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Using direct numerical simulations with grids of up to 5123 points, we investigate long-time properties
of three-dimensional magnetohydrodynamic turbulence in the absence of forcing and examine in particular the
roles played by the quadratic invariants of the system and the symmetries of the initial configurations. We observe
that when sufficient accuracy is used, initial conditions with a high degree of symmetries, as in the absence of
helicity, do not travel through parameter space over time, whereas by perturbing these solutions either explicitly or
implicitly using, for example, single precision for long times, the flows depart from their original behavior and can
either become strongly helical or have a strong alignment between the velocity and the magnetic field. When the
symmetries are broken, the flows evolve towards different end states, as already predicted by statistical arguments
for nondissipative systems with the addition of an energy minimization principle. Increasing the Reynolds number
by an order of magnitude when using grids of 643–5123 points does not alter these conclusions. Furthermore,
the alignment properties of these flows, between velocity, vorticity, magnetic potential, induction, and current,
correspond to the dominance of two main regimes, one helically dominated and one in quasiequipartition of
kinetic and magnetic energies. We also contrast the scaling of the ratio of magnetic energy to kinetic energy as
a function of wave number to the ratio of eddy turnover time to Alfvén time as a function of wave number. We
find that the former ratio is constant with an approximate equipartition for scales smaller than the largest scale of
the flow, whereas the ratio of time scales increases with increasing wave number.
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I. INTRODUCTION

A. Context

Magnetic fields pervade the universe and often play an
essential role in configuring and constraining structures, as in
the case of intergalactic jets or closer to Earth in the solar wind
or the magnetosphere. Magnetic pressure contributes to the
containment of the heliosphere [1] and it may retard, together
with turbulent pressure, the gravitational collapse of molecular
clouds in the interstellar medium. Magnetic fields are also
known to accelerate the motion of charged particles in the
magnetospheres of the planets in the solar system, as in the case
of Jupiter’s aurora [2] (see Ref. [3] for the main characteristic
of the auroral emissions as of today).

Such magnetic fields have been observed in a variety of
media to be turbulent, such as in the solar wind [4] (see
Ref. [5] for a recent review), in the interstellar medium
where it is thought to be responsible for strong velocity shear
and intermittency [6], or more recently in the heliosheath
[7]. Using Cluster data with short separation between the
satellites, it was shown in Ref. [8] that anisotropy of the
energy Fourier spectra develops at small scales as predicted
in weak magnetohydrodynamic (MHD) turbulence theory
[9–11]. Solar wind turbulence can also help focus Langmuir
wave packets that are routinely observed using Ulysses or
Stereo spacecrafts [12].

Furthermore, magnetic fields can lead to extreme energetic
events due to reconnection of magnetic field lines in highly
turbulent media; solar flares are one such example, the
prediction of which is one of the purposes of space weather

research because of the disturbance to Earth’s communication
networks and power grids. The penetration of the solar wind
into the Earth’s magnetosphere can be explained by the
development of Kelvin-Helmoltz (KH) vortices, as observed
in Ref. [13], and a relationship between such KH instabilities
and flux transfer events was found recently during substorms
using multiple spacecrafts [14].

An understanding of both fluid and MHD turbulence has
escaped us for a long time. Is MHD turbulence similar
to hydrodynamic turbulence, with a Kolmogorov energy
spectrum EK (k) ∼ ε2/3k−5/3, with ε ≡ dE/DT the energy
dissipation rate, perhaps with an anisotropy due to the
presence of strong uniform fields of magnitude B0? Or is
it different, because Alfvén waves propagate that alter and
dampen the nonlinear dynamics of turbulent flows, leading
to a so-called Irsohnnikov-Kraichnan (IK) energy spectrum
EIK(k) ∼ [εB0]1/2k−3/2? Further, is there one answer to these
questions, or is universality broken in magnetohydrodynamics,
as sometimes advocated? For example, it was found in
Ref. [15] that one can observe three different energy spectra
[Kolmogorov, IK, and weak turbulence (WT) EWT(k⊥) ∼ k−2

⊥ ]
for three different initial conditions of the magnetic field, using
the same velocity field and with the same ideal invariants,
namely, total energy, total magnetic helicity, and total cross
correlation between the velocity and the magnetic field, with
moreover no imposed external field, no forcing, unit magnetic
Prandtl number, and equal kinetic and magnetic energies
initially. In other words, for such a set of initial conditions,
nothing allows for distinguishing these three configurations
from a statistical point of view, no externally imposed time
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scale is present, and the only constraint is that numerically the
velocity and magnetic fields are forced to follow the fourfold
symmetry of the initial conditions. Using this symmetry, one
can gain in resolution and cost of computation and thus the
Reynolds numbers are quite large (with the Taylor Reynolds
number in excess of 1200), with equivalent resolutions of
20483 grid points. Similar results are found to hold in the forced
case as well, for which long-time averaging is feasible [16].

The difference between these three power laws could be
due to nonlocal interactions in Fourier space, between widely
separated scales. Nonlocal interactions are thought to be more
prevalent in magnetohydrodynamics than in hydrodynamics,
as measured in high-resolution numerical simulations [17,18],
and such nonlocality in Fourier space is advocated in the
differentiation between a Kolmogorov and an IK spectrum, but
what would make one of the three flows studied in Ref. [15]
more nonlocal than others? Perhaps the different behaviors
come from another factor. On the one hand, it could be that
the ratio of kinetic to magnetic energy, in particular in the
gravest mode, matters, as indicated in Ref. [15]. On the other
hand, the invariants, which are quadratic in the basic fields, are
identical but higher-order moments could differ; for example,
it was shown in Ref. [19] that the skewness of one of the flows
studied in Ref. [15] is measurably larger than that of the two
other flows when looking at both the velocity and the magnetic
field.

The assumption that with the same invariants, the three
flows should behave in similar ways is based on an assumption
of ergodicity. However, the ergodicity of turbulent flows has
been put into question in a variety of contexts. It has been
observed that long-time memory effects can be found in such
flows, for example, in two-dimensional MHD turbulence [20],
where large bursts of energy were observed to evolve on time
scales of the order of 100 turnover times; it was also found more
recently in numerical simulations of three-dimensional (3D)
hydrodynamic turbulence [21] and in laboratory experiments
(see, e.g., Ref. [22] and references therein). In the atmospheric
boundary layer, one observes that statistics can depend on the
large scales; this may be related to averaging over regions with
local fluctuations in Reynolds number [23]. Such a transfer
between nonlocal triads is shown to lead, however, to local
exchanges of energy in hydrodynamics [24].

The persistence of modes for long times in magnetohy-
drodynamics, associated with large-scale coherent structures,
was recently linked to normal modes appearing because of
magnetic helicity, a large-scale invariant in the ideal case, and
leading to an apparent breaking of ergodicity at the largest
scale insofar as these structures persist for long times [25]. A
similar phenomenon occurs for hydrodynamics in the presence
of solid body rotation: Although the Coriolis force is linear,
it affects the dynamics of rotating turbulence in slowing it
down substantially [26]; this can be attributed to inertial
waves, nonlinear transfer occurring only through resonances
(or quasiresonances) [11].

In selective decay, some invariants are viewed as more
sturdy than others; thus they may influence the long-term
dynamics of decaying turbulent flows. This hypothesis is
based on the fact that invariants may have different physical
dimensions, for example, magnetic potential 〈A2〉, with b =
∇ × A, and total energy 1

2 〈|v|2 + |b|2〉 in two dimensions or

magnetic helicity 〈A · b〉 and total energy in three dimensions:
Since dissipation involves a Laplacian, it is thought that 〈A2〉 or
〈HM〉 will decay more slowly than energy. However, the third
invariant in ideal magnetohydrodynamics, HC = 〈v · b〉, has
the same dimension as energy and it could also influence the
long-term dynamics, becoming strong in relative terms, that is,
with respect to the energy, implying an alignment between the
velocity and the magnetic field, a phenomenon called dynamic
alignment. The relative importance of these two effects was
explored both theoretically and numerically in Refs. [27,28]
for random initial conditions. These theoretical considerations
based on statistical mechanics of a truncated system of modes
were backed up by rather low-resolution numerical simulations
using a moderate number of Fourier modes; they nevertheless
clearly demonstrated the validity of the approach: The end
state of such flows was determined by the respective ratio of
their three invariants. Will the same happen here, when starting
with the three flows studied in Ref. [15], which statistically are
equivalent but display different inertial range dynamics at peak
of dissipation (and in the statistically steady state as well)? This
is the main question that this paper is addressing, using direct
numerical simulations of the MHD equations in three space
dimensions.

B. Equations

We now give the MHD equations for an incompressible
fluid with v and b respectively the velocity and magnetic fields
in Alfvénic units:

∂v
∂t

+ v · ∇v = − 1

ρ
∇P + j × b + ν∇2v, (1)

∂b
∂t

= ∇ × (v × b) + η∇2b; (2)

ρ = 1 is the (uniform) density (and b is then dimensionally a
velocity as well, the Alfvén velocity), P is the total pressure,
∇ · v = ∇ · b = 0, and ν and η are respectively the kinematic
viscosity and magnetic diffusivity; we take ν = η. With ν =
0 and η = 0, the energy ET , the cross helicity HC , and the
magnetic helicity HM , defined as

ET = EV + EM = 〈v2 + b2〉/2,

HC = 〈v · b〉/2, HM = 〈A · b〉/2,

are conserved. Relative helicities can be defined as follows:

σC = cos[v,b], σM = cos[A,b], σV = cos[v,ω]; (3)

they correspond to the degree of alignment between various
vectors: the velocity, the magnetic field, the magnetic potential
(with σM = ±1 defining a force-free field), or the vorticity
(with σV = ±1 defining the so-called Beltrami configuration).
In the latter case, the relative kinetic helicity involves the
vorticity ω = ∇ × v; the total kinetic helicity is an invariant
of the Euler equations (b ≡ 0 and ν ≡ 0).

The weakening of nonlinearities than can be diagnosed
through the σ coefficients just defined is a topic that has
received a great deal of attention through the years, starting
with the fluid turbulence community; for example, it was
shown in Ref. [29] that random flows have a natural (generic)
degree of alignment, so that one must be careful in the
interpretation of the data when considering the values reached
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by the σ coefficients as to what can be attributed to pure
randomness and what is due to the dynamics of the turbulent
flow. It was also shown in Ref. [30] that vorticity stretching
is accompanied by vorticity alignment with the intermediate
eigenvector of the symmetrized velocity gradient matrix
corresponding to the second eigenvalue λ2, with λ1 > λ2 > λ3

and λ1 > 0,λ3 < 0, because of incompressibility, suggesting
that regions of dissipations are in the form of sheets.

Alignment and depression of nonlinearities also has its
history in magnetohydrodynamics; for example, it was shown
in Ref. [31], using two-dimensional direct numerical simu-
lations (DNS) and models of magnetohydrodynamics, that
the velocity and the magnetic field have a strong tendency
to align, as also studied in Ref. [32]. More recently, the
three-dimensional problem was tackled in Ref. [33], where
clear alignment properties between all fields were obtained,
including the induction and current, although in that latter
case it does not correspond to an invariant but rather it of
course reflects the weakening of the Lorentz force in the
primitive equations. In fact, minimization principles using
the ideal invariants of magnetohydrodynamics, dating back
to Woltjer [34] (see Ref. [35] for the general case taking the
three ideal invariants into account), predict such alignment
tendencies for the vectors in the MHD equations.

The kinetic energy spectrum is the Fourier transform of the
velocity two-point correlation function. Once homogeneity,
isotropy, and incompressibility have been taken into account,
only two defining functions remain: EV (k) is proportional to
the kinetic energy, with

∫
EV (k)dk = EV = 1

2 〈v2〉, and the
kinetic helicity HV (k) stems from the antisymmetric part of
the velocity gradient tensor. Similar definitions hold for the
magnetic and cross correlation functions (note that helicity is
a pseudoscalar). Finally, the kinetic and magnetic Reynolds
numbers are defined as

RV = U0L0/ν, RM = U0L0/η,

where U0 and L0 are the characteristic velocity and length
scale, respectively. The integral scale is defined as

Lint =
∫

[EV (k)/k]dk∫
EV (k)dk

.

C. Predictions from statistical mechanics

The statistical equilibria in 3D magnetohydrodynamics
were derived in Ref. [36]. They are the long-time solutions
to a truncated system of Fourier modes, with kmin and kmax the
minimum and maximum wave numbers, respectively; these
modes are coupled through the nonlinear ideal MHD equations
(ν ≡ 0 and η ≡ 0) and subject to the conservation of all
quadratic invariants. Defining α �= 0, β, and γ as the Lagrange
multipliers associated with the ET , HM , and HC invariants,
namely, αET + βHM + γHC, these equilibria read, assuming
that the magnetic helicity is nonzero (β �= 0),

HM (k) = − 8πβ

α2�4

1

D(k)
, HJ (k) = k2HM (k),

(4)

HC(k) = γ�2

2β
HJ (k), HV (k) = γ 2

4α2
HJ (k),

EM (k) = −α�2

β
HJ (k) = 8πk2

α�2

1

D(k)
,

EV (k) =
(

�2D(k) + γ 2

4α2

)
EM (k) (5)

=
(

1 − β2

4α2�2

1

k2

)
EM (k),

where HJ = ∫
k2HM (k)dk is the current helicity and

α > 0, �2 = 1 − γ 2

4α2
> 0,

(6)

D(k) =
(

1 − β2

α2�4

1

k2

)
> 0 ∀k ∈ [kmin,kmax].

The invariants HM and HC are not definite positive and
furthermore HM does not have the same physical dimension
as ET and HC and hence β does not have the same physical
dimension as α and γ . In order to fulfill realizability conditions
(positivity of energy and Schwarz inequalities involving the
helicities), necessary relationships between coefficients can
be derived, involving kmin (see Ref. [36]).

When β ≡ 0 and thus HM (k) ≡ 0 and HJ (k) ≡ 0, one
finds that the kinetic helicity is also equal to zero, we have
equipartition of energy at all wave numbers with EM (k) =
EV (k) = 8πk2/α�2, and HC(k) = −4πγ k2/α2�2; thus the
relative cross helicity 2HC(k)/EV (k) is constant in that case.
When γ ≡ 0 and thus HC(k) ≡ 0, the kinetic helicity is
also equal to zero and the kinetic energy has its nonhelical
expression EV (k) = 8πk2/α; the magnetic energy and helicity
can peak at low wave number when β is large enough and
the relative magnetic helicity kHM (k)/EM (k) ∼ 1/k, i.e., it is
stronger in the largest scales of the flow, a result that persists
in the general case (β �= 0,γ �= 0).

When considering HJ (k) [instead of HM (k)], note that
all Fourier spectra are strictly proportional, with coefficients
uniquely determined by initial conditions given the values of
the invariants, except for the kinetic energy; also note that one
has EV (k) � EM (k) ∀k, the equality arising only when there
is either no magnetic helicity, or maximal cross correlation, or
for kmax → ∞. Similarly, the residual helicity defined as

HR(k) = HV (k) − HJ (k) = −�2HJ (k)

is of the sign opposite to that of the current and of the magnetic
helicity and HR(k) becomes equal to zero only for maximal
cross correlation (�2 = 0), except for the trivial nonhelical
case of course. The relative helicity HR(k), integrated over the
small scales, is the motor of the nonlinear dynamo problem,
i.e., the growth of large-scale magnetic energy because of
small-scale helical motions; note that HR reduces to the kinetic
helicity in the kinematic regime when the magnetic field is
weak, thus recovering the so-called alpha effect (see Ref. [37]
for a recent comprehensive review).

It was shown in Refs. [27,28] that these solutions can be
seen as indicators of the long-time behavior of 3D MHD
systems left to decay because of a principle of minimization of
total energy. Three main regions of parameter space can be seen
as attractors to the dynamics: a magnetic helicity dominated
region, an alignment (strong HC) region, and an intermediate
region. The relaxation principle is well founded when there
is magnetic helicity in the system since dimensionally HM
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weighs the large scales more so than the energy or the cross
correlation, but when HM ≡ 0, it is not so clear what happens.
It can be shown, using minimum energy principles following
Ref. [34], that the resulting fields are u = 0 and j ∝ b when
there is no cross correlation (the constraint is simply that HM

remain constant), whereas in the general case, the solution is
a bit more involved [see Eq. (3.13) and those following in
Ref. [35]; see also Ref. [28]]. The main purpose of this work
is to investigate this long-term dynamics when considering the
three initial conditions used in Ref. [15] that have the same
quadratic invariants (ET = 1/4, HM ≡ 0, and HC � 4% in
relative terms) and thus presumably the same final asymptotic
state and yet, at peak of dissipation, show clear differences in
their inertial range scaling. We shall also investigate other de-
terministic flows with either cross helicity or magnetic helicity
to see whether they evolve as well towards these attractors.

D. Description of the initial conditions for all the computations

Table I summarizes the main characteristics of the 41 runs
discussed in this paper. Further details on the computations are
given below, when specifying the initial velocity and magnetic
fields. All runs use the Geophysical High-Order Suite for
Turbulence code (GHOST) [38] unless otherwise stated in the
“Remarks” column; TYGRS stands for a code that implements
the fourfold symmetries of the Taylor-Green (TG) flow [39,40]
and its extensions to magnetohydrodynamics [15]. Values at
t = T100 = 100τnl of 2HC/ET , HM/ET , and ET , with τnl =
L0/U0, are given in the Table; note that kmin = 1 has been
taken as a normalizing factor for the ratio involving magnetic
helicity. For all runs ν = η and EM = EV = 0.125 initially.
The groups divided by horizontal lines correspond to different
line styles in Figs. 1, 2, and 4. All runs are performed on a
grid of 643 points with ν = 2 × 10−3 unless otherwise noted
(see the last column); the viscosity is changed inversely to the
resolution and three runs are done on grids of 5123 points, with
two in a series (R17∗∗ and R25∗∗) with all resolutions from 643

to 5123. Run R17+ is a variant of run R17∗∗ on a grid of 5123

points, with the helical velocity perturbation placed at wave
number k = 1 instead of k = 3. Double and single precision
are denoted by D and S, respectively. In the second column I,
A, and C refer to the Taylor-Green flows studied in Ref. [15]:
They stand for the insulating boundary conditions (I),
the alternate insulating conditions (A), and the conducting
one (C); by insulating or conducting it is meant that in the box
in which the computations are performed, the current is either
parallel or normal to the walls. In most cases (except those
labeled TYGRS), the symmetries of the Taylor-Green initial
conditions are not enforced and can be broken.

Runs in which noise of amplitude 10−x relative to the host
flow has been added to both the kinetic and magnetic energies
are denoted +10−x in the second column. Furthermore, B wH,
B iH, or V&B sH indicates that a weak (1%), intermediate
(10%), or small (7%) Beltrami Arnold-Beltrami-Childress
(ABC) flow has been added to the velocity or magnetic field
initial conditions where the percentages correspond to the
relative amount of energy. The run B Hx stands for a modified
Taylor-Green velocity and a magnetic field that is a helical
Beltrami ABC flow at k = x and the run indicated by V H2,
B H2 is the same, but with a 3% addition of ABC added to

the velocity. The term OT stands for the Orszag-Tang vortex
generalized to three dimensions as the initial condition studied
in Ref. [41]. Finally, the last four runs have the velocity of
Ref. [41] and a mixture of OT and ABC flow with the specified
fractions for the magnetic field. The purpose here is to be
able to vary the cross helicity HC and the magnetic helicity
HM of well-studied configurations in MHD turbulence, at
a fixed total energy ET , the same in all runs; indeed, all
computations have equal initial kinetic and magnetic energies,
with ET = EV + EM = 1/4.

The code GHOST is a general purpose pseudospectral
community code with periodic boundary conditions; the code
is now parallelized up to ∼98 000 processors, using a hybrid
(MPI-OpenMP) methodology that becomes advantageous at
high resolution [38]. Runs R1b, R5b, and R10b are done using
a similar code TYGRS, but in which the fourfold symmetries
of the Taylor-Green configuration are enforced at all times
[39,40]; TYGRS follows the same parallelization methodology
as GHOST. The Taylor-Green velocity is

vTG
x = vTG

0 sinkvx coskvy coskvz,

vTG
y = −vTG

0 coskvx sinkvy coskvz, vTG
z = 0

and the three different initial conditions for the magnetic field
are in that case

bI
x = bI

0coskmx sinkmy sinkmz,

bI
y = bI

0sinkmx coskmy sinkmz,

bI
z = −2bI

0sinkmx sinkmy coskmz;

bA
x = bA

0 coskmx sinkmy sinkmz,

bA
y = −bA

0 sinkmx coskmy sinkmz, bA
z = 0

and

bC
x = bC

0 sinkmx coskmy coskmz,

bC
y = bC

0 coskmx sinkmy coskmz,

bC
z = −2bC

0 coskmx coskmy sinkmz.

When computations in which these initial fields are perturbed
with an added noise, the amplitude of that noise relative to
the energy in the Taylor-Green initial condition is indicated in
the second column. This noise has randomly generated phases
with an energy spectrum of the form

N = N0 exp

(
− (ln k − ln k0)2

2(ln σ )2

)
.

In all cases the noise is centered around k0 = 2 and has
σ = 2. Noise of this form is added to both the magnetic
and kinetic energies and introduces small perturbations in the
initial magnetic helicity and cross helicity relative to the total
energy depending on the random phases generated and the
amplitude of the noise.

We also performed some runs that have significant amounts
of helicity since helicity is a main indicator of the behavior of
such flows, at least in the ideal regime. Since the Taylor-Green
runs have no helicity, different configurations are also studied.
The B Hx type is one for which the velocity is a modified
Taylor-Green velocity such that vTG′

x = −vTG
y , vTG′

y = −vTG
x ,

and vTG′
z = 0, centered at wave number 2 or 3, and the magnetic
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field is a Beltrami ABC flow centered at wave number km = x

with x equal to either 1, 2, or 3; the ABC magnetic field is

bABC
x = bABC

0 [B cos(kmy) + C sin(kmz)],

bABC
y = bABC

0 [C cos(kmz) + A sin(kmx)],

bABC
z = bABC

0 [A cos(kmx) + B sin(kmy)].

The OT configuration is that of the generalization of the
Orszag-Tang vortex to three dimensions, as studied in
Ref. [41], with the velocity and magnetic fields defined as

vOT
x = −2vOT

0 sinkvy, vOT
y = 2vOT

0 sinkvx, vOT
z = 0

and

bOT
x = bOT

0 [−2a sin2kmy + a sinkmz],

bOT
y = bOT

0 [2a sinkmx + a sinkmz],

bOT
z = bOT

0 [a sinkmx + a sinkmy].

The parameter a allows one to modify the cross correlation
between the two fields; the choice a = 0.8 gives a relative
correlation of 0.41.

Finally, initial conditions that are mixtures of the above
types are also studied. Runs R15 and R16 have the Taylor-
Green velocity and perturb the Taylor-Green magnetic field
initial condition with an A configuration, with an ABC
Beltrami field such that

bA+ABC
x = bA+ABC

0 {(ξ1coskm1x sinkm1y sinkm1z

+ ξ2[B cos(km2y) + C sin(km2z)]},
bA+ABC

y = bA+ABC
0 {−ξ1sinkm1x coskm1y sinkm1z

+ ξ2[A sin(km2x) + C cos(km2z)]},
bA+ABC

z = bA+ABC
0 ξ2[A cos(km2x) + B sin(km2y)].

The parameters ξ1 and ξ2 set the relative fractions of the Taylor-
Green and ABC portions of the initial condition. Run R15
has ξ1 = 0.99 and ξ2 = 0.01 and run R16 has ξ1 = 0.9 and
ξ2 = 0.1. Both of these flows have km1 and km2 such that both
portions of the initial condition are at k = 3. Initial conditions
such as these allow for a perturbation in the magnetic helicity
without significantly perturbing the cross helicity. The series
of runs labeled R17∗∗ use the above combined magnetic field,
but also have a velocity that combines the Taylor-Green and
ABC flows in a similar fashion:

vTG+ABC
x = vTG+ABC

0 {ξ1sinkv1x coskv1y coskv1z

+ ξ2[B cos(kv2y) + C sin(kv2z)]},
vTG+ABC

y = vTG+ABC
0 {−ξ1coskv1x sinkv1y coskv1z

+ ξ2[A sin(kv2x) + C cos(kv2z)]},
vTG+ABC

z = vTG+ABC
0 ξ2[A cos(kv2x) + B sin(kv2y)].

In the case of the R17 runs, both the magnetic field and velocity
initial conditions have ξ1 = 0.93 and ξ2 = 0.07. The magnetic
field is such that both portions of the initial condition are at
k = 3, but the velocity has the Taylor-Green portion of the flow
at k = 2 and the ABC portion at k = 3 initially. This allows for
a perturbation in both the magnetic helicity and cross helicity.
Run R17+ is the same, but with the ABC portion of the velocity
at k = 1. Run R20 involves a velocity that is a combination of
the modified Taylor-Green velocity and a Beltrami ABC flow

such that

vTG′+ABC
x = vTG′+ABC

0 {ξ1coskv1x sinkv1y coskv1z

+ ξ2[B cos(kv2y) + C sin(kv2z)]},
vTG′+ABC

y = vTG′+ABC
0 {−ξ1sinkv1x coskv1y coskv1z

+ ξ2[A sin(kv2x) + C cos(kv2z)]},
vTG′+ABC

z = vTG′+ABC
0 ξ2[A cos(kv2x) + B sin(kv2y)].

In run R20, ξ1 = 0.97, ξ2 = 0.03, and kv1 and kv2 are set such
that both the Taylor-Green and ABC subsets of the initial flow
are at k = 2. When combined with an ABC magnetic field, this
results in the addition of cross correlation between the velocity
and magnetic fields of 0.11 relative to the total energy.

The type ξ1 OT + ξ2 H1 is an initial condition for the
velocity that is the OT vortex and combines the OT and ABC
magnetic fields such that

bOT+ABC
x = bOT+ABC

0 {ξ1[−2a sin2km1y + a sinkm1z]

+ ξ2[B cos(km2y) + C sin(km2z)]},
bOT+ABC

y = bOT+ABC
0 {ξ1[2a sinkm1x + a sinkm1z]

+ ξ2[A sin(km2x) + C cos(km2z)]},
bOT+ABC

z = bOT+ABC
0 {ξ1[a sinkm1x + a sinkm1y]

+ ξ2[A cos(km2x) + B sin(km2y)]},
where ξ1 and ξ2 set the relative fractions of OT and ABC,
respectively. Each of the flows of this type is such that km1 =
km2 = 1. Some runs were performed for more than 1000τnl,
where τnl = L0/U0 is the turnover time, and the maximum
number of modes in the largest runs on grids of 5123 points is
in excess of 106.

E. Global properties for all the runs

We show in Fig. 1 the temporal evolution of the Reynolds
number [Fig. 1(a)] and of the ratio of magnetic to kinetic
energy [Fig. 1(b)] for roughly half the runs. The color table
and symbols for runs are also given in Fig. 1. Since the
runs are performed at relatively modest Reynolds numbers
and numerical resolutions but for long times, the Reynolds
numbers eventually enter a regime of exponential decay where
nonlinearities are weak. The burst of energy for run R20
at t ∼ 250 is associated with the end of a plateau in the
ratio EM/EV and with a weak Lamb vector L = v × ω (see
Fig. 4 below). Examining the energy ratio, it is clear that
two main regime types develop in these runs: One is close to
equipartition, with a tendency to have an excess in magnetic
energy as predicted by the statistical ensembles, and one is
where the magnetic energy wins all and is presumably under
the influence of a strong relative magnetic helicity and an
accumulation of HM at the gravest mode of the computation.
The run done on a grid of 323 points has its Reynolds number
getting too low and as a result behaves considerably differently
from the other Taylor-Green A flow runs on grids of 643

and 1283 points. Of course v = 0 is a possible solution of
the MHD equations; this corresponds to the hydrodynamic
attractor, which can also be fluid in the forced case when
the magnetic Reynolds number is too low. Also note that run
R15, which is the Taylor-Green A flow perturbed by 1% ABC
magnetic field, moves towards a kinetically dominated state;
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FIG. 1. (Color online) (a) Evolution of the Reynolds number defined as Re ≡ vrmsLint/ν, where Lint is the integral scale (see the text) as
a function of time for roughly half of the flows from Table I. The plot is in linear-logarithmic coordinates and time is measured in units of
turnover time for each configuration. The inset shows a blowup of the results for early times for a subset of plotted runs. Each run is indicated by
symbols (and colors online) that are given in the center. (b) Magnetic to kinetic energy ratio for the same runs in linear-logarithmic coordinates.
Many runs gather around quasiequipartition either above or below, but for some runs, mostly those in which the relative amount of magnetic
helicity grows significantly (such as runs R16–R21b), this ratio becomes substantially larger than unity.

by the end of the run, this flow has kinetic energy dominating
over magnetic energy by approximately a factor of 10 in the
gravest mode.

II. ROLE OF ACCURACY AND SYMMETRIES

The ensemble of runs analyzed in this paper is shown in
Fig. 2 in a plane introduced in Refs. [27,28]; it delineates,
in terms of the total energy, the relative importance of the
two helical invariants. A peculiar feature of the I and A
Taylor-Green runs is that, unless perturbed, they stay where
they started, even though in these runs the symmetries are not
imposed at all times. This may be related to the fact that it can
be shown that, in the context of the fluid equations, symmetries
are preserved by the dynamical evolution, a result that one
may be able to extend to the MHD case [42]. Unperturbed,
these two flows do not evolve in parameter space at these
low Reynolds numbers. In the presence of perturbations, they
do cover parameter space and evolve towards configurations
with either strong HM (and thus high ratio EM/EV , as in
the case of runs R16 and R17∗∗) or strong HC with near
equipartition of kinetic and magnetic energies. Note that, in
single precision and for long times, the I flow is perturbed by
the accumulated roundoff errors and it evolves toward another
attractor, as shown in Fig. 3: Whereas the accurate computation
that maintains all symmetries evolves toward presumably a
magnetically dominated Taylor state, the errors introduced by
insufficient precision lead to a quasiequipartition of energy.
This same behavior, where the single-precision computation
evolves towards a different attractor after sufficiently long
times, is not evident in either the A or C Taylor-Green flows;
however, similar effects are observed when random noise is
explicitly added to these initial conditions.

The C flow also exhibits unique behavior as compared to
the I and A flows in that, over the course of the computation,
the accurate double-precision run does not remain at the origin
of the plane and instead moves to a state with 2HC/ET = −1
and HM/ET = 0. As a result, the C flow without perturbations

reaches an equipartitioned state, as opposed to a magnetically
dominated state.

We have also performed a more controlled and specific per-
turbation of the Taylor-Green symmetries by adding a fraction
of a Beltrami ABC flow to the magnetic field and/or velocity
of the Taylor-Green initial condition in the A configuration,
i.e., by perturbing the flow explicitly with nonzero helicity
(runs R15–R17+ and R18–R21b). By varying the amount of
helical ABC flow relative to nonhelical Taylor-Green flow in
the magnetic field, the value of HM/ET can be adjusted in a
controlled manner at t = 0. By also adding a fraction of ABC
flow to the velocity, a set amount of 2HC/ET can additionally
be introduced to the flow. With larger perturbations to the
magnetic helicity and cross helicity, such as in runs R16 and
R17∗∗, the symmetries are clearly broken and the runs reach
the boundaries of the parameter space as predicted by the
minimum energy principle (see Fig. 2). Note that run R17d,
which is performed on a grid of 5123 points, is only run for
100τnl. If this run were continued to longer times, as the
other three R17∗∗ runs are, this run would likely reach the
boundary. In the case of run R16, only the magnetic field
initial condition is perturbed with 10% ABC flow and the flow
achieves a magnetically dominated state with nearly maximal
HM/ET . The four R17∗∗ runs, which all have 7% ABC flow in
both the velocity and magnetic field initial conditions, but are
performed at different Reynolds numbers, evolve to a state on
the boundary with both nonzero HM/ET and 2HC/ET when
given enough time. Note that although the four runs have the
same initial conditions, they have taken different paths through
the parameter space with differing Reynolds number due to the
effect of small perturbations.

III. INTERPLAY BETWEEN HELICAL INVARIANTS

A. Magnetic helicity relative growth

According to the equations written in Sec. I C, the helical
invariants play a central role in the evolution of MHD

036307-7



STAWARZ, POUQUET, AND BRACHET PHYSICAL REVIEW E 86, 036307 (2012)

FIG. 2. (Color online) Trajectories taken through the
(2HC/ET ,HM/ET ) parameter space for the runs in Table I.
The start positions for each run are marked with × and the positions
at the final time of the run are marked with ◦. Each curve is labeled
with the run number from Table I near the end point. Three runs
(R5a, R5b, and R6) follow the black dotted line, which goes from the
origin to the point (−1,0), and eight runs (R1a, R1b, R10a–R10d,
R11a, and R11b) remain at the origin of the parameter space;
note that this origin is unstable and when symmetries are broken
by perturbations, the resulting trajectories can go in any direction
depending on the phases of the perturbation. The two series (R17∗∗

and R25∗∗) have the asterisks replaced with letters that progress from
a to d for increasing resolutions to mark the individual runs. Only
the 643 and 5123 runs are shown from R25∗∗ because all resolutions
followed nearly identical trajectories. The energy minimization
principle predicts that flows will move towards the boundaries of this
space; that is, 2HC/ET = ±1 when the end value of HM/ET < 0.5
and on the marked ellipsoidal curve bounding the upper portion of
the plot when the end value of HM/ET � 0.5. The parameter space
is symmetric for negative values of HM/ET .

turbulence. Since the Taylor-Green flows have no helicity,
we now examine a set of evolutions for several helical
configurations that have been studied in the literature, namely,
the ABC (Beltrami) flows, the Orszag-Tang vortex, and some
perturbations of such flows (see Sec. I D and Table I for
definitions).

The Orszag-Tang vortex, without magnetic helicity, be-
comes highly correlated, but with the inclusion of some
magnetic helicity it evolves toward states that, as HM/ET

increases, are more and more magnetically dominated. With
very small additions of magnetic helicity (runs R23a and
R23b), HM/ET grows to modest values at which 2HC/ET

can still obtain a value of one and the flow has equipartition
between kinetic and magnetic energies. However, with even
a slightly larger addition of HM (see runs R24 and R25∗∗ of
Table I), the growth of HM/ET begins to dominate and the flow
moves towards more magnetically dominated states. Similarly,
unperturbed ABC flows, with strong HM , remain uncorrelated
if initially so; however, when perturbing them by adding some
correlation between the velocity and the magnetic field, as in
run R20, they follow similar evolutions but stay away from the
singularity that occurs at maximum HM/ET ,HC ≡ 0.

0 100 200 300 400 500
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40
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V

FIG. 3. (Color online) Comparison for the magnetic to kinetic
energy ratio for the Taylor-Green I flow between two codes, one
implementing symmetries (run R1b, black circles), the other one not
(run R1a, black solid line), both in double precision, together with
another run using single precision (run R2, blue dashed line). The
double precision in GHOST is sufficient to maintain the symmetries up
to T = 500, in units of turnover times. Note the excellent agreement
between the three computations performed on a grid of 643 points up
to T ∼ 100τnl, the time after which the single-precision run departs
from the others and evolves towards quasiequipartition (at the final
time EM/EV ∼ 2, as often observed in the solar wind [4]). The red
dash-dotted line and the green dotted line are the Taylor-Green I flow
with added random noise of relative amplitudes 10−6 (run R3) and
10−3 (run R4), respectively. Note that added noise behaves similarly
to the single-precision computation, but departs from the other runs
and goes towards quasiequipartition at earlier times.

B. Vector alignment in MHD turbulence

The relative alignment of dynamical fields [see Eq. (3) for
definitions] is shown in Fig. 4 for many runs, using the same
line (color) encoding as in Fig. 1. Many runs reach an Alfvén
state (σC ∼ ±1), some more slowly, and a few stay at low
values: It has been known for a long time that the correlation
between the velocity and the magnetic field grows with time
(see, e.g., Ref. [35]).

Magnetic helicity seems more discriminating insofar as the
long-time behavior of the runs: Either kminHM/ET remains
rather low or it approaches its maximal value. The runs that
approach near maximal values of HM/ET are those in which a
sufficient amount of magnetic helicity is present in the initial
condition. In Fig. 2, as well as in Fig. 4, it can be seen
that all the runs that attain large values of HM/ET have at
least slightly larger initial values of magnetic helicity than
those that remain near zero. In contrast, the normalized kinetic
helicity shows a more varied set of behaviors, with sometimes
strong fluctuations between aligned and perpendicular fields,
as for run R20 [thick solid red line (triangles)], which evolves
towards strong magnetic helicity (see the map in Fig. 2). Note
that run R25 [thick dashed purple line (squares)] is likely to
evolve in a similar manner. This analysis suggests that one
ought to look in more detail at the alignment properties of the
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FIG. 4. (Color online) Temporal evolution of helicity in relative terms for the runs in Fig. 1, with (a) HC/ET , (b) kminHM/ET , and (c) σV

[see definition in Eq. (3)]. The symbols and color scheme are the same as in Fig. 1. Note the clear distinction between the runs for the two
invariant quantities (staying at values close to either zero or their extrema) and the more varied evolution for σV , although its evolution is also
influenced by magnetic helicity [see Eq. (4)].

various fields by examining probability distribution functions
(PDFs) of the angle between various vectors.

The buildup of pointwise correlations between vector fields
in a turbulent flow (velocity and vorticity in the fluid case,
velocity and magnetic induction in the MHD case) in a few
turnover times is a dynamical consequence of the primitive
equations and is linked to the alignment of vorticity with
either pressure gradients or shear [43]; it occurs both in DNS
of MHD flows and perhaps more importantly in the solar
wind (as could be shown in Ref. [43] using 30 years of Omni
data). These points were further studied in detail in Ref. [33]
with 3D computations; the strongest alignment property was
found to be between induction and current (corresponding to
a weakening of the Lorentz force) and with, for all vectors, a
strong enhancement over their Gaussian values.

In this context, we show in Fig. 5 alignment probability dis-
tribution functions for several variables for several flows (see
the caption), after ten turnover times: Row (u) is for velocity
and magnetic field (concentrating on the cross helicity); row
(um) examines the magnetic potential and magnetic field, i.e.,
considering magnetic helicity; row (lm) looks at the Lorentz
force, i.e., the degree of alignment between induction and
current; and row (l) considers the Lamb vector, i.e., the degree
of alignment between the velocity and the vorticity. At t = 0,
all undisturbed flows have a strong central peak corresponding
to orthogonality of vectors (either A ⊥ b or v ⊥ b) and thus
strong nonlinearities, except for the OT case [column (d)], for
which σM peaks symmetrically at values slightly greater and
slightly less than zero and σC indicates that there is a significant
fraction of highly aligned velocity and magnetic field vectors.

These PDFs confirm the results illustrated in Fig. 2 in
showing an evolution towards either alignment of the velocity
and the magnetic field, or of the magnetic field and the
potential, once the flows are perturbed, the more so the larger
the perturbation and the more so the smaller the scale (as when
contrasting [A,b] and [j,b]), as can be observed for all flows.
The I flows [column (a)] are in fact the harder to perturb insofar
as alignment does not really develop and one only observes a
widening of the PDFs around zero, i.e., a distribution of angles
that remains nevertheless close to π/2, with the magnetic
field and current developing alignment, particularly so for
the stronger the perturbation. For the C flow family of runs

[column (b)], a perturbation at the level of 10−x simply widens
the distribution of angles (blue dashed curve), but increasing
this perturbation leads to a totally different behavior and a
flat distribution for magnetic helicity, the perturbations being
less significant for cross helicity in the sense that the PDF is
changed, but the overall distribution (its shape) is similar in all
cases.

Concerning the A configuration [column (c)], as the
flows are more perturbed from their highly symmetric initial
conditions, the fields become more aligned, with an almost
equal distribution for v and b (σC ∼ ±1), whereas a clear
alignment develops for a and b [σM ∼ 1 for run R14 with
the strongest perturbation, with a similar strong (positive)
alignment between the current and magnetic field]. Finally,
the Orszag-Tang flow [column (d)] starts from a different
configuration of vectors and its evolution as it is more
perturbed is not so dramatically different (except for the green
dash-dotted line, which corresponds to an initial condition with
a 50% OT–50% ABC mixture).

In contrast, the relative kinetic helicity (corresponding to
alignment of velocity and vorticity) does not seem to follow
such a clear-cut organization unless magnetic helicity is strong
and kinetic helicity follows HM and grows in relative terms,
under the influence presumably of Alfvén waves due to the
large-scale magnetic field, as predicted in Ref. [44]. However,
the A and C flows show less weakening of the advection
term than for the other two fields, with rather flat PDFs
for [u,ω]. The growth of v − ω or v − b alignment is a
dynamical property of the Navier-Stokes or MHD equations,
corresponding to the mutual interactions of shear and vorticity
or shear and magnetic field [43]; in fact, such alignments
properties have been found between all relevant fields, to
different degrees [33]. Alignment (and subsequent weakening
of nonlinear interactions) is shared by the moderate Reynolds
number computations performed here and for long times as
well.

C. Is there a dynamically significant ratio in MHD turbulence?

We finally examine the relative role of the velocity and the
magnetic field, in terms of energy distribution and time scales,
for the runs performed at the highest Reynolds number and
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FIG. 5. (Color online) Probability distribution functions at T = 10τnl of the cosine of the angle between the velocity and magnetic field b
[row (u)], the magnetic potential and the magnetic field (row (um)), and b and current density [row (lm)]. Finally, row (l) gives the alignment
between velocity and vorticity, i.e., examining the Lamb vector. All PDFs are normalized to their maximum value. Column (a) I flow runs R1a
(black solid line), R3 (blue dashed line), and R4 (red dotted line); column (b) C flow runs R5a (black solid line), R7 (blue dashed line), R8
(red dotted line), and R9a (green dash-dotted line); column (c) A flow runs R10a (black solid line), R12 (blue dashed line), R14 (red dotted
line), and R16 (green dash-dotted line); column (d) OT flow runs R22 (black solid line), R23a (blue dashed line), R24 (red dotted line), and
R25 (green dash-dotted line). See Table I for the nomenclature of the runs.

thus with the largest extent of the inertial range (and numerical
grid resolution). In order to do so, we look at the behavior in
the inertial range around the peak of dissipation, when the
turbulence is developed and the Reynolds number has not
decreased substantially yet, of the ratio of magnetic to kinetic
energy rE(k) = EM (k)/EV (k) and of the eddy turn-over time
to the Alfvén time rτ (k) = τnl(k)/τA(k), the latter being built
on the magnetic field in the gravest mode.

The ratio of time scales behaves as expected when eval-
uating the turnover time on the energy spectrum variation
with wave number. This can be seen in Fig. 6: For all flows,
rτ (k) increases with decreasing scale because of the way these
two characteristic times change with scale, i.e., 1/k for τA

and [k3EV (k)]−1/2 for the eddy turnover time. In contrast,
and again for all flows, the energy ratio is constant and of
order unity (but systematically slightly above in fact, as also

regularly observed often in the solar wind), except in the
largest scale in which it is dominated by initial conditions
and the reinforcement of magnetic energy in the largest scale
in all the runs dominated by an evolution towards the top of
the map displayed in Fig. 2 and corresponding to cases with
strong magnetic helicity. We also display for completion the
kinetic, magnetic, and total energy spectra for the R17∗∗ flow
in Fig. 6(c); of course, the resolution for these runs prevents us
from distinguishing whether a Kolmogorov or an IK scaling
is favored here. Note that at later times of the order of three
times the peak of dissipation, this result still holds but with, in
all cases displayed here, an increase in EM/EV at the largest
excited scales, by a factor of 2–40 (not shown). All other
runs of this study behaved similarly, as long as the Reynolds
number is sufficiently high for turbulent mixing to take
place.
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FIG. 6. (Color online) (a) Nonlinear to Alfvén time ratio and (b) magnetic to kinetic ratio, as functions of wave number at the peak of
dissipation for the following computations performed on grids of 5123 points (see Table I for the nomenclature): run R17∗∗ [A flow with 7%
ABC flow (black solid line)], run R17+ [variant of A flow with 7% ABC flow (blue dashed line)], and run R25 [50% OT flow and 50% ABC
flow (red dotted line)]. Note the constancy of quasiequipartition of energy throughout the inertial range, to be contrasted with the increase in the
ratio of characteristic time scales in that same range. (c) Spectra (kinetic, magnetic, and total with dotted, dashed, and solid lines respectively)
for R17∗∗ on the 5123 grid.

IV. CONCLUSION

In this paper we tackled the problem of long-time properties
of turbulent flows in magnetohydrodynamics at unit magnetic
Prandtl number, using direct numerical simulations with
grids of up to 5123 points. This was done for flows and
magnetic fields with periodic boundary conditions appropriate
for homogeneous turbulence. We chose a variety of flows and
examined the effect of perturbing the initial conditions with
different levels of random noise, as well as modifying the ideal
invariants in the fluid at constant total energy, namely, the
magnetic helicity that quantifies the degree of knottedness of
the flow, and the correlation between the velocity and magnetic
field. We show that, independently of the Reynolds number (up
to a maximum Reynolds number of approximately 1.2 × 104),
flows evolve to a state based on basic physical principles,
namely, using the statistical equilibria of a truncated number
of modes with the given chosen invariants, combined with an
energy minimization principle [27].

Specifically, we showed that the Taylor-Green configu-
rations, studied in Ref. [15] for their energetic properties,
depart from their strong symmetries given a sufficiently
strong perturbation, as can be encountered in high Reynolds
number flows. They then evolve toward different characteristic
behaviors as to the amount of magnetic and cross helicity they
support (in the HM -HC plane; see the temporal trajectories of
runs in Fig. 2). These can depend on the perturbation (whether
it has cross correlation or magnetic helicity), leading the flows
to different end states in particular. It is not clear, however, if,
when studying these flows at substantially higher Reynolds
numbers, as was done in Ref. [15] for the Taylor-Green
flows in magnetohydrodynamics but, contrary to Ref. [15], not
imposing the symmetries at all time, one will still have three
different scaling laws for the total energy spectra for these three
configurations. We also confirm that statistical mechanics, with
an energy minimization principle, is an excellent predictor for
the behavior of turbulent flows, as argued in Ref. [27] and
studied at moderate resolutions in Ref. [28]. The conclusion
on the validity of statistical mechanics for dissipative turbulent

flows in magnetohydrodynamics is reached using a parametric
study for a variety of initial conditions and with grids of up to
5123 points and Reynolds numbers of up to 12 000 (values
taken at t = 0), a substantial improvement over previous
studies.

How generic are the flows studied in this paper? One could
think in terms of random initial conditions, as initially done
in Refs. [27,28]; the view here is that noise is generic in
experimental or geophysical flows and the question is what
emerges over time through the nonlinear interactions in the
general case. Turbulence would be a boring subject if it was
Gaussian; in fact, phase relations play an important role in the
structuring of turbulent flows, with a wealth of well-defined
structures, be it vortex filaments for fluids or vortex and current
sheets in magnetohydrodynamics; such sheets eventually roll
up at sufficiently high Reynolds number, as observed in
high-resolution DNS of MHD flows [19] and as observed as
well in the solar wind [13]. The instabilities of such structures
eventually lead to energy dissipation, as measured recently in
a series of studies (see, e.g., Refs. [45–49]).

In contrast, the initial conditions of a turbulent event, in
the solar wind environment or in the interstellar medium, two
cases where MHD turbulence is known to play a role, may
well come from an instability when, for some reason, the
fluid goes over threshold. One can think, for example, of a
stably stratified medium such as in an atmosphere (or in the
oceans of planet Earth) in which, through nonlinear couplings
of weak waves, overturning and Kelvin-Helmoltz instability
take place, leading, for example, to enhanced diffusion [50].
These instabilities near threshold may well be represented
by a few large-scale modes, which may result in different
alignment properties (in other words, different σ ’s). Finally,
one could point out that, in principle, universality (within a
given class) holds whatever the initial conditions, classes that
can be described by the ideal invariants and likely by the initial
ratio of kinetic to magnetic energy as well [15].

Quasiequipartition between the kinetic and magnetic ener-
gies is expected, on the basis of mixing of complex systems
with a large number of degrees of freedom, although, as shown
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in Ref. [36], magnetic helicity, alone or in the presence of
cross helicity, may well prevent this from happening. What
we have shown in this paper is that, in some cases with strong
phase relationships such that the nonlinear terms are weakened
considerably through alignment of the relevant fields (vorticity,
velocity, magnetic field, and magnetic current), other solutions
are reachable with quite different properties. This is a bit akin
to a potential flow in hydrodynamics: When the vorticity is
identically zero, this is an exact solution of the Navier-Stokes
equations, although an unstable one, and vorticity, like a
seed magnetic field, grows over time. The reason why these
solutions do not destabilize in a Lyapounov time, which can
be close to an eddy turnover time, is probably due to the fact
that symmetries are very strong properties of flows that are

preserved by the dynamical evolution [42,51]. This, as well as
other open questions, is a topic for future work.
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