncation exponent

η = 1
βr − 1

. (26)

This prediction coincides with the one of EDQNM for r =
2 + γ /β [see Eq. (19)]. The self-similarity behavior of Eα(k,t)
is apparent in Fig. 8(b), where the self-similar form is displayed
for β = 4 and r = 2. The inset shows the temporal evolution of
kst(t) for different values of β. A power-law growth is manifest.
The measured values of the exponent η presented in Table II
are in good agreement with the prediction Eq. (26).

The self-similar analysis leads to a nonlinear second-order
ordinary differential equation for -(z) [see Eq. (13)]. This
equation cannot be solved analytically but an asymptotic
analysis predicts -(z) ∼ z2 for z ≪ 1 and -(z) ∼ (cte − z)3/2

for z # 1. Data is compatible with this result (not shown). Note
that, unlike the Euler-Voigt-α and αV-EDQNM models, the
Leith model presents a sharp cutoff instead of an exponential
decay.

3In the literature, the spectral transfer time (denoted here by τα
S )

usually appears; it is related to the triple decay time by the relationship
τα

3 τα
S = τα

NL
2.
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FIG. 8. (Color online) (a) Energy spectra Eα(k) of the αV-Leith
model Eq. (24) for different values of β obtained with kα = 400
and kmax = 4000. (b) Temporal evolution of the self similar function
-[k/kst(t)] = Eα(k,t)kst(t) for β = 4 and kα = 2. The inset shows
the temporal evolution of kst(t) for different values of β.

IV. CONCLUSION

In summary, the Euler-Voigt-α model allowed us to show
that its self-truncation regime reproduces the behavior of the
truncated Euler equation [5]. We also found evidence for self-
similarity in the long-time behavior of the energy spectrum.
Introducing two different simplified models, the αV-EDQNM
model and the αV-Leith model, we were able to show that
they present behaviors similar to that of the Euler-Voigt-α
model. We were able to determine the analytical values of the
self-similar exponents of the simplified models.

In the present work we have used only integer values for
β. As was noted in Sec. II A, choosing β = 11/3 yields an
absolute equilibrium E(k) ∼ k−5/3 and, in two-dimensions,
β = 2/3 also yields Kolmogorov scaling. This can represent
an interesting alternative to the fractal decimation method that
was used in Ref. [22].

The present work can be naturally extended to the 2D and
3D Ideal MHD equations. In this context, it was recently shown
that dynamo action can be triggered by turbulence in absolute
equilibrium [39]. Thermalization with β = 11/3 would allow
for a more realistic velocity spectrum, mimicking the infinite
Reynolds limit.

As already stated in the introduction, several dissipative
Navier-Stokes-Voigt-α regularizations have been proposed as
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subgrid-scale models of classical turbulence closure problems
both in hydrodynamics [13] and in magnetohydrodynamics
[14]. We now end this paper with a few remarks on the relation
of the present work with these more standard subjects.

First, all the calculations presented above were performed
without dissipation. This methodology clearly poses a chal-
lenge when one is interested in the Reynolds number (Re) of
the flows, as, e.g., in the implicit Large Eddie Simulations of
reference [40]. However, in fully developed turbulence [32],
the dissipative scale kd is related to the integral scale kI by
kd ∼ kI Re3/4. Thus, a first guess for a Reynolds number could
be Re ∼ (kd/kI )4/3, with kd given by Eq. (10) above (see
Sec. II C).This important problem is beyond the present work
and clearly deserves further attention.

A second question is how the sweeping and straining
processes (for review articles, see, e.g., Refs. [41,42]) need to

be modified in the Euler-Voigt-α and related fluid models. This
problem was discussed, for the α-Voigt EDQNM model, in the
paragraph following Eq. (17). The identification of sweeping
and straining processes in the complete Euler-Voigt-α model
Eq. (2) is an important problem that must also be left for further
studies.
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