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Axial dipolar dynamo action in the Taylor-Green vortex
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We present a numerical study of the magnetic field generated by the Taylor-Green vortex. We show that
periodic boundary conditions can be used to mimic realistic boundary conditions by prescribing the symmetries
of the velocity and magnetic fields. This gives insight into some problems of central interest for dynamos: the
possible effect of velocity fluctuations on the dynamo threshold, and the role of boundary conditions on the
threshold and on the geometry of the magnetic field generated by dynamo action. In particular, we show that
an axial dipolar dynamo similar to the one observed in a recent experiment can be obtained with an appropriate
choice of the symmetries of the magnetic field. The nonlinear saturation is studied and a simple model explaining
the magnetic Prandtl number dependence of the super- and subcritical nature of the dynamo transition is given.
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I. INTRODUCTION

The generation of magnetic field by the flow of an electri-
cally conducting fluid has been mostly studied to understand
the magnetic fields of planets and stars [1]. The increase in
computing power has allowed the study of these fluid dynamos
in almost realistic three-dimensional geometries, although
far from the parameter range relevant for astrophysical or
geophysical flows or even laboratory experiments [2].

Three successful laboratory experiments have been per-
formed so far, the first two of which are fluid dynamos observed
with a helical Ponomarenko-type flow [3] or with an array of
helical flows with the same helicity [4]. In these first two
experiments, the flow lines were strongly constrained by the
boundaries, thus restricting turbulent fluctuations to small
scales, and the observed dynamos were found to be in very
good agreement with the ones obtained by the action of the
mean flow alone. A third example of fluid dynamo has been
provided in the laboratory by the VKS experiment, i.e., a von
Kármán (VK) flow of liquid sodium [5]. In contrast to the
previous dynamo experiments, the geometry of the generated
magnetic field strongly differs from the predictions made by
kinematic dynamo codes using the mean flow alone. The mean
magnetic field has, to leading order, a dipolar structure with its
axis along the axis of rotation of the propellers that drive the
flow [6], whereas kinematic dynamo codes using the mean flow
alone predict an equatorial dipole. Thus, the VKS dynamo is
not generated by the mean flow alone. It has been proposed that
nonaxisymmetric fluctuations related to the propellers driving
the flow play a crucial role in the generation of an axial dipolar
magnetic field [7], and this mechanism has been illustrated
by a kinematic dynamo simulation using a nonaxisymmetric
model flow in a cylindrical geometry [8].

Two different choices can be made for the numerical
simulations of dynamos. One possibility is to consider a flow
confined in a finite domain and to use boundary conditions
that are as realistic as possible. Another one is to use periodic
boundary conditions on the velocity and magnetic fields. In
the latter case, the Taylor-Green (TG) flow has been widely
studied. The TG vortex is a standard turbulent flow often used

in numerical computations [9] that is closely related to the
experimentally studied VK swirling flow [10–12]. The relation
between the VK flow and the TG vortex is a similarity in
overall geometry: a shear layer between two counter-rotating
eddies. The TG vortex, however, is periodic with impermeable
free-slip boundaries (present as mirror symmetries), while the
experimental flow takes place between two counter-rotating
coaxial impellers and is confined inside a cylindrical container.
The TG vortex also obeys a number of additional rotational
symmetries.

Dynamo action in the TG flow was studied some time
ago [13] and it was found that the most unstable growing
magnetic mode is equatorial (perpendicular to the axis of
rotation) and breaks the additional rotational symmetries. Thus
enforcing all the geometric symmetries of the TG flow was
found to be nonfavorable to dynamo action. Since that time,
all numerical studies of dynamo action in the TG vortex were
performed using general-periodic codes (not enforcing any
of the symmetries). The generated magnetic field was always
found to be equatorial [14–16].

The idea that we explore in the present paper is to enforce
the mirror symmetries of the TG flow (that confine the flow)
but not enforce the rotational symmetries of the magnetic field
(that forbid the appearance of magnetic dipoles). With mirror
symmetries enforced, the corresponding boundary conditions
on the magnetic field can be related to either electrically
insulating1 or perfectly conducting boundaries [17]. In the
present case (without the rotational symmetries), there are
23 = 8 possibilities for the magnetic boundaries conditions.

The paper is organized as follows: after recalling the
magnetohydrodynamics (MHD) equations and the TG forcing,
we present the symmetries of the TG flow in Sec. II. We
show that there exists only one choice of mirror symmetry
for the velocity field that is compatible with the equations
of motion. It corresponds to free-slip boundary conditions on

1More precisely, corresponding to the magnetic field normal to the
boundary; see the discussion at the end of Sec. II D.
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each boundary of the cube [0,π ]3. In contrast, in each direction,
two independent choices exist for the magnetic field, either
corresponding to an electrically insulating boundary or to a
perfectly conducting boundary. We show that we can always
restrict the kinematic dynamo study in a symmetric subspace
and that there are six different cases to consider. In Sec. III, we
first briefly describe the numerical procedures and explain how
the growth rates of the different dynamo modes are determined.
Then, we consider how the imposed symmetries on the velocity
field affect the dynamo threshold. We show that in the absence
of constraints, the flow can spontaneously break the TG forcing
symmetries, thus generating turbulent fluctuations that inhibit
dynamo action, although involving larger kinetic energy. In
Sec. IV, we consider the different symmetry constraints for
the magnetic field and their respective dynamo efficiency.
We show that the lower threshold is obtained when lateral
boundaries are of a different nature (two conducting and two
insulating). In addition, the lowest threshold is obtained when
the upper and lower ones are insulating. In this case, the
threshold value and the neutral mode geometry correspond to
the ones already reported in a general-periodic code without
symmetry constraints [13]. We observe that the geometry of the
dynamo modes strongly depends on the symmetry constraints
that are chosen. With all boundaries electrically insulating, we
obtain the generation of an axial dipolar magnetic field, as the
one observed in the VKS experiment. The nonlinear saturation
of this axial dipole is studied in Sec. V where we also present
a simple model explaining the super- and subcritical nature of
the dynamo transition when the magnetic Prandtl number is
varied. Discussion and conclusions are given in Sec. VI.

II. THEORETICAL PRELIMINARIES

A. MHD equations and Taylor-Green forcing

The magnetohydrodynamics (MHD) equations for a unit
density fluid and an incompressible flow read, in terms of
the velocity v and magnetic induction b (in units of Alfvèn
velocity),

∂tv + v · ∇v = −∇P + j × b + ν�v + f, (1)

∂tb = ∇ × (v × b) + η�b, (2)

together with ∇ · v = 0 = ∇ · b; j = ∇ × b is the current
density, P is the pressure, f is the mechanical forcing, ν is
the kinematic viscosity, and η is the magnetic diffusivity. The
total energy is

E(t) = Ev(t) + Eb(t), (3)

Ev(t) = 1
2 〈v2〉, Eb(t) = 1

2 〈b2〉, (4)

where Ev(t) is the kinetic energy, Eb(t) is the magnetic energy,
and 〈·〉 stands for the spatial average over the domain. The
total energy is conserved by these equations in the ideal case
(ν = η = 0 and f = 0).

Considering a flow that is 2π periodic in all spatial
dimensions, the kinematic Reynolds number Re and the
magnetic Reynolds number Rem are defined as

Re = Lvrms

ν
, Rem = Lvrms

η
, (5)

where the root-mean-square velocity is vrms = √
2Ev/3 and

the characteristic length L is defined by

L = 2π

∑
k k−1Ev(k,t)∑
k Ev(k,t) dk

, (6)

where the kinetic energy spectrum Ev(k,t) [such that Ev(t) =∑
k Ev(k,t)] is obtained by summing 1

2 |û(k′,t)|2 on the
spherical shells k − 1/2 � |k′| < k + 1/2 [û(k) is the Fourier
transform of the velocity]. Analogously, the magnetic en-
ergy spectrum is denoted by Eb(k,t) and verifies Eb(t) =∑

k Eb(k,t). The magnetic Prandtl number of the fluid is given
by Pm = ν/η = Rem/Re.

We now turn to the definition of the external driving volumic
force f in Eq. (1) that balances the energy dissipation and
allows the reaching of a statistically stationary state that is
needed to sustain dynamo action. Following Ref. [13], we
force the system by setting in Eq. (1)

f = f (t)vTG, (7)

where vTG is the Taylor-Green [18] initial data

vTG = (sin(x) cos(y) cos(z), − cos(x) sin(y) cos(z),0), (8)

and f (t) is determined by imposing that the projection of v on
the mode vTG is fixed at all times to its initial value.

In the Navier-Stokes problem [Eq. (1), with j = b = 0], it
is well known [9] that a number of the symmetries of vTG

are compatible with the equations of motion. They are, first,
rotational symmetries of angle π around the axis, (x = z =
π/2) and (y = z = π/2), and angle π/2 around the axis,
(x = y = π/2). Another set of symmetries corresponds to
planes of mirror symmetry: x = 0,π ; y = 0,π ; and z = 0,π ,
which form the sides of the so-called impermeable box that
confines the flow. However, it is important to note that the
TG symmetries of the solution can be spontaneously broken,
in the sense that a small nonsymmetric component of the
initial data can grow and eventually break the symmetry of
the solution [13]. The symmetry breaking of the TG flow will
be numerically studied in Sec. III B.

B. Mirror symmetries revisited

The main idea of the present paper is to enforce the
mirror symmetries of the TG flow (that confine the flow) but
not enforce the rotational symmetries of the magnetic field
(that forbid the appearance of magnetic dipoles). With mirror
symmetries enforced, the corresponding boundary conditions
on the magnetic field can be related to either electrically
insulating or perfectly conducting boundaries [17] (see the
discussion at the end of Sec. II D). In the present case (without
the rotational symmetries), it will turn out that there are new
(mixed) possibilities for the magnetic boundaries conditions.
We now proceed to explore all the TG mirror symmetries that
are dynamically compatible with the full MHD equations (1)
and (2).

The MHD equations (1) and (2) are invariant under reflec-
tions with respect to a plane. We now turn to considerations
pertaining to this property. Let us first define the standard re-
flection transformation of the vector r = (r1,r2,r3) ≡ (x,y,z)
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about the plane rα = 0 by Sα with

S1(r1,r2,r3) = (−r1,r2,r3), (9)

S2(r1,r2,r3) = (r1, −r2,r3), (10)

S3(r1,r2,r3) = (r1,r2, −r3). (11)

Note that Sα is its own inverse.
The action of the reflection operation on a vector field h(r)

is defined by

Rα(h(r)) = Sαh(Sαr), (12)

which explicitly reads, in the case of the the z = 0 plane,

Rz

⎛
⎜⎝

hx(x,y,z)

hy(x,y,z)

hz(x,y,z)

⎞
⎟⎠ =

⎛
⎜⎝

hx(x,y, −z)

hy(x,y, −z)

−hz(x,y, −z)

⎞
⎟⎠. (13)

We will say that the vector field h has a mirror symmetry
with respect to the plane rα if it is even (Rαh = −h) or odd
(Rαh = h) under transformation (12). Note that if a vector field
is even (odd) with respect to a plane, then it is perpendicular
(parallel) to that plane. When a vector field is odd (or even)
with respect to simultaneous transformations with respect to all
planes, it is said that it transforms as a vector (or pseudovector).
Note that the Taylor-Green vortex is odd with respect to all
planes: RαvTG = vTG for all α.

The following properties are true for any fields g and h:

Rα(∇ × h) = −∇ × (Rαh), (14)

Rα(g × h) = −(Rαg) × (Rαh), (15)

Rα�g = �(Rαg). (16)

From Eq. (14), it is directly observed that if h is even with
respect to a plane, then ∇ × h is odd with respect to that plane,
and vice versa.

We now turn to study the mirror symmetries of the MHD
equations. Applying Rα to (1) and (2) and writing v · ∇v =
(∇ × v) × v + ∇ (

1
2 v2

)
, it directly follows from Eqs. (14)–

(16) that v̄ = Rαv and b̄ = Rαb satisfy

∂t v̄ + (∇ × v̄) × v̄

= −∇(
P̄ + 1

2 v̄2
) + (∇b̄) × b̄ + ν�v̄ + Rαf, (17)

∂t b̄ = ∇ × (v̄ × b̄) + η�b̄, (18)

with P̄ (r) = P (Sαr). Therefore, the only symmetry of the
velocity that is compatible with the MHD equations (1) and (2)
is Rαf = f and v̄ = v. This can be easily understood with
the following simple geometrical argument based on vortex
rings that are known to have a self-induced motion along their
axis. Suppose that there exists a symmetry plane containing a
vortex ring; for such a configuration, the vorticity is parallel
to the plane. The related velocity field is thus an even field
with respect to that plane. It is immediately noticed that the
symmetry will not be preserved by the Navier-Stokes equation:
the vortex ring will leave the plane under its self-induced
motion, thus breaking the symmetry. Another possibility is
to place the vortex ring perpendicular to the plane, making the
velocity parallel, and therefore odd with respect to that plane.
The self-induced motion will then respect the symmetry.

Note, however, that the magnetic field must be symmetric,
but it can be either even or odd. Therefore, for a mirror-
symmetric velocity field, the magnetic field has two possible
symmetries for each plane that are compatible with the
MHD equations. We will see below that the two possibilities
correspond to insulating (I) and perfectly conducting (C)
magnetic boundary conditions (of the free-slip type) for the
even and odd cases, respectively. Note that as the fields are
defined in a 2π -periodical box, the planes x = π, y = π ,
and z = π are also mirror-symmetry planes with the same
symmetries as x = 0, y = 0, and z = 0. In the following,
depending on the symmetries of the magnetic field, we will
refer to these planes as walls of type I (even) or C (odd). With
this definition, the symmetry planes of the Taylor-Green vortex
are of type CCC (vorticity is perpendicular to the box [0,π ]3).

C. Projection on symmetric magnetic fields

Let us now define the projectors into symmetric functions
with respect to the planes ri = 0 and ri = π ,

Qα
s = 1

2 (I − sRα), (19)

where α stands for x,y,z; Rα is defined by Eq. (12); and
s = ±1. Note that by construction Rα(Qα

s h) = −sQα
s h and

therefore Qs
xi

h is an even vector (if s = +1) or odd vector
(s = −1) with respect to the planes rα = 0 and rα = π .

As the above discussion about the two possible magnetic
mirror symmetries was presented for each plane rα = 0
independently, we now define the projector over the most
general mirror-symmetric magnetic fields corresponding to a
different choice for each plane,

P�s = Q1
s1

Q2
s2

Q3
s3
, (20)

with �s = (sx,sy,sz) ∈ {−1,1}3. Note that by construction

P(−1,−1,−1)vTG = vTG. (21)

Let us now consider a completely mirror-symmetric 2π -
periodical velocity field. With this choice, v is confined
into the impermeable box [0,π ]3: there is no flow crossing
the boundaries. This mimics the rigid boundary conditions
of experiments that are also impermeable. We now explain
how the different kinds of magnetic symmetries are related
to perfectly conducting and insulating boundary conditions.
If the magnetic field is even with respect to one of the
mirror-symmetry planes, we call this plane an insulating (I)
wall because the current j = ∇ × b is parallel to (or contained
in) the wall [17]. Analogously, if b is odd, the wall is called
conducting [the current is perpendicular to (or crosses) the
wall].

We now show that any 2π -periodical magnetic field can be
decomposed in a finite sum of mixed symmetrical-periodical
vector and pseudovector fields that correspond, respectively, to
insulating and perfectly conducting magnetic boundary condi-
tions. Thus the complete study of the influence of symmetries
(boundary conditions) on the TG dynamo threshold is reduced
to a finite number of possible cases.

Let � be the space of 2π -periodic functions, and ��s = P�s�
the projection of � over the subspaces with mirror symmetries
given by �s. For example, if b ∈ �1,1,−1, then j = ∇ × b is
normal to the planes z = 0 and z = π , and parallel to the
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other ones. Therefore, �1,1,−1 is the 2π -periodical function
space such that the planes x = 0, x = π, y = 0, y = π are
insulating and the planes z = 0, z = π are conducting.

It can be demonstrated by straightforward (but tedious)
computations that

P�s1 P�s2 = Iδ �s1, �s2 , (22)∑
�s

P�s = I. (23)

We thus have that � decomposes as the direct sum

� =
⊕

�s
��s , (24)

and therefore the general-periodic function space is then
decomposed in eight mirror-symmetric periodical function
spaces. For the sake of clarity, in the following, we will denote
each space ��s by its respective type of walls. For instance, the
case �1,1,−1 is labeled IIC.

D. Decomposition of kinematic dynamo on symmetry classes

The kinematic dynamo is the linear instability of the MHD
equations linearized about a given velocity field vs. For a
stationary vs, the growth rate σb of the magnetic field is given
by the eigenvalue problem Lb = σbb with

Lb = ∇ × (vs × b) + η�b. (25)

Observe that the eigenvalue σb depends on η and thus is a
function of Rem [see Eq. (5)]. The dynamo threshold is defined
by the critical magnetic Reynolds number Recrit

m such that
σb(Recrit

m ) = 0. Note that this number is not necessarily unique
due to windows of instability [15]. In this work, we refer to
Recrit

m as the smallest critical magnetic Reynolds number.
As a consequence of the symmetry invariance of the

MHD Eqs. (1) and (2), it is straightforward to show that
the symmetry projectors P�s commute with L. Therefore, if
b0 is an eigenvector associated to the eigenvalue σ 0

b by the
decomposition of the identity (23), then there exists one
symmetry �s0 such that P �s0 b0 is also a eigenvector associated
to σ 0

b . We thus have, for the threshold of general-periodic
dynamo,

Recrit
m = min

�s
{
Recrit

m
s̃}

, (26)

where Recrit
m

�s is the critical magnetic Reynolds number of
the linear problem (25) restricted to ��s . In other words, a
bifurcating mode of the magnetic field has a certain mirror
symmetry. It is thus natural to study the dynamo bifurcation
for each symmetry by restricting (25) to each ��s . This can be
easily done if each mirror symmetry is imposed to the magnetic
field by applying the projectors P�s .

Since the forcing (7) is invariant by rotation of π/2 along the
x = y = π/2 axis, the spaces ICI and ICC are, respectively,
equivalent to CII and CIC. There are thus only six independent
cases to study. The symmetries III, CCC, IIC, CCI, ICI, and
ICC will be individually studied in Sec. IV.

Note that we are dealing throughout this paper with periodic
fields, with physical boundaries being replaced by symmetry
planes. In contrast, in the case of a physical fluid confined into a
finite domain, a magnetic field at an insulating boundary should

be matched with a potential field outside the flow domain. The
case that we call “insulating” also mimics a boundary with
a magnetic permeability much larger than that of the fluid,
i.e., liquid sodium inside an iron vessel. In that case, matching
with a potential field is not required and the magnetic field is
perpendicular to the boundaries.

III. SYMMETRIES OF THE VELOCITY FIELD
AND DYNAMO THRESHOLD

A. Numerical procedures and determination of growth rates

Numerical solutions for Eqs. (1) and (2) are efficiently
produced using the pseudospectral general-periodic code
GHOST [19], which is dealiased by spherical spectral truncation
using the 2/3 rule [20]. Thus a run with resolution N3 has a
maximum wave number kmax = N/3. The resolutions used in
this work vary from 643 to 2563. The equations are evolved in
time using a second-order Runge-Kutta method, and the code
is fully parallelized with the message passing interface (MPI)
library. We implemented into GHOST both the constant velocity
forcing (7) and the projectors (20).

The TG vortex (8) is used as the initial data for Eq. (1),
eventually adding a small nonsymmetric random part when
studying symmetry breaking (see Sec. III B). A small, spec-
trally band-limited random seed of given magnetic energy is
used as the initial data for Eq. (2).

To correctly resolve the MHD Eqs. (1) and (2) spectrally, a
fast decay at large k (faster than algebraic) of the energy spec-
trum is required. This condition (called spectral convergence)
is quantitatively determined by fitting the exponential decay
of the energy spectra Ev(k,t) and Eb(k,t) by a law of the form
Ce−2δk that amounts to a simple lin-log linear regression. The
value of δkmax furnishes a measure of spectral convergence.
For instance, Fig. 1 shows a numerical simulation where the
magnetic field is well resolved, as apparent on the lin-log plot
of Eb(k). A fit of the data in Fig. 1(a) leads to δbkmax � 10.
In all of the runs presented in this work, we always have
δkmax > 2.5; with this condition, we ensure that the fields are
well resolved and that there is no spurious numerical effect on
the observed dynamo instabilities.

Once the correct resolution of MHD equations is ensured,
the next step is to observe the behavior of the magnetic energy
Eb(t). Within the linear theory of kinetic dynamo Lb = σbb

(a) (b)

FIG. 1. (Color online) (a) Magnetic energy spectrum of a dynamo
run: case III with Re = 30, Rem = 80. (b) Corresponding temporal
evolution of magnetic energy (3). The fits used to determine σb =
0.017 and δkmax = 10.72 (for the present simulation) are displayed
as (dashed) straight lines of (a) and (b).
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[see Eq. (25)], we expect an exponential behavior of Eb(t)
with a growth rate σb. For each run, the magnetic energy is
thus fitted with a law of the form Eb(t) = Ceσbt to determine
σb. Figure 1(b) shows a typical temporal evolution of Eb(t)
and the corresponding fit gives the value σb = 0.017. The data
in Fig. 1 thus correspond to a typical dynamo action run.

B. Symmetry breakings of velocity field

As already stated at the end of Sec. II A, the TG symmetries
of the solution to Eq. (1) can bespontaneously broken, in the
sense that a small nonsymmetric component of the initial data
can grow to order one and completely break the symmetry
of the solution. Two types of symmetry breaking will be
considered in this section: first, confinement breaking and,
second (with confinement enforced), the breaking of the rota-
tional symmetry of angle π/2 around the axis (x = y = π/2).
We now turn to a numerical study of these points.

1. Spontaneous confinement breaking

To study the spontaneous breaking of the mirror symmetries
of the TG flow (that confine the flow), we compare runs
performed with and without projecting the velocity field after
each time step using (21). The time dependence of the kinetic
energy at Re = 30 is shown in Fig. 2(a), where it is seen
that (when nonenforced) the mirror symmetry is broken with
an increase of the kinetic energy Ek(t) due to fluctuations of
the velocity field. Mirror- (confinement-)symmetry breaking
is seen to take place around Re = 10 in Fig. 2(b), where
the dependence of the kinetic energy (time averaged over
statistically stationary values) on Re is displayed.

2. Spontaneous π/2 rotation breaking

We now turn to the numerical study of another bifurcation
of the steady-state velocity field that takes place when
confinement (21) is enforced. Stable and unstable steady states
are followed by making use of Newton’s method, with the
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FIG. 2. (Color online) (a) Temporal evolution of kinetic energy
with (red diamonds) and without (blue circles) confinement (21)
imposed at Re = 30. (b) Dependence of kinetic energy on the
Reynolds number for the symmetric solid (red diamonds) line and
nonsymmetric dashed (blue circles) line runs (time averaged over
statistically stationary values).
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FIG. 3. (Color online) (a) Bifurcation diagram: kinetic energy
Ev(k = 2) as a function of Re. A pitchfork bifurcation is clearly
present [Ev(k = 2) is quadratic in the bifurcating mode vPF]. (b)
and (c) Visualization of Taylor-Green stationary states at Re = 30:
(b) nonbifurcated and (c) bifurcated velocity fields. Streamlines are
colored according to the magnitude of the velocity field, varying from
magenta (dark gray) in the low intensity zones to yellow (light gray)
in the high intensity zones.

linear equations being solved by the stabilized biconjugate
gradient algorithm [21]; see Ref. [22] and references therein.
The result of such computations is displayed in Fig. 3(a), where
it is apparent that a pitchfork bifurcation is present at critical
Reynolds number Rec = 22. Physical three-dimensional (3D)
visualizations of the velocity fields are made using VAPOR [23]
and are presented in Figs. 3(b) and 3(c). By computing the
difference between the stable and unstable branches obtained
near the bifurcation by Newton’s method, the bifurcating mode
can be numerically obtained. The dominant Fourier component
vPF (PF standing for pitchfork) is found in this way to be

vPF =

⎛
⎜⎝

sin(x) cos(y) cos(z)

cos(x) sin(y) cos(z)

−2 cos(x) cos(y) sin(z)

⎞
⎟⎠. (27)

It is straightforward to check that vPF is odd under π/2 rotation
around the axis (x = y = π/2). As the equations and the
nonbifurcated states are both invariant by this transformation,
the bifurcation is a pitchfork [see Fig. 3(a)] that breaks the π/2
rotational invariance around the axis (x = y = π/2).

C. Effect of velocity fluctuations on magnetic
energy growth rates

The symmetries of the confined velocity fields reduce
the fluctuations of the velocity field, as observed in Fig. 2.
Using the methods outlined in Sec. III A to determine the
magnetic growth rates, we observe that this reduction enhances
the magnetic instability and reduces the critical magnetic
Reynolds number. This is apparent in Fig. 4, where the growth
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FIG. 4. (Color online) Dynamo growth rates σ corresponding to
the symmetric and nonsymmetric velocity fields of Fig. 2(a) as a
function of the magnetic Reynolds number Rem. Blue crosses: v and
b nonsymmetric; red stars: v symmetric and b nonsymmetric.

rates for the nonsymmetric and symmetric velocity field are
compared as functions of Rem at fixed kinematic Reynolds
number Re = 30.

IV. EFFECT OF MAGNETIC BOUNDARY CONDITIONS

A. Magnetic boundary conditions and dynamo threshold

We now focus on a confined velocity field (with mirror sym-
metries imposed) and study the influence of the different kinds
of magnetic boundary conditions on the dynamo threshold. A
number of runs have been performed at kinematic Reynolds
numbers Re = 30 and Re = 150, and magnetic Reynolds
numbers varying between Rem = 10–300 with resolutions
of 643–2563 grid points. For each run, the growth rate is
measured, and the whole ensemble of data is presented in
Fig. 5. This is our main quantitative result on growth rates.

By performing a linear interpolation of σb, we obtain the
critical magnetic Reynolds number Recrit

m that is given in Table I
for Re = 30.

Observe that critical magnetic Reynolds numbers vary from
Recrit

m ∼ 10 to Recrit
m ∼ 250 for the different kinds of walls.

The most favorable cases correspond to mixed insulating-
conducting lateral walls (ICI and ICC). These configurations
allow for a magnetic field crossing the box in the direction
perpendicular to the insulating walls and current crossing in the
other direction. The less favorable cases turn out to correspond
to the lateral perfectly conducting walls (CCC and CCI). As
discussed at the end of Sec. II D, note that the condition we
call insulating corresponds to a magnetic field perpendicular
to the boundary. This case can be achieved experimentally by
using a ferromagnetic boundary.

Figure 5 also displays the growth rate for Re = 150. At
this Reynolds number, the velocity field is turbulent and the
fluctuations increase the dynamo threshold. Observe that the
case ICI is still the most unstable.

Note that as a consequence of the direct sum decomposition
presented in Sec. II C [Eq. (24)], the most unstable case (ICI)

TABLE I. Critical magnetic Reynolds number for the different
walls and symmetric and nonsymmetric cases at Re = 30. Values
obtained by linear fit of σb.

Case ICI ICC IIC III CCC CCI

Rec
m 9 26 66 73 231 254

(a)

(b)

FIG. 5. (Color online) Dynamo growth rates σb (symmetric
velocity field) as a function of the magnetic Reynolds number Rem for
the six possible symmetries of the magnetic field at kinetic Reynolds
number (a) Re = 30 and (b) Re = 150.

and the case with no symmetries imposed on the magnetic field
should have the same critical magnetic Reynolds number. This
condition is indeed verified (see Fig. 6), with both cases having
Recrit

m = 9. Furthermore, the property (24) also implies that the
growth rates of these two cases are equal. This is apparent in
Fig. 6(a), where the two growth rates are plotted for Re = 30.
Both curves are almost identical for all magnetic Reynolds
numbers used in this work. The slight difference at Rem = 50
may be due to imprecisions in the numerical determination of
small growth rates caused by interferences between competing
modes. At Re = 150, the curves only coincide qualitatively.

(a)

(b)

FIG. 6. (Color online) Dynamo growth rates σb (symmetric
velocity field) obtained with a nonsymmetric magnetic field compared
with the CIC magnetic symmetric case. Kinetic Reynolds number
(a) Re = 30 and (b) Re = 150.
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(a) (b)

FIG. 7. (Color online) 3D visualizations [magnetic field in red
(dark gray), current in yellow (light gray), and density plot of highest
magnetic energy zones] of the growing modes: (a) Case v symmetric
and b nonsymmetric, Rem = 10; (b) ICI case, Rem = 10.

At this relatively high kinematic Reynolds number, the flow
is turbulent and the instantaneous growth rate [defined as in
Fig. 1(b)] fluctuates, thus explaining the slight discrepancy
between the two curves.

B. Magnetic boundary conditions and geometry
of unstable modes

We now turn to study the geometry of the unstable modes
near the dynamo threshold by generating 3D visualizations of
the magnetic field and current. In all of the figures presented
in this section, the velocity field is symmetric. A resolution
of 2563 is used and visualizations are made using VAPOR. In
all visualizations, we represent the magnetic field lines (in red,
dark gray), the current (in yellow, light gray), and a density plot

(a)

(c)

(b)

(d)

FIG. 8. (Color online) 3D visualizations [magnetic field in red
(dark gray), current in yellow (light gray), and density plot of highest
magnetic energy zones] of the growing modes: (a) ICC case, Rem =
30, (b) IIC case, Rem = 80, (c) CCC case, Rem = 300, and (d) CCI
case, Rem = 300.

(a) (b)

FIG. 9. (Color online) 3D visualizations [magnetic field in red
(dark gray), current in yellow (light gray), and density plot of highest
magnetic energy zones] of the growing modes: (a) III case, Rem = 80;
(b) zoom of (a) at the center of the box.

of the highest magnetic energy zones. The axis of forcing (z
axis) is indicated by a blue arrow and the equatorial directions
(x and y axes) by red and green arrows located on one corner
of the box.

The two cases corresponding to (a) a nonsymmetric
magnetic field and (b) ICI walls are first compared in Fig. 7.
Observe that for both cases, the magnetic field is very similar:
the magnetic field lines are mainly in one equatorial direction.
The only difference is their respective orientation, with respect
to the x and y axes. For the ICI case, the magnetic field must
cross the insulating walls, imposing its direction, while for the
nonsymmetric case, this direction is chosen randomly by the
flow between the cases ICI and CIC (recall that the cases ICI
and CIC are equivalent by π/2 rotation). This field is very
similar to the one reported in Ref. [13].

The visualization of cases ICC, IIC, CCC, and CCI are
displayed in Fig. 8. Note that both ICC and IIC cases contain
axial magnetic fields but the magnetic field lines do not cross
the top and the bottom of the box, which is a possibility that
is not allowed by the boundary conditions (C walls on top
and bottom). The cases CCC and CCI present complicated
structures.

Figure 9(a) displays another of the main results of this
paper: an axial dipole that is obtained with III walls. The
magnetic lines are clearly oriented along the z axis [see the
zoom view displayed in Fig. 9(b)]. This case thus demonstrates
that an axial dipole can be observed using periodical boundary
conditions.

V. NONLINEAR SATURATION OF AXIAL DIPOLAR
MAGNETIC FIELD

We have studied so far the kinematic dynamo problem and
have found how the first unstable magnetic mode, when Rem is
increased, depends on the boundary conditions. We present in
this section the different stationary regimes that are obtained
when the growing unstable mode saturates due to the back
reaction of the Lorentz force on the velocity field. This study
is restricted to the case III for which an axial dipole is the first
unstable magnetic mode.

The critical Recrit
m bifurcation line, observed in numerical

dynamo simulations (III case) around the stable branch from
Sec. III B 2 [see Fig. 3(a)] is presented in Fig. 10(a) [lower

066318-7



KRSTULOVIC, THORNER, VEST, FAUVE, AND BRACHET PHYSICAL REVIEW E 84, 066318 (2011)

(a)

(b)

FIG. 10. (Color online) (a) Qualitative drawing of the bifurcation
lines. In the vicinity of the codimension-two point where these lines
intersect, they are given by model (29). Diamonds correspond to
data coming from numerical simulations (blue lines); lines without
markers are qualitatively drawn (green lines). Each bifurcation line is
labeled with a number (see text) and each region of parameter space
is labeled by I–VI. Red triangles correspond to some simulations
used to identify the different regions of the parameter space. Filled
(empty) markers denote a nonvanishing (vanishing) magnetic field in
saturated regimes. Half-filled triangles denote points in the bistable
zone. (b) Phase diagrams (in A-B space, see Sec. V D) corresponding
to regions I–VI of (a).

curve (6 and 2) with diamonds]. The vertical line at Rec =
22 (1 and 5) corresponds to the hydrodynamic pitchfork
bifurcation discussed in Sec. III B 2. These two bifurcation
lines intersect at a so-called codimension-two bifurcation
point. Dynamical regimes in the vicinity of this point are
displayed as the phase portraits of Fig. 10(b), which will be
discussed below.

A. Dynamo shutdown by velocity bifurcation

Let us first emphasize that the nonlinearly saturated regime
is not always related to the linearly growing mode. This type
of behavior, obtained for Re = 30, is displayed in Fig. 11(a).
For Rem = 80, i.e., above the bifurcation threshold Recrit

m = 73
[region III in Fig. 10(a)], the magnetic energy displays a
growing phase (after some transient phase) but then decreases
and vanishes in the long time limit. Figure 11(b) shows
that this change of behavior of the magnetic energy occurs
concomitantly with a variation of the kinetic energy of the
flow.

(a)

(b)

FIG. 11. (Color online) Case III: temporal evolution of kinetic
and magnetic energy at Re = 30 and Rem = 80. Vanishing of
saturated magnetic field is clearly observed at large times.

We have checked that this variation is related to the
transition from the symmetric flow taken as initial conditions
to the one that breaks the π/2 rotational invariance around the
axis (x = y = π/2) (see Sec. III B 2). Although the symmetric
flow is hydrodynamically unstable for Re = 30, the initial
conditions are such that it has not yet broken its symmetry
when the magnetic field begins to grow. It is the Lorentz force
that drives the flow to one of its bifurcated states with broken
π/2 rotational invariance. The bifurcated flow has no dynamo
capability for Rem = 80, therefore the magnetic field decays.
Note that a similar phenomenon was observed for the magnetic
field generated by a flow in a spherical domain [24].

B. Supercritical dynamo

Since the complex transient behavior of the magnetic field
is related to the interaction with the hydrodynamic pitchfork
bifurcation reported in Sec. III B 2, we now study the dynamo
bifurcation at Re = 20, below this hydrodynamic bifurcation
threshold [region VI in Fig. 10(a)]. As shown in Fig. 12(a), the
linear unstable magnetic mode saturates at finite amplitude,
thus displaying a supercritical pitchfork bifurcation. The
kinetic energy shown in Fig. 12(b) is slightly reduced by
the saturation mechanism. It is also apparent in Figs. 12(c)
and 12(d) that the magnetic field lines are slightly more twisted
in the saturated regime, as can be checked visually by focusing
on the two magnetic field lines that are colored in green (light
gray) in the figure.

We now consider how the magnetic energy (4) depends on
the fluid parameters above the dynamo threshold. Dimensional
arguments imply 〈b2〉 = 〈v2〉 f (Re,Rem), where f is an un-
known function. Close to a supercritical bifurcation threshold,
we expect that 〈b2〉 depends linearly on Rem − Recrit

m , thus

〈b2〉 
 〈
vc

2
〉
g(Re)

Rem − Recrit
m

Recrit
m

, (28)
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(a)

(b)

(c) (d)

FIG. 12. (Color online) Case III: temporal evolution of
(a) magnetic and (b) kinetic energy at Re = 20 and Rem = 80. (c) 3D
visualization of the magnetic field at linear growth phase t = 400.
(d) Visualization of saturated magnetic field at t = 3000. Two of the
magnetic field lines have been colored in green (light gray) in order
to emphasize the twisting of the saturated field.

where 〈v2
c〉 is related to the kinetic energy density at the

bifurcation threshold. It is expected that g(Re) tends to a
constant in the limit of large Re, and is inversely proportional to
Re for small Re [25]. Using v2

rms = 2Ev/3 to estimate 〈v2
c〉, we

find that g(Re) ∼ 3 increases by about 20% when Re is varied
from 18 to 21 (data not shown). The high Re number scaling
thus is observed even at moderate values of Re (compared to
experiments with liquid metals).

C. Bistability

For Re > 22, a bistable region can be found in which, de-
pending on the initial conditions, we can get both a dynamo and
purely hydrodynamic regimes. For instance, this case was ob-
served (data not shown) at Re = 26 and Rem = 100 [region IV
in Fig. 10(a)].

Starting from a dynamo in such a bistable regime, we
followed a line at Rem = 100 by increasing the Reynolds
number up to Re = 120 without losing the dynamo (data not
shown).

A hysteresis was also observed, for Re > 22, by varying
Rem at fixed Re (data not shown).

D. Codimension-two bifurcation model

We next present a simple explanation for the super- and sub-
critical nature of the dynamo transition as the kinetic Reynolds
number (or, equivalently, the magnetic Prandtl number of the
fluid) is varied. In our simulations, this phenomenon is strongly
related to the presence of a pitchfork bifurcation of the flow
for Re = Rec = 22.

For Re = Rec and Rem = Recrit
m (Rec) = Rec

m, we have a
codimension-two bifurcation. In its vicinity, the dynamo
and the hydrodynamic instabilities compete, thus generating
various dynamical regimes.

Denoting by A(t) the real amplitude of the bifurcating
velocity field vPF, and B(t) for the real amplitude of the
bifurcating magnetic field b, we write coupled amplitude
equations for A and B in the vicinity of the codimension-two
bifurcation. The form of these equations is constrained by
symmetry requirements, A → −A (pitchfork bifurcation of
the velocity field) and B → −B (b → −b symmetry of the
MHD equations).

Keeping the nonlinear terms to leading order, we get

Ȧ = λA − αAB2 − A3,

Ḃ = μB − βA2B − B3. (29)

The coefficients of the cubic nonlinearities have been taken
negative in order to get supercritical pitchfork bifurcations
for the hydrodynamic instability in the absence of a magnetic
field (B = 0) and for the dynamo instability when Re < Rec

and thus A = 0. The modulus of these coefficients can be
taken equal to 1 by appropriate scalings of the amplitudes A

and B. λ and μ are functions of Re and Rem that vanish at
the codimension-two bifurcation point (Rec,Rec

m). To leading
order, we have λ ∝ Re − Rec and μ ∝ Rem − Recrit

m .
The fixed points of the system (29) are (0,0), (±√

λ,0),
(0, ±√

μ), and the mixed modes ( ±√
(λ − αμ)/(1 − αβ), ±√

(μ − βλ)/(1 − αβ)). The different types of bifurcation
diagrams have been studied in detail [26].

The cases of interest are presented in Fig. 10(b). They
correspond to αβ > 1 (in order to have unstable mixed modes)
with α and β positive (in order to prevent the existence of
subcritical mixed modes for λ and μ negative). Then, the
globally stable solution (0,0) for λ < 0 and μ < 0 undergoes
a supercritical pitchfork bifurcation to (±√

λ,0) [respectively,
(0, ± √

μ)] for λ = 0 (respectively, μ = 0).
The corresponding bifurcation lines are labeled (1)

[respectively, (6) in Fig. 10]. For λ > 0 (respectively, μ > 0),
the second pure mode bifurcates for μ = 0 (respectively,
λ = 0), but is unstable [bifurcation lines (2) and (5)].

The mixed modes exist between the lines λ = αμ and μ =
βλ [corresponding to (3) and (4) in Fig. 10]. The key point
is that they are unstable with respect to the pure modes. The
system is thus bistable in this parameter range.

The bifurcated hydrodynamic regime as well as the dynamo
state are both linearly stable. When Rem is increased for Re >

Rec, the hydrodynamic regime bifurcates to a dynamo state on
line (4). If Rem is then decreased from this state, the dynamo
is suppressed on line (3), thus displaying a hysteresis.

A hysteresis can be also observed by varying Re for Rem >

Rec
m. If the fluid velocity is increased at the constant magnetic

Prandtl number, i.e., if one follows a line Rem = PmRe in
parameter space, we expect a supercritical dynamo bifurcation
for Pm large enough and a subcritical one for Pm small
enough.

Let us finally remark that the model (29) is expected to
be valid only in a neighborhood of the codimension-two point
(Rec,Rec

m). Indeed, many other secondary bifurcations can take
place away from this point. Because of this and also due to
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the limited number of runs that were performed, the lines in
Fig. 10(a) are only qualitatively drawn.

VI. DISCUSSION AND CONCLUSION

It has been often claimed that too many symmetries of
the velocity and/or magnetic fields inhibit dynamo action.
This claim probably results from several antidynamo theorems
that have been found since Cowling, who showed that an
axisymmetric velocity field cannot generate an axisymmetric
magnetic field (for a review, see [27]). Thus, the magnetic field
should break axisymmetry when generated through dynamo
action by an axisymmetric velocity field. Another class of an-
tidynamo theorems is even more restrictive and forbids the dy-
namo action of some velocity fields (for instance, planar flows,
i.e., velocity fields with only two nonzero Cartesian compo-
nents), whatever the geometry of the generated magnetic field.

We have shown here that symmetries do not always
inhibit dynamo action, but, on the contrary, can sometimes
enhance it:

(i) symmetry constraints on the velocity field can lead to
a lower dynamo threshold by inhibiting the development of
hydrodynamic instabilities and related turbulent fluctuations
that sometimes reduce the efficiency of dynamo action, and

(ii) symmetry constraints on the magnetic field can lead to
an unchanged dynamo threshold provided they are chosen in
the appropriate manner.

It has been shown that the dynamo threshold Recrit
m of the

TG flow increases when the kinetic Reynolds number of the
flow is increased on some intermediate range, and this has been
related to the development of turbulent fluctuations [14,15,28].
Using symmetry constraints on the velocity field shows
this phenomenon without ambiguity: the level of turbulent
fluctuations is lower with the symmetric velocity field and,
correspondingly, the dynamo threshold is lower too, although
the mean kinetic energy is larger for the velocity field without
symmetries. This shows in a simple and clear-cut way that
velocity fluctuations inhibit dynamo action by the TG flow. The
same phenomenon has been shown analytically for the dynamo
generated by a fluctuating Roberts flow [29]. However, it
should be kept in mind that a time-dependent velocity can also
generate new dynamo modes that do not exist in the absence
of fluctuations.

We have also shown that symmetry constraints on the
magnetic field can be used to mimic realistic boundary
conditions in the framework of numerical simulations with
periodic codes. It was found that the dynamo threshold and
the geometry of the growing magnetic mode strongly depend
on the choice of symmetry constraints, and thus on the
related boundary conditions. The lowest dynamo threshold was
obtained with lateral boundaries of a different nature, allowing
a magnetic field to cross the box perpendicularly to the current
(ICI case). This case, where the dominant component is an

equatorial dipole, strongly reminds us of the geometry of the
magnetic field that was numerically generated by using the
mean flow measured in a VK geometry with counter-rotating
propellers [30,31]. This emphasizes the similarity between VK
and TG flows. Note, however, that the mean flow component
in the VK geometry is axisymmetric and cannot drive an
axisymmetric magnetic field because of Cowling’s theorem. A
magnetic field with an equatorial dipolar component provides
a simple way to break axisymmetry. In contrast, the TG
forcing is not axisymmetric and thus does not enforce such a
strong constraint on the generated magnetic field. Indeed, when
symmetry constraints related to infinite magnetic permeability
are implemented for all boundaries (III case), the generated
magnetic field involves a dominant component, which is
an axial dipole. This corresponds to the geometry of the
magnetic field generated in the VKS experiment, where it
was ascribed to the presence of nonaxisymmetric velocity
fluctuations [7].

Direct numerical simulations of dynamos generated by
an axisymmetric s2–t2 forcing in a sphere, which is a
configuration similar to the VK forcing, have shown that
an equatorial dipole is observed at low Re, for which the
flow is axisymmetric, whereas an axial dipole is obtained at
higher Re, i.e., in the presence of nonaxisymmetric velocity
fluctuations [32]. We observe that the TG forcing provides a
different scenario: the axial dipole does not seem to be favored
by turbulent fluctuations [compare Figs. 5(a) and 5(b)]. Thus,
slight deviations from axisymmetry, present in the TG forcing,
are enough to generate a magnetic field with a dominant axial
dipolar component, even at small Re, provided appropriate
boundary conditions are simulated.

Finally, we have studied the nonlinear saturation of the
axial dipolar magnetic field (III case). We have observed that
the dynamo bifurcation can be subcritical in some parameter
range. We have shown that this phenomenon can be explained
by the presence of a hydrodynamic instability that competes
with the growing magnetic mode. This is not unlikely for Pm of
the order one, which is the case for most numerical simulations
and provides a general mechanism for subcritical dynamos. It
would be of interest to check whether the subcritical dynamo
bifurcations reported previously in non-confined TG flows [33]
or in flows forced in a sphere [24] and simulations of the
geodynamo [34], are also related to a similar mechanism. Other
open questions concern the dynamics of the magnetic field
above the dynamo threshold. Breaking the symmetry of the
TG flow in order to generate reversals of the axial dipole or
other dynamics resulting from nonlinear coupling between
different magnetic modes deserve to be studied.
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