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The statistical equilibria of the (conservative) dynamics of the Gross-Pitaevskii equation (GPE) with a finite
range of spatial Fourier modes are characterized using a new algorithm, based on a stochastically forced Ginzburg-
Landau equation (SGLE), that directly generates grand-canonical distributions. The SGLE-generated distributions
are validated against finite-temperature GPE-thermalized states and exact (low-temperature) results obtained
by steepest descent on the (grand-canonical) partition function. A standard finite-temperature second-order λ
transition is exhibited. A mechanism of GPE thermalization through a direct cascade of energy is found using
initial conditions with mass and energy distributed at large scales. A long transient with partial thermalization
at small scales is observed before the system reaches equilibrium. Vortices are shown to disappear as a prelude
to final thermalization and their annihilation is related to the contraction of vortex rings due to mutual friction.
Increasing the amount of dispersion at the truncation wave number is shown to slow thermalization and vortex
annihilation. A bottleneck that produces spontaneous effective self-truncation with partial thermalization is
characterized in the limit of large dispersive effects. Metastable counterflow states, with nonzero values of
momentum, are generated using the SGLE algorithm. Spontaneous nucleation of the vortex ring is observed
and the corresponding Arrhenius law is characterized. Dynamical counterflow effects on vortex evolution are
investigated using two exact solutions of the GPE: traveling vortex rings and a motionless crystal-like lattice of
vortex lines. Longitudinal effects are produced and measured on the crystal lattice. A dilatation of vortex rings
is obtained for counterflows larger than their translational velocity. The vortex ring translational velocity has a
dependence on temperature that is an order of magnitude above that of the crystal lattice, an effect that is related to
the presence of finite-amplitude Kelvin waves. This anomalous vortex ring velocity is quantitatively reproduced
by assuming equipartition of energy of the Kelvin waves. Orders of magnitude are given for the predicted effects
in weakly interacting Bose-Einstein condensates and superfluid 4He.
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I. INTRODUCTION

Finite-temperature superfluids are typically described as a
mixture of two interpenetrating fluids [1]. At low temperatures
the normal fluid can be neglected and Landau’s two-fluids
model reduces to the Euler equation for an ideal fluid that is
irrotational except on (singular) vortex lines around which the
circulation of the velocity is quantized. At finite temperature,
when both normal fluid and superfluid vortices are present
(e.g., in the counterflow produced by a heat current) their
interaction, called “mutual friction,” must also be accounted
for [2].

In the low-temperature regime the Gross-Pitaevskii equa-
tion (GPE) (also called the nonlinear Schrödinger equation)
is an alternative description of superfluids and Bose-Einstein
condensates (BEC) [3]. The GPE is a partial differential
equation (PDE) for a complex wave field that is related to
the superflow’s density and velocity by Madelung’s trans-
formation [4]. The (nonsingular) nodal lines of the complex
wave field correspond to the quantum vortices that appear
naturally in this model with the correct amount of velocity
circulation. Just as the incompressible Euler equation, the
GPE dynamics is known to produce [5–8] an energy cascade
that leads to a Kolmogorov regime with an energy spectrum
scaling as E(k) ∼ k−5/3. This Kolmogorov regime was also
experimentally observed in low-temperature helium [9,10]. In
this experimental context, let us remark that so much progress
has been made that it is now possible to visualize superfluid

vortices both in the low-temperature regime and in the presence
of counterflow by following the trajectories of solid hydrogen
tracers in helium [11,12].

Several different theories of finite-temperature effects in
BEC have been proposed and, at the moment, there is
no consensus on the best model [3]. In one approach it
has been suggested that, beyond its good description of
the low-temperature regime, the GPE should also be able
to describe the classical equilibrium aspects of a finite-
temperature homogeneous system of ultracold gases, provided
that that a projection (or truncation) on a finite number of
Fourier modes is performed [3,13]. Another approach to finite
temperatures is the Zaremba-Nikuni-Griffin (ZNG) theory [14]
which couples the GPE with a Boltzmann-like equation for the
thermal cloud of noncondensed particles. The ZNG theory is
known to well describe the observed finite-temperature decay
of solitons [15]. It also predicts vortex motion in agreement
with the standard phenomenology [16]. In the truncated GPE
model the small-scales modes are in thermal equilibrium. They
play the role of the Boltzmann sector of the ZNG, somewhat
like the (fast) thermalized degrees of freedom do in a standard
molecular dynamics simulation. The present paper is devoted
to the truncated GPE approach.

Classical truncated systems, which are similar to the
truncated GPE, have a long history in the context of fluid
mechanics. Indeed, if the (conservative) Euler equation is
spectrally truncated, by keeping only a finite number of

066311-11539-3755/2011/83(6)/066311(21) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.066311


GIORGIO KRSTULOVIC AND MARC BRACHET PHYSICAL REVIEW E 83, 066311 (2011)

spatial Fourier harmonics, it is well known that it admits
absolute equilibrium solutions with Gaussian statistics and
equipartition of kinetic energy among all Fourier modes
[17–20]. Recently, a series of papers focused on the dynamics
of convergence of the truncated Euler equation toward the
absolute equilibrium. It was found that (long-lasting) transients
are obtained that are able to mimic (irreversible) viscous effects
because of the presence of a “gas” of partially thermalized
high-wave-number Fourier modes that generate (pseudo-)
dissipative effects [21–26].

The main goal of the present paper is to obtain
and study finite-temperature dissipative and counterflow
effects by extending to the Fourier-truncated GPE the dynami-
cal results that were obtained in the framework of the truncated
Euler equation. We now give a short review of what is already
known about the truncated GPE dynamics.

The Fourier truncated Gross-Pitaevskii equation was first
introduced in the context of Bose condensation by Davis
et al. [13] as a description of the classical modes of a finite-
temperature partially condensed homogeneous Bose gas. They
considered random initial data defined in Fourier space by
modes with constant modulus and random phases up to some
maximum wave number (determined by the energy). They
found that the numerical evolution of the truncated Gross-
Pitaevskii equation reached (microcanonical) equilibrium and
that a condensation transition of the equilibrium was obtained
when the initial energy was varied.

The same condensation transition was later studied by
Connaughton et al. [27] and interpreted as a condensation of
classical nonlinear waves. Using a modified wave turbulence
theory with ultraviolet cutoff, they argued that the transition
to condensation should be subcritical. They found their theory
in quantitative agreement with numerical integration of the
GPE, using the same stochastic initial conditions than those
of Ref. [13]. However, the authors later argued that, as
weak turbulence theory is expected to break down near
the transition to condensation, the subcritical nature of the
transition predicted by their theory was not physical [28].

Berloff and Svistunov [29], starting from periodic initial
conditions similar to those of Davis et al. [13], used a finite-
difference scheme (exactly conserving energy and particle
number) to characterized the dynamical scenario of the re-
laxation toward equilibrium. Using the same finite-difference
scheme, Berloff and Youd [30] then studied the dissipative
dynamics of superfluid vortices at nonzero temperatures and
observed a contraction of the vortex rings that followed a
universal decay law.

Our main results are as follows. The classical absolute equi-
librium of ideal fluids when generalized to GPE superfluids
describes a standard [31,32] second-order phase transition.
Long transients with an energy cascade and partial small-scale
thermalization are present in the relaxation dynamics. Dy-
namical counterflow effects on vortex evolution are naturally
present in the system and the vortex ring has anomalous
velocities caused by thermally excited Kelvin waves.

The paper is organized as follows: Section II is devoted
to the basic theoretical background that is needed to account
for the dynamics and thermalization of the Fourier truncated
GPE. In Sec. III, the thermodynamic equilibrium is explored.
The microcanonical and grand-canonical distributions are

numerically shown to be equivalent. Exact analytical ex-
pressions for the low-temperature thermodynamic functions
are obtained. A standard second-order λ phase transition
is exhibited at finite-temperature using the SGLE-generated
grand-canonical states.

In Sec. IV, the direct energy cascade is considered as a new
mechanism for GPE thermalization. Using initial data with
mass and energy distributed at large scales, a long transient
with partial thermalization at small scales is characterized.
Vortex annihilation is observed to take place and is related to
mutual friction effects. A bottleneck producing spontaneous
self-truncation with partial thermalization and a time-evolving
effective truncation wave number is characterized in the limit
of large dispersive effects at the maximum wave number of
the simulation.

In Sec. V, the new SGLE algorithm is used to generate
counterflow states, with nonzero values of momentum, that
are shown to be metastable under SGLE evolution. The spon-
taneous nucleation of vortex ring and the corresponding Ar-
rhenius law are characterized. Dynamical counterflow effects
are investigated using vortex rings and straight vortex lines
arranged in crystal-like patterns. An anomalous translational
velocity of the vortex ring is exhibited and is quantitatively
related to the effect of thermally excited finite-amplitude
Kelvin waves. Orders of magnitude are estimated for the
corresponding effects in weakly interacting Bose-Einstein
condensates and superfluid 4He.

Section VI is our conclusion. The numerical methods and
low-temperature thermodynamic functions are described in an
Appendix.

II. THEORETICAL BACKGROUND

This section deals with basic facts needed to understand the
dynamics and thermalization of the Fourier truncated GPE.
We first recall in Sec. II A 1 the (untruncated) GPE dynamics
and its associated conserved quantities and the corresponding
spectra; this material can be skipped by the reader already
familiar with the GPE model of superflow [4,6]. The Fourier
truncated GPE, its thermodynamical limit and the different
statistical ensembles are then defined.

The thermodynamics of the truncated system is intro-
duced in Sec. II B using the microcanonical distribution. The
canonical and grand-canonical distributions are also used
as they allow to directly label the equilibrium states by
temperature and particle numbers. A stochastically forced
Ginzburg-Landau equation (SGLE) is considered in Sec. II C
and shown to define a new algorithm that directly generates
the grand-canonical distributions.

A. Galerkin-truncated Gross-Pitaevskii equation

1. Conservation laws and Galilean invariance of the GPE

Superfluids and Bose-Einstein condensates [3,33] can be
described at low temperature by the Gross-Pitaevskii equation
(GPE) that is a partial differential equation (PDE) for the
complex field ψ that reads

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (1)
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where |ψ |2 is the number of particles per unit volume, m

is the mass of the condensed particles, and g = 4π ãh̄2

m
, with

ã the s-wave scattering length. This equation conserves the
Hamiltonian H , the total number of particles N , and the
momentum P defined in volume V by

H =
∫

V

d3x

(
h̄2

2m
|∇ψ |2 + g

2
|ψ |4

)
(2)

N =
∫

V

|ψ |2 d3x (3)

P =
∫

V

ih̄

2
(ψ∇ψ − ψ∇ψ) d3x. (4)

It will be useful for the next sections to explicitly write the
conservation law of the momentum ∂t

ih̄
2 (ψ∂jψ − ψ∂jψ) +

∂k%kj = 0, where the momentum flux tensor %kj is defined,
following Ref. [6], as

%kj = h̄2

2m
(∂kψ∂jψ + ∂kψ∂jψ)

+ δkj

(
g

2
|ψ |4 − h̄2

4m
∇2|ψ |2

)
. (5)

It is well known that the GPE (1) can be mapped
into hydrodynamics equations of motion for a compress-
ible irrotational fluids using the Madelung transformation
defined by

ψ(x,t) =
√
ρ(x,t)

m
exp

[
i
m

h̄
φ(x,t)

]
, (6)

where ρ(x,t) is the fluid density and φ(x,t) is the velocity
potential such that v = ∇φ. The Madelung transformation
(6) is singular on the zeros of ψ . As two conditions are
required (both real and imaginary part of ψ must vanish) these
singularities generally take place on points in two dimensions
and on curves in three dimensions. The Onsager-Feynman
quantum of velocity circulation around vortex lines ψ = 0 is
given by h/m.

When Eq. (1) is linearized around a constant ψ = A0, the
sound velocity is given by c =

√
g|A0|2/m with dispersive

effects taking place for length scales smaller than the coherence
length defined by

ξ =
√

h̄2/2m|A0|2g. (7)

ξ is also the length scale of the vortex core [3,6].
Following Ref. [5] we define the total energy per unit vol-

ume etot = (H − µN)/V − µ2/2g, where µ is the chemical
potential (see Sec. II B). Using the hydrodynamical variables,
etot can be written as the sum of three parts (the kinetic energy
ekin, the internal energy eint, and the quantum energy eq)
defined by

ekin = 1
V

∫
d3x

1
2

(
√
ρv)2 (8)

eint = 1
V

∫
d3x

g

2m2

(
ρ − µm

g

)2

(9)

eq = 1
V

∫
d3x

h̄2

2m2
(∇√

ρ)2. (10)

Using Parseval’s theorem, one can define corresponding
energy spectra, e.g., the kinetic energy spectrum ekin(k) is
defined as the sum over the angles

ekin(k) =
∫ ∣∣∣∣

1
V

∫
d3reir·k√ρv

∣∣∣∣
2

k2d*k, (11)

where d*k is the solid angle element on the sphere. The energy
ekin can be further decomposed into a compressible part ec

kin
and an incompressible part ei

kin by making use of the relation√
ρv = (

√
ρv)c + (

√
ρv)i with ∇ · (

√
ρv)i = 0 (see Ref. [6]

for details).
Finally note that the GPE (1) is invariant under the Galilean

transformation

ψ ′(x,t) = ψ(x − vGt,t) exp
{

im

h̄

[
vG · x − 1

2
v2

Gt

]}
. (12)

Under this transformation Eqs. (2)–(4) transform as

H ′ = 1
2mNv2

G + P · vG + H (13)

N ′ = N (14)

P′ = mNvG + P. (15)

2. Definition of the Fourier truncated GPE

For a periodical 3D system of volume V the Fourier
truncated GPE is defined by performing a Galerkin truncation
that consists in keeping only the Fourier modes with wave
numbers smaller than a UV cut-off kmax.

Expressing ψ in terms of the Fourier modes Ak as

ψ(x,t) =
∑

k

Ak(t)eik·x , with
k

kmin
∈ Z3, (16)

and where kmin = 2π/V 1/3 is the smallest wave number.
The Galerkin (Fourier) truncated Gross-Pitaevskii equation
(TGPE) is defined as

−ih̄
∂Ak

∂t
= −h̄2k2

2m
Ak −

∑

k1,k2

Ak1A
∗
k2+k1

Ak+k2 , (17)

where the Fourier modes satisfy Ak = 0 if k ! kmax and
the sum is performed over all wave numbers satisfying
|k1|,|k2|,|k2 + k1|,|k + k2| < kmax. This time-reversible fi-
nite system of ordinary differential equations with a large num-
ber of degree of freedom N ∼ (kmax/kmin)3 also conserves the
energy, number of particles, and momentum.

The direct numerical evaluation of the convolution in
Eq. (17) would be very expensive in computational time
O(N6), where N is the resolution. This difficulty is avoided by
using pseudospectral methods [34] and the nonlinear term is
calculated in physical space, using FFTs that reduce the CPU
time to O(N3 log N ). Introducing the Galerkin projector PG

that reads in Fourier space PG[Ak] = θ (kmax − k)Ak with θ (·)
the Heavside function, the TGPE (17) can be written as

ih̄
∂ψ

∂t
= PG

[
− h̄2

2m
∇2ψ + gPG[|ψ |2]ψ

]
. (18)

Equation (18) exactly conserves energy and mass and, if it
is correctly dealiased using the 2/3 rule [34] (dealiasing at
kmax = 2

3
N
2 ), it also conserves momentum (see Appendix A
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for a explicit demonstration). The Galerkin truncation also
preserves the Hamiltonian structure with the truncated Hamil-
tonian given by H =

∫
d3x( h̄2

2m
|∇ψ |2 + g

2 [PG|ψ |2]2).
Let us remark that perhaps a more standard definition of

dealiasing in Eq. (18) could have been PG[|ψ |2ψ] using 1/2
rule (dealiasing at kmax = 1

2
N
2 ) rather than PG[PG[|ψ |2]ψ]

with the 2/3 rule. Using the former definition removes the
restriction |k2| < kmax on the convolution in Eq. (17). Both
methods are equivalent in the partial differential equation
(PDE) limit (exponential decay of energy spectrum for k (
kmax) and admit the same invariants. However, the scheme
of Eq. (18) is preferable because kmax is larger at the same
resolution. If dealiasing is not preformed in Eq. (18) the errors
in the conservation of momentum can rise up to 50% in a
few units of time (see Appendix A). In a finite difference
scheme the conservation of momentum should also be checked
carefully as it is bound to produce spurious effects.

Another effect caused by periodic boundary condition is
that the velocity vG in the Galilean transformation (12) is
quantized by the relation

vG = h̄

m

2π
V 1/3

nG, (19)

where nG ∈ Z3 and vG becomes continuous only in the limit
h̄/(mV 1/3) → 0. The Galilean invariance is slightly broken
by the TGPE (17) because of modes close to the truncation
wave number kmax. However, it is recovered in the PDE limit
where high-wave-number modes are converging exponentially
and also in the thermodynamic limit: kmax

kmin
→ ∞ defined below

because the offending terms represent only a surface effect in
Fourier space.

3. Thermodynamical limit and statistical ensembles

Let us first note that the energy H , the number of particles
N and the momentum P in Eqs. (2)–(4) are all proportional
to the total number of modes N ∼ k3

maxV and therefore are
all extensive quantities. Also note that by definition of the
coherence length (7), the number ξkmax determines the amount
of dispersion at truncation wave number in the system.

The thermodynamic limit V → ∞ of the truncated Gross-
Pitaevskii system is thus defined as the limit

N → ∞, ξkmax = const., (20)

in order to obtain equivalent systems. In this limit the
relevant thermodynamic variables are the intensive quantities
H/V , N/V , and P/V . In practice, to perform numerical
computations we will fix the volume to V = (2π )3 and we
will vary kmax (see paragraphs before Sec. III).

Let us define, as usual, the microcanonical ensemble [35]
by the probability dw of finding the system in states with given
values of energy Hin, number of particles Nin (the subscript
“in” stands for initial data), and momentum Pin given by:

dw = const. eSδ(H − Hin)δ(N − Nin)

× δ3(P − Pin)dHdNd3P, (21)

where S = log, is the entropy with, the number of accessible
microstates.

Microcanonical statistical states can be obtained numeri-
cally by time integrating the TGPE until the system reaches

thermodynamic equilibrium [13,27]. These thermalized states
are formally determined by the control values Hin, Nin, and
Pin that are set in the initial condition. It has been shown in
Refs. [13,27] by varying the values of Hin that TGPE present
a phase transition analogous to the one of Bose-Einstein
condensation, where the amplitude at 0-wave-number A0
vanishes for finite values of Hin. Let us remark that an
explicit expression of dw or S cannot be easily obtained in
the microcanonical ensemble and therefore the temperature is
not easily accessible.

A simple way to explicitly control the temperature is to
use the canonical or grand-canonical formulation. The grand-
canonical distribution probability is given by a Boltzman
weight

Pst = 1
Z

e−βF (22)

F = H − µN − W · P, (23)

where Z is the grand partition function, β is the inverse
temperature, and µ is the chemical potential. In what follows
we will refer to W as the counterflow velocity. Note that when
W = 0, F = H − µN and the statistic weight of distribution
(22) corresponds to the so-called λφ4 theory studied in
second-order phase transitions [31,32]. This point will be
further discussed in Sec. III C.

Finally remark that the states with W ,= 0 are obtained, in
the thermodynamic limit, by a Galilean transformation of the
basic W = 0 state [see below Eq. (72)]. However, for finite
size systems, because of the quantification of the Galilean
transformation [Eqs. (12) and (19)] new metastable states
with counterflow appear. These metastable states and their
interactions with vortices will be studied in detail below in
Sec. V A.

In the grand-canonical ensemble [Eqs. (22) and (23)], the
mean energy H , number of particles N , and momentum P are
easily obtained by defining the grand-canonical potential

* = −β−1 logZ (24)

and using the relations

N = −∂*

∂µ
, P = −∂*

∂P
, H = ∂*

∂β
+ µN + W · P.

(25)

Observe that the microcanonical states (21) are charac-
terized by the values Hin, Nin, and Pin. On the other hand,
the grand-canonical states are controlled by the conjugate
variables: β, µ, and W. The different statistical ensembles
are expected to be equivalent in the thermodynamics limit
(20) and therefore

Hin = H, Nin = N, Pin = P, (26)

in this limit. The equivalence of ensembles will be numerically
tested below in Sec. III A.

In the grand-canonical ensemble, the pressure p is usually
defined from the grand-canonical potential (24) by the relation
[35] * = −pV . This definition presents two problems in
the TGPE system. First, due to classical statistics * has
a logarithmic divergence at β = ∞. Second, this definition
does not coincide with the standard relation in fluid dynamics
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involving the diagonal part of the momentum flux tensor %ij

[see Eq. (5)]. Both these problems can be solved by considering
the total number of modes as a new thermodynamics variable,
as we will see in the next section.

B. Thermodynamics of the truncated system

When a Galerkin truncation is performed on a system
a new variable kmax explicitly appears. One thus find that
the thermodynamic potentials depend on the total number
of modes. Denoting λN the conjugate variable to the total
number of modes N the standard thermodynamic relation for
the energy easily generalizes as

dE = −pdV + T dS + µdN + λN dN + W · dP (27)

with S the entropy and where we have included the
total momentum dependence dP. As in Landau two-fluid
model [1] Eq. (27) is written in a system of reference, where
vs = ∇φ = 0 (the bar standing for some ensemble average)
and E = H is the macroscopic energy.1 We will omit the
bar over the others microscopic quantities. Note that the
Fourier modes formally play the role of “particles” and
λN is formally the “chemical potential” associated to those
“particles.”

The thermodynamic potentials can be easily generalized
to take in to account the new variables. It is useful to define
the Gibbs potential G, grand canonical *, and a generalized
grand-canonical potential *′ (with a Legendre transformation
on N ) as

G = E − T S + pV − W · P (28)

* = E − T S − µN − W · P (29)

*′ = E − T S − µN − λNN − W · P (30)

from where their respective variations follows:

dG = V dp − SdT + µdN + λN dN − P · dW (31)

d* = −pdV − SdT − Ndµ + λN dN − P · dW (32)

d*′ = −pdV − SdT − Ndµ − NdλN − P · dW. (33)

Based on standard arguments of extensive variables [35]
and noting that λN and W are intensive variables we find
the standard formula of the Gibbs potential with two types of
particles

G = µN + λNN . (34)

Using Eqs. (28) and (34) in Eqs. (29) and (30) we find

* = −pV + λNN , *′ = −pV. (35)

The relations (27)–(35) determine all the thermodynamic
variables and potentials. For instance, the pressure p can be
obtained from Eqs. (32), (33), or (35) by

p = − ∂*

∂V

∣∣∣∣
T ,µ,N ,W

= −* − λNN
V

= −*′

V
, (36)

where λN = ∂*
∂N

∣∣
V,T ,µ,W.

1The Galilean invariant expression of W is Vn − Vs (see Sec. V).

We proceed now to show that thermodynamic definition
(36) of the pressure coincides with the standard relation in
fluid dynamics. In order to make explicit the dependence of
the energy H on the volume V let us define the dimensionless
space variables x̃ = x/V

1
3 and ψ̃ = V 1/2ψ . Expressed in

term of these variables the Hamiltonian (2) reads H =∫
d3x̃( h̄2

2m
1

V
2
3
|∇̃ψ̃ |2 + 1

V
g
2 |ψ̃ |4). Taking the derivative with

respect to V and reintroducing x and ψ yields

∂H

∂V
= − 1

V

∫
d3x

(
h̄2

2m

2
3
|∇ψ |2 + g

2
|ψ |4

)
. (37)

This expression corresponds to the spatial average of the
diagonal part of %ik [see Eq. (5)]. As by definition E = H and
the derivative has been implicitly done at constant total number
of modes and momentum we find, using the thermodynamic
relation (27) and Eq. (37), that the pressure satisfies

p = − ∂E

∂V

∣∣∣∣
S,N,N ,P

= − ∂H

∂V

∣∣∣∣∣
N,N ,P

, (38)

where the second equality holds for adiabatic compressions
[35].

Finally, by replacing * in Eq. (29) we obtain the thermo-
dynamic relation

E + pV − µN − W · P = T S + λNN . (39)

Let us remark that, in a classical system, the entropy is defined
up to an additive constant related to the normalization of the
phase space. However, the quantity T S + λNN is completely
determined because each term in the left-hand side of Eq. (39)
is well defined. By the same arguments d (NλN /T ) is also
a completely determined quantity. If the variable N had not
been taken into account, the corresponding pressure would be
−*/V and therefore wrongly defined and depending on the
normalization constant. The grand-canonical potential * will
be explicitly obtained at low temperature in Sec. III B where
the above considerations can be explicitly checked.

C. Generation of grand-canonical distribution using a
stochastic Ginzburg-Landau equation

Grand-canonical equilibrium states are given by the statis-
tics [Eqs. (22) and (23)]. They cannot be easily obtained
because the Hamiltonian H in Eq. (2) is not quadratic
and therefore the statistical distribution is not Gaussian.
Nevertheless, it is possible to construct a stochastic process that
converges to a stationary solution with equilibrium distribution
[Eqs. (22) and (23)]. This process is defined by a Langevin
equation consisting of a stochastic Ginbzurg-Landau equation
(SGLE) that reads

h̄
∂Ak

∂t
= − 1

V

∂F

∂A∗
k

+

√
2h̄
Vβ

ζ̂ (k,t) (40)

〈ζ (x,t)ζ ∗(x′,t ′)〉 = δ(t − t ′)δ(x − x′), (41)

where F is defined in Eq. (23) and ζ̂ (k,t) is the (kmax-truncated)
Fourier transform of the gaussian white-noise ζ (x,t) defined by
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Eq. (41). The Langevin equation [Eqs. (40) and (41)] explicitly
reads in physical space

h̄
∂ψ

∂t
= PG

[
h̄2

2m
∇2ψ + µψ − gPG[|ψ |2]ψ − ih̄W · ∇ψ

]

+

√
2h̄
Vβ

PG[ζ (x,t)]. (42)

In the β → ∞ limit Eq. (42) reduces to the advective real
Ginzurg-Landau equation (up to a redefinition of µ) that was
introduced in Ref. [6]. This equation has the same stationary
solutions of than the TGPE (18) in a system of reference
moving with velocity W. When the term µψ is also included
in the TGPE it has, because of particle number conservation,
the only effect of adding a global time-dependent phase factor
to the solution.

The probability distribution P [{Ak,A
∗
k}k<kmax ] of the

stochastic process defined by Eqs. (40) and (41) can be shown
to obey the following Fokker-Planck equation [36,37]

∂P

∂t
=

∑

k<kmax

∂

∂Ak

[
1

Vh̄

∂F

∂A∗
k
P + 1

Vh̄β

∂P

∂A∗
k

]
+ c.c. (43)

It is straightforward to demonstrate that the probability
distribution (22) is a stationary solution of Eq. (43), provided
that βF is a positive defined function of {Ak,A

∗
k}k<kmax .

If one wishes to directly control, instead of the chemical
potential µ, the value of the number of particles N or the
pressure p, the SGLE must we supplied with one of two ad
hoc equation for the chemical potential. These equation simply
read

dµ

dt
= −νN (N − N∗)/V (44)

dµ

dt
= −νp(p − p∗), (45)

where the pressure p is computed as p = − ∂H
∂V

[see Eq. (37)].
Equation (44) controls the number of particles and fixes its
mean value to the control value N∗. Similarly Eq. (45) controls
the pressure and fixes its value at p∗. Equations (44) and (45)
are not compatible and they must not be used simultaneously.
Depending on the type of temperature scans, the SGLE must
be used together with either Eqs. (44) and (45) or alone with a
fixed value of µ.

In the rest of this paper we will perform several numerical
simulations of the TGPE (17) and SGLE (42). For numerics,
the parameters in SGLE (omitting the Galerkin projector PG)
will be rewritten as

∂ψ

∂t
= α0∇2ψ + *0ψ − β0|ψ |2ψ − iW · ∇ψ +

√
kBT

α0
ζ,

with similar changes for TGPE.
In terms of α0, *0, and β0 the physical relevant parameters

are the coherence length ξ and the velocity of sound c defined
in Sec. II A 1 [see Eq. (7) and the text before]. They can be are
expressed as

gξ =
√
α0/*0 , c =

√
2α0β0ρ∗ (46)

with ρ∗ = *0/β0. The value of the density at T = 0 set
to ρ∗ = 1 in all the simulations presented below. In order

to keep the value of intensive variables constant in the
thermodynamic limit (20), with V constant and kmax → ∞
the inverse temperature is expressed as β = 1/kNT , where
kN = V/N . With these definitions the temperature T has units
of energy per volume and 4πα0 is the quantum of circulation.

With ξ fixed, the value of ξ/c determines only a time scale.
The velocity of sound is (arbitrarily) set to c = 2 and the
different runs presented below are obtained by varying only
the coherence length ξ , the temperature T , the counterflow
velocity W, and the UV cutoff wave number kmax. The
number ξkmax is kept constant (at the value ξkmax = 1.48)
when the resolution is changed, except in Sec. IV B where
dispersive effects are studied (using a larger ξkmax). This
choice of ξ ensures that vortices are well resolved [e.g.,
compare Fig. 5(a) below with Fig. 12 of Ref. [6]]. In the
present work we use resolutions varying from 323 to 5123

colocation points (kmax = 10 to 170, respectively). Finally in
all numerical results the energy and momentum are presented
per unit of volume V = (2π )3 and the control values of
number of particles and pressure in Eqs. (44) and (45) are
set to mN∗/V = ρ∗ = 1 and p∗ = c2ρ∗2/2 = 2. Numerical
integrations are performed with periodic pseudospectral codes
and the time-stepping schemes are Runge-Kutta of order 4 for
TGPE and implicit Euler for SGLE.

III. CHARACTERIZATION OF THERMODYNAMIC
EQUILIBRIUM

In this section, the thermodynamic equilibrium is explored
and characterized. The microcanonical and grand-canonical
distributions are first shown to be numerically equivalent in
a range of temperatures by comparing the statistics of GPE-
and SGLE-generated states in Sec. III A. The steepest descent
method is then applied to the grand-partition function in
Sec. III B to obtain exact analytical expressions for the low-
temperature thermodynamic functions. The basic numerical
tools are validated by reproducing these low-temperature
results. In Sec. III C a standard finite-temperature second-order
λ phase transition is exhibited using the SGLE-generated
grand-canonical states and the deviations to low-temperature
equipartition are characterized.

A. Comparison of microcanonical and grand-canonical states

We now numerically compare the statistics of the grand-
canonical states produced by the new algorithm SGLE to the
statistics of the microcanonical states obtained by long-time
integrations of TGPE. The coherence length is set to ξ =√

2/10 and 323 collocation points are used (kmax = 10). The
initial condition for the TGPE runs are chosen with random
phases in a similar way than in Refs. [13,27]. We obtain low,
medium, and high values of the energy with constant density
ρ = mN/V = 1 (see Table I).

To compare with the SGLE-generated statistics a scan in
temperature at constant density ρ = 1 is performed in order
to obtain the temperature corresponding to the energies of the
TGPE runs. Using the thermalized final states obtained from
TGPE and converged final states of SGLE histograms of the
of the density ρ(x) in physical space are confronted in Fig. 1.
They are found to be in excellent agreement.
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TABLE I. Parameters of TGPE initial condition and time steps.

H T TGPE time steps SGLE time steps

0.09 0.09 40 000 9600
0.5 0.5 20 000 9600
1.96 1.8 20 000 9600
4.68 4 20 000 5000

Observe that when the energy (or temperature) increases
more weight becomes apparent on the histograms near ρ = 0,
indicating the presence of vortices. The Gaussian character
of the histogram in Fig. 1 a motivates the low-temperature
calculation of the next section. Observe that, even at this
relatively low 323 resolution, the thermodynamic limit has
been reached in the sense that the micro and grand-canonical
distribution coincide. We can thus safely use, at 323 and higher
resolutions, the SGLE to prepare absolute equilibria of the
TGPE.

Let us finally remark that the SGLE numerically converges
much more rapidly toward absolute equilibrium than the
TGPE, as displayed in Table I. Also taking into account the
(computationally expansive) accurate conservative temporal
scheme needed for the integration of the TGPE, the SGLE
yields a (very) large economy of the CPU time needed to reach
equilibrium. On the local machines where these computations
were performed the SGLE was typically more than 10 times
faster than TGPE.

B. Low-temperature calculation

The Gaussian histogram of Fig. 1(a) strongly suggests that
some quadratic approximation should be able to obtain exact

(a) (b)

(c) (d)

FIG. 1. (Color online) Comparison of density histograms ob-
tained by SGLE and TGPE dynamics (ξ = 2/10

√
2 and resolution

323) with energy equal to (a) H = 0.09, (b) H = 0.51, (c) H = 1.96,
and (d) H = 4.68 (see Table I). The solid line in (a) is a Gaussian of
standard deviation ¯δρ2 = 0.016 [see below Eq. (60)] computed with
the low-temperature calculations of Sec. III B.

analytical expressions for the thermodynamic functions at low
temperatures. In this section we use a such an approximation
to compute the grand partition function Z and the grand-
canonical potential2 * = −β−1 logZ defined in Eq. (29).

The first step is to express the energy F of Eq. (23) in terms
of the Fourier amplitudes Ak. This leads to a nonquadratic
function F [Ak,A

∗
k] explicitly given in Appendix B [Eqs. (B1)–

(B3)]. The grand partition function is a product integral over
all the Fourier amplitudes

Z(β,µ,W) = V N
∫

dA0dA∗
0

2π

∏

k<kmax

dAkdA∗
k

2π
e−βF [Ak,A∗

k].

(47)

The integrals in (47) cannot be done explicitly; however, it
is possible to give a low-temperature approximation using
the method of steepest descent [31,39]. We also add to F
an external field with value −µ0|A0|2V in order to explicitly
obtain the mean value of condensate Fourier mode ¯|A0|2 by
direct differentiation. The physical partition function is finally
obtained by setting µ0 = 0. The integrals are dominated by the
saddle-point determined by ∂F

∂A∗
k

− µ0A0V δk,0 = 0 that yields
the solution [see Eqs. (B4) and (B5)]

g|A0|2|sp = µ + µ0 Ak|sp = 0 for k ,= 0, (48)

where the subscript “sp” denotes saddle point. Note that in
general ¯|A0|2 ,= |A0|2|sp and the mean value is equal to the
saddle point one only at T = 0. Other solutions that can be
obtained when W ,= 0 will be discussed in detail in Sec. V.

At the saddle point (48) Ak vanishes for k ,= 0. We
thus need to keep only quadratic terms in Ak to obtain the
low-temperature approximation. Using the notation p = h̄k,
at leading order F can be rewritten as F = F0 + F1 + F2 with

F0 = V

(
g

2
|A0|4 − µ|A0|2

)
(49)

F1 = V
∑

p ,=0

(
p2

2m
− µ + 2g|A0|2 − W · p

)
|Ap|2 (50)

F2 = V
g

2

∑

p ,=0

A∗2
0ApA−p + A2

0A
∗
pA

∗
−p. (51)

In order to obtain the low-temperature partition function we
need to compute the determinant of the matrix ∂2F

∂Ap∂Aq
−

µ0V δp,0δq,0. This determinant can be obtained by making use
of the Bogoliubov transformation

Ap = upBp + vpB∗
−p (52)

with up = A0
|A0|

1√
1−L2

p

and vp = A0
|A0|

Lp√
1−L2

p

and where Lp is

determined by imposing the diagonalization of F − µ0|A0|2V .
Lp is explicitly given in Eq. (B6). It is easy to show that (52)
is a canonical transformation and that the normalization con-
dition of the corresponding Poisson bracket implies |up|2 −
|vp|2 = 1.

2Grand-canonical computations avoid difficulties that are present in
the canonical ensemble with the explicit conservation of the number
of particles (see Sec. 2.2 of Ref. [38] and references therein).
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Expressing F in the Bogoliubov basis we obtain

F = V

[
g

2
|A0|4 − µ|A0|2 +

∑

p ,=0

(ε(p; µ,µ0) − W · p)|Bp|2
]

(53)

with the dispersion relation (see Appendix B)

ε(p; µ,µ0) =

√(
µ + 2µ0 + p2

2m

)2

− (µ + µ0)2. (54)

Let us recall that the exited modes Bp are called phonons
in quantum mechanics. In the present classical case, be-
cause of classical statistics and quadratic Hamiltonian, there
will be equipartition among phonon modes. Replacing the
value of the chemical potential with its saddle-point expres-
sion µ = g|A0|2

∣∣
sp (at µ0 = 0), Eq. (54) yields the (stan-

dard; see Ref. [40]) Bogoliubov dispersion relation ε(p) =
p

√
g|A0|2

m
+ p2

4m2 . Note that ε(p) can also be directly obtained
from the GPE by expressing ψ in hydrodynamics variables,
using the Madelung transformation (6) and linearizing around
an homogenous density ρ0 = m|A0|2 [6].

The partition function now trivially factorizes
in independent parts Z(β,V ,µ,W,N ,µ0) =
Z0(β,µ,µ0)

∏
p ,=0 Zp(β,µ,W,µ0), where

Z0(β,V ,µ,µ0) =
√

2π3

√
V

gβ
e

Vβ(µ+µ0)2

2g , (55)

Zp(β,µ,W,µ0) = 1
β(ε(p; µ,µ0) − W · p)

. (56)

The total number of modesN =
∑

k 1 and the grand-canonical
potential

*(β,V ,µ,W,N ) = −β−1

[

logZ0 +
∑

p ,=0

logZp

]

(57)

are sums over all wave numbers from which all thermodynamic
quantities can be directly obtained by using the thermodynamic
relation (32).

Replacing the sum by an integral the expression for the
number of modes reads

N =
∫ Pmax

0

p2V

2π2h̄3 dp = P 3
maxV

6π2h̄3 . (58)

Setting W = (0,0,w) the integral form of Eq. (57) reads

*(β,V ,µ,w,N ) = −V (µ + µ0)2

2g
+

∫ Pmax

0

∫ 1

−1

p2V

2π2h̄3 log
(
β

√(
µ + 2µ0 + p2

2m

)2

−
(
µ + µ0

)2 − βpwz

)
dz dp

2

= −V (µ + 2µ0)
2g

− P 3
maxV

6π2βh̄3

{
2
3

− log [βε(Pmax; µ)] − f

[
4mµ

P 2
max

](
1 − w2m

2µ

)
− µ0

µ
f0

[
4mµ

P 2
max

]}
. (59)

In order to obtain Eq. (59) the thermodynamic limit (20) of
infinite volume3 was taken and the conditions w2 ( µ/m,
µ0/µ ( 1 were used. The functions f [z] and f0[z] are
explicited in Eqs. (B10) and (B11). Note that the dependence
of the grand-canonical potential * on the number of modes N
is implicitly given by Pmax and Eq. (58). The first term in * is
due to the condensed mode at p = 0.

The low-temperature approximation to all thermodynamic
functions is directly obtained from Eq. (59) by first setting
µ0 = 0 and then differentiating (59), using relation (32). It is
straightforward to check that both definition of the pressure
in Eq. (36) coincide. Furthermore the higher-order moments
of the density can be easily computed by taking successive
derivatives of the grand-canonical potential. For instance, it is
straightforward to show that the variance of the density ρ [see
solid line on histograms displayed on Fig. 1(a)] is given by

V 2〈δρ2〉 =− β−1m2 ∂
2*

∂µ2
. (60)

It can also be checked on the explicit expression for the
entropy S [see Eqs. (B9)] that, as expected for a classical

3The thermodynamic limit is taken over the grand-canonical
potential * = −β−1 logZ as V (limV →∞

*
V

).

system, the entropy depends by a logarithmic term on the
phase-space normalization. However, the function T S + λNN
is independent of phase-space normalization [see the discus-
sion below Eq. (39)].

Finally, low-temperature expressions for the energies
[Eqs. (8)–(10)] and their corresponding spectra can be easily
obtained using Madelung’s transformation (6). At low temper-
atures the fluctuations are small and ekin depends only on φ
and eq + eint only on ρ. The total energy is thus decomposed
in two noninteracting terms. Equipartition of energy between
the total kinetic energy ekin and quantum plus internal energy
eq + eint is thus expected at low temperature.

The next subsections will be concerned with the vanishing
counterflow case w = 0. The states with nonzero counterflow
w will be studied in details in Sec. (V).

C. λ transition and vortices

To characterize the condensation transition, we present here
four temperature scans performed using SGLE (42). Three
of them are at resolution of 643 with, respectively, constant
chemical potential, density, and pressure [using Eqs. (44) and
(45)]. The fourth scan is performed at constant pressure but at
a resolution of 1283. The coherence length is fixed so ξkmax =
1.48 is kept constant.
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FIG. 2. (Color online) (a) Temperature dependence of the density
ρ, pressure p, and chemical potential µ for SGLE scans at constant
density, pressure, and chemical potential (see legend on figure).
(b) Temperature dependence of the condensate fraction |A0|2/ρ [same
scans as in (a)]. (c) Specific heat cp = ∂H

∂T
|p at constant pressure

and resolution 1283 the solid line corresponds to a fit [see Eq. (61)].
(d) Temperature dependence of the energies ec

kin, ei
kin, ekin and eq + eint

at constant density; equipartition of energy between ekin and eq + eint

is apparent at low temperatures.

Figure 2(a) displays the results of the scans. Observe
that the low-temperature behavior is in good agreement with
the analytical calculations of Sec. III B and the explicit
formulas given in Appendix B. Also observe that the constant
pressure scans at resolutions of 643 and 1282 coincide for
all temperatures showing that the thermodynamic limit (20)
discussed in Sec. II B is obtained at these resolutions.

Figure 2(b) displays the temperatures dependence of the
condensate fraction |A0|/ρ for the four SGLE runs. Observe
that the condensation transition previously obtained (in the
constant density case) by microcanonical simulations in
Refs. [13,27] is reproduced and also present (at different
critical temperatures) in the constant pressure and chemical
potential scans.

The SGLE algorithm directly provides the temperature as a
control variable. It thus allows to easily obtain the specific heat
from the data. Figure 2(c) displays the specific heat at constant
pressure cp = ∂H

∂T

∣∣
p

for the scan at resolution 1283. Let us
note that the (w = 0) statistic weight of distribution [Eqs. (22)
and (23)] corresponds to that of (standard two-component)
second-order phase transitions [31,32]. We thus expect the
condensation transition visible in Fig. 2(c) to be in this standard
class. This point is confirmed by the solid lines in Fig. 2(c)
that correspond to a fit with the theoretical prediction given by
the renormalization group (RG)

cp = A±

αRG
|τ |−αRG (1 + a±

c |τ |3 + b±
c |τ |23 + · · ·) + B±,

(61)

where τ = T −Tλ

Tλ
and the + and − signs refer to T > Tλ and

T < Tλ; see Ref. [41]. The fit was obtained in the following
way: First, the identification of the transition temperature Tλ

was done by finding the zero of the linear interpolation of
the second-order difference of H , discarding the three closest
point to the zero of |A0|2/ρ. Then, using the critical exponents
αRG = −0.011 26 and 3 = 0.529 given by the RG, the data
were fitted as in Ref. [41] over the nonuniversal constant. The
obtained values are A+/A− = 1.42, to be compared with 1.05
in Ref. [41]. This discrepancy is probably due to finite size
effects.

Finally, in Fig. 2(d) the temperature dependence at constant
density of the different energies [Eqs. (8)–(10)] expressed
in terms of hydrodynamical variables is displayed. Observe
that the incompressible kinetic energy Ei

kin vanishes for low
temperatures T ( T

ρ
λ , where T

ρ
λ = 3.31 is the transition

temperature at constant density. This vanishing is connected
to the disappearance of vortices, and it is also manifest in the
density histograms in Fig. 1. At low temperatures, equipartition
of energy between the total kinetic energy ekin and the quantum
plus internal energy eq + eint (see the discussion at the end of
Sec. III B) is apparent on Fig. 2(d).

IV. ENERGY CASCADE, PARTIAL THERMALIZATION,
AND VORTEX ANNIHILATION

A new mechanism of thermalization through a direct
cascade of energy is studied in Sec. IV A. Using initial
conditions with mass and energy distributed at large scales, a
long transient with partial thermalization of the density waves
is obtained at small scales. Vortex annihilation is observed to
take place and is related to mutual friction effects. A bottleneck
effect that produces spontaneous self-truncation with partial
thermalization and a time-evolving effective truncation wave
number is characterized in Sec. IV B for large dispersive effects
at the maximum wave number of the simulation.

A. Partial thermalization

We now study the (partial) thermalization of the superfluid
Taylor-Green (TG) vortex. This flow, which was first intro-
duced in Ref. [6], develops from an initial condition that is
prepared by a minimization procedure using the advected real
Ginzburg-Landau equation (ARGLE) [6]. The nodal lines of
the initial condition ψTG are the vortex lines of the standard
TG vortex and obeys all its symmetries. Numerical integrations
are performed with a symmetric pseudospectral code, making
use of the TG symmetries to speed up the computations
and optimize memory use, as described in Ref. [6]. We
use the equivalent to 643, 1283, 2563, and 5123 collocation
points and the coherence length is set such that, in all
cases, ξkmax = 1.48.

Vortices and density fluctuations corresponding to the 5123

run are visualized on Fig. 3 using the VAPOR4 software.
The short time behavior, see Figs. 3(a)–(c), corresponds to
the GPE superfluid turbulent regime previously studied in
Ref. [5]. A new TGPE thermalization regime where vortices

4http://www.vapor.ucar.edu.
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FIG. 3. (Color online) 3D visualization of density at t = 0, 5,
10, 20, 31, and 55 at resolution 5123. Vortices are displayed as gray
(red) isosurfaces and the gray (blue) clouds correspond to density
fluctuations.

first reconnect into simpler structures and then decrease in size
with the emergence of a thermal cloud is present at later times;
see Figs. 3(d) and (e).

To further study this new TGPE regime, the temporal
evolution of ekin, ei

kin, ec
kin, eq + eint is shown on Fig. 4(a)

and the corresponding energy spectra are displayed on Fig. 5.
Observe that, at t = 0, ei

kin contains almost all the energy
because of the highly vortical initial condition.

The early times (t " 15) behavior corresponds to the
PDE regime of the GPE (1) that was previously reported in
Refs. [5,6]. An energy transfer is observed from ei

kin to the
other energies (ec

kin and eint + eq) that are associated to the
density waves.

Continuing the temporal integration the spectral conver-
gence to the GP partial differential equation is lost. The
dynamics becomes influenced by the truncation wave numbers
kmax and thermalization starts to take place. Two new regimes
are observed. The first one for 20 # t # 80 corresponds to
a partial thermalization at small scales: see Fig. 5(b)–(d).
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FIG. 4. (Color online) (a) Temporal evolution of energies ec
kin,

ei
kin, ekin, and eq + eint at resolution 2563. At large times, the

incompressible energy vanishes and equipartition of energy between
ekin and eq + eint is observed. (b) Temporal evolution of ei

kin at
resolution of 643, 1283, 2563, and 5123 with constant ξkmax = 1.48.

Observe that equipartition of ec
kin and eq + eint begins to

be established in this phase. The thermalized zone then
progressively extends to larger wave numbers. During this
phase ei

kin decrease at almost constant rate [see Fig. 4(a)]. As
shown on Fig. 4(b), this phase is delayed when the resolution
is increased at constant ξkmax.

Around t = 80 [Figs. 4(a) and 5(d)] equipartition is
established for each wave number and ei

kin almost vanishes.
This vanishing is related to the disappearance of vortex lines
that first reconnect into simpler structures which then decrease
in size and number and finally disappear (as can be directly
observed on the density visualizations corresponding to the
2563 run, pictures not shown). Note that the annihilation of the
vortices can also be related to the contraction of vortex rings
due to mutual friction reported in Ref. [30]. For t > 80 the
system finally reaches the thermodynamic equilibrium. The
final absence of vortices and equipartition of energy between
ec

kin and eq + eint, as can be directly checked on the temperature
scan in Fig. 2(d), is a consequence of the low energy of the
initial condition ψTG.

We have thus presented for the first time a new mechanism
of thermalization through a direct cascade of energy of the
TGPE similar to that of the incompressible truncated Euler
equation reported in Ref. [21].

B. Dispersive slowdown of thermalization and bottleneck

We now turn to the study of dispersion effects on the
thermalization of the TGPE dynamics and on vortex anni-
hilation. To wit, we prepare three different initial conditions
with different values of ξkmax using the TG initial condition
described in the preceding section. We fix the value of the
coherence length to ξ =

√
2/20 and use resolutions of 643,
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FIG. 5. (Color online) [(a)–(d)] Energy spectra at t = 0, 15, 69, 77 at resolution 2563. (d) Equipartition is reached for all modes.

1283, and 2563 corresponding to ξkmax = 1.48, 2.97, and 6.01,
respectively. The three initial condition therefore represent the
same field at different resolutions. The temporal evolutions of
ekin, ei

kin, ec
kin, and eq + eint for the three runs (indexed by the

resolution) are displayed on Fig. 6(a).
They are identical until t ≈ 5 where the run of resolution

643 starts to lose its spectral convergence. At at t ≈ 20 all runs
appear to have thermalized on Fig. 6(a). However, the kinetic
energy spectra on Fig. 6(b) shows a clear difference between
the runs (the dashed line corresponds to k2 power-law scaling).
The high-wave-number modes of the 643 run are thermalized.
For the 1283 run the high wave numbers begin to fall down
and, at resolution 2563, two zones are clearly distinguished.
An intermediate thermalized range with an approximative k2

power-law scaling is followed by a steep decay zone well
before kmax = 85. Remark that in the 2563 run the spectral
convergence is still ensured and the (partial) thermalization is
thus obtained within the GP PDE dynamics.

The temporal evolution of ekin(k) for the 2563 run is
displayed in Fig. 6(c). The large wave number k−3 power-
law behavior at t = 0 is an artifact of the high-k decom-
position of energies in the presence of vortices (see pp.
2649–2650 of Refs. [6] and [42]) and a faster decay is
recovered as soon as the vortices disappear. The thermalized
intermediate zone is observed to slowly extends to smaller
wave numbers. This naturally defines a self-truncation wave
number kc(t), where the energy spectrum starts to drastically
decrease.

In order to determine kc(t) we have tested fits to ekin(k) using
two type of trial spectra with three free parameters: efit I(k) =
A(t)k−n exp [−2δ(t)k] and efit II(k) = A(t)k−n exp [−γ (t)k2].
The efit II(k) fit was found to work better in the sense that it
both gives the correct n = −2 prefactor at intermediate and
large times and also gives a better fit to the data at high k
(data not shown). Fixing the prefactor at the value n = −2, we

finally define our working two-parameter fit as

efit(k,t) = A(t)k2e−[( 9π
16 )

1
3 ( k

kc (t) )2] (62)

efit(t) =
∫ kmax

0
efit(k,t) dk. (63)

The factor (9π/16)1/3 in Eq. (62) was set in order to obtain
the limits Ak3

c /3 and Ak3
max/3 for efit(t) when kmax → ∞ and

kc → ∞, respectively. The fits are also displayed in Fig. 6(c).
They are in good agreement with the data after vortices have
disappeared. The temporal evolution of efit(t) is displayed in
Fig. 6(a). It does converge to the thermalized value of the
energy. Finally, the temporal evolution of the self-truncation
wave number kc(t), which seems to have a well-defined limit
at infinite resolution, is displayed in Fig. 6(d) for the three
runs.

An open question is whether kc is bounded in time
in the PDE regime where kc ( kmax. In other words, is
thermalization of the ξkmax 0 1 truncated system simply
delayed or completely inhibited when ξkmax is large enough?
Note that this problem is related to the classical Fermi-Pasta-
Ulam-Tsingu problem [43].

To try to answer this question within the Taylor-Green
framework would be computationally very expensive as long
runs should be performed at arbitrarily high resolutions. A
simple alternative idea to study this problem is to use initial
data for the TGPE generated by the SGLE with a variable
truncation wave number kin

c , set to a target value of kc, smaller
than the maximum truncation wave number kmax allowed by
the resolution. This SLGE-generated initial data can then be
used to run the TGPE at a given value of ξkc with arbitrarily
large values of ξkmax. A number of runs were performed at
resolution 643 with various values of kin

c , ξ , and initial energy
ein (see legend on Fig. 7). The result of these computations
are compared with the above Taylor-Green runs (see Fig. 6)
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(a)

(b)

(d)

(c)

FIG. 6. (Color online) (a) Temporal evolution of energies [as in
Fig. 4(a)] for ξkmax = 1.48, 2.97, and 6.01 (resolution 642, 1283, and
2563 respectively). Yellow stars are the kinetic energy reconstructed
from fit data using Eq. (63). (b) Kinetic energy spectrum at t = 17.4
for ξkmax = 1.48, 2.97, and 6.01; the dashed black line indicates
k2 power-law scaling. (c) Temporal evolution of kinetic energy
spectrum; the solid red lines correspond to fits using Eq. (62) and
the dashes black line indicate k−3 power-law scaling. (d) Temporal
evolution of effective self-truncation wave number kc [Eq. (62)] at
different resolutions.

and displayed on Fig. 7. Because of the steep decay of the
energy spectrum for k 0 kc, the self-truncation wave number
is determined using the integral formula

kc =

√√√√5
3

∫ kmax

0 k2ekin(k) dk
∫ kmax

0 ekin(k) dk
. (64)

A general growth in time of kc is apparent on Fig. 7(a) for
both the Taylor-Green runs and the SGLE-generated initial
data, showing similar behavior. In order to check for self-
similar regime a parametric log-log representation dkc/dt vs.
kc has been used on Fig. 7(b) and 7(c). With this representation,
a self-similar evolution kc(t) ∼ tη corresponds to a line of
slope χ = (η − 1)/η. Figure 7(b) shows transient self-similar
evolutions that all terminate by a vertical asymptote, corre-
sponding to logarithmic growth (η = 0). This self-truncation
takes place for small values of kc/kmax strongly suggesting
that the self-truncation happens in a regime independent of
cutoff. Finally, Fig. 7(c) suggests that, depending on initial
conditions, self-truncation can take place at arbitrarily values
of ξkc.

As the dynamics of modes at wave numbers larger than kc

is weakly nonlinear, it should be amenable to a description in
terms of wave turbulence theory; this could perhaps explain the
slowdown of the thermalization in this zone. The new regime
indicates that total thermalization is delayed when increasing
the amount of dispersion (controlled by ξkmax) but is preceded
by a partial thermalization (quasiequilibrium up to kc) within
a PDE.

We now turn to estimations of order of magnitude relevant
to physical BEC. At low-temperature, the GPE is known [3]
to give an accurate description of the (classical) dynamics of
physical BEC at scales larger than the interatomic separation 7.
At finite temperature the TGPE gives a good approximation of
Bose-Einstein condensate (BEC) only for the phonon modes
with high occupation number; see Refs. [3,13]. At very low
temperature, thus, only a limited range of low-wave-number
density waves are in equipartition.

This limited range has consequences on the low-
temperature thermodynamics of BEC that can be obtained
by the following considerations. The equipartition range is
determined by the relation k " keq with h̄ωB(keq) = kBT ,
where the Bogoluibov dispersion relation ωB(k) is given by

ωB(k) = k

√
g|A0|2

m
+ h̄2

4m2
k2. (65)

The coherence length ξ defined in Eq. (7) can be expressed
in terms of the s-wave scattering length ã defined by g =
4π ãh̄2/m and the mean interatomic particle distance 7 ≡
n−1/3 ≈ |A0|−2/3 as

ξ = (8πnã)−1/2 = 7
1√
8π

(
7

ã

)1/2

. (66)

For weakly interacting BEC the coherence length thus satisfies
ξ 0 7. The equipartition wave number keq explicitly reads

keq =
[
√

4k2
Bm2T 2ξ 4 + h̄4

ξ 2h̄2 − 1
ξ 2

]1/2

. (67)

Using the Bose-Einstein condensation temperature of non-
interacting particles (valid for ã ( 7) [3]

Tλ = 2πh̄2

kBm

[
n

ζ
( 3

2

)
]2/3

, (68)

where ζ (3/2) = 2.6124 . . . , the equipartition wave number keq
can be expressed as

keq = 1
ξ

[√
1 + 16π2

ζ
( 3

2

)4/3

ξ 4

74

T 2

T 2
λ

− 1

]1/2

. (69)

Observe that keq varies from keq = 0 at T = 0 to a wave number
of order keq ∼ 7−1 at Tλ and it is equal to kξ = 2π/ξ at T ∗

defined by

T ∗ = 4π
√

2 + 4π2ζ

(
3
2

)2/3
ã

7
Tλ. (70)

Thus the thermodynamic of physical BEC at low-temperature
(e.g., specific heat scaling as T 3) can be recovered from the
TGPE thermodynamics by setting kmax = keq(T ).
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FIG. 7. (Color online) (a) Evolution of the self-truncation wave number kc. Curves i–iv: ξ = 2
√

2/5, kin
c = 4, ein = 0.1, 0.2 ,0.4 ,1;

v: ξ =
√

2/10, kin
c = 8, ein = 0.2; vi–viii: ξ =

√
2/5, ein = 0.1, 0.2 ,0.4 (i–viii in resolution 643); ix–xi: Taylor-Green resolutions 643, 1283,

and 2563. [(b) and (c)] Parametric representation dkc/dt vs. kc/kmax and dkc/dt vs. ξkc [same labels as in (a)].

In experimental turbulent weakly interacting BEC such
as in Ref. [44] the value of ξkeq is large because T ∗/Tλ ∼
ã
7

( 1 and therefore the corresponding TGPE should have
a large ξkmax. Thus the thermalization slowdown caused by
the dispersive bottleneck should be in principle present in
physical BEC, unless it is overwhelmed by other relaxation
mechanisms [45].

V. METASTABILITY OF COUNTERFLOW, MUTUAL
FRICTION, AND KELVIN WAVES

Counterflow states with nonzero values of momentum
generated by the new SGLE algorithm and their interaction
with vortices are investigated in this section. The counterflow
states are shown to be metastable under SGLE evolution; the
spontaneous nucleation of vortex ring and the corresponding
Arrhenius law are characterized in Sec. V A. Dynamical
counterflow effects are investigated in Sec. V B using vortex
rings and vortex lines patterns that are exact solutions of the
GPE. Longitudinal and transverse mutual friction effects are
produced and measured. An anomalous translational velocity
of vortex ring is exhibited and is quantitatively related to
the effect of thermally excited finite-amplitude Kelvin waves.
Orders of magnitude are estimated for the corresponding
effects in BEC and superfluid 4He.

A. Metastability of grand-canonical states with counterflow

1. Thermodynamic limit of states with nonzero counterflow

The counterflow states with W ,= 0 are determined by
thermal fluctuations around the minima of the energy F
Eq. (23). These minima correspond to the solution of

δF

δψ∗ = 0 = − h̄2

2m
∇2ψ + gPG[|ψ |2]ψ − µψ + ih̄W · ∇ψ

(71)

that are plane waves of the form

ψ(x; vs) = g− 1
2

√
µ − mW · vs + mv2

s

2
e−i m

h̄
vs ·x, (72)

where the velocity vs indexes the different solutions.
In the thermodynamic limit, the Galilean group defined

by the transformations (12)–(15) is continuously indexed by
the velocity vG. All wave functions (72) are thus equivalent
by Galilean transformation (and redefinition of the chemical

potential). Under the Galilean transformation (12) the energy
F is transformed as F ′ = F − (mW · vG − mv2

G/2)N + vG ·
P. Note that, among all the minima of F the one with vs = W
minimizes F ′. This state corresponds to a condensate moving
with uniform velocity W. The W · P term thus imposes only a
Galilean transformation of the global minimum.

However, when working in a finite volume, the Galilean
transformation is quantized [see Eq. (19)]. The minima of F ′

of lowest energy then corresponds to a condensate moving
with the quantized uniform velocity vs that is the closest to
W. At finite temperature and volume, when W is not too
large with respect to the velocity quantum in Eq. (19), we
have two ways to produce momentum in the system. The
first one corresponds to Galilean transformations: vs ,= 0 in
Eq. (72). The second one corresponds to fluctuations of the
exited phonons, with vs = 0 in Eq. (72) and the momentum
of phonons imposed by the term W · P in the grand-canonical
distribution (22). Metastability is thus expected when W ,=
0 with quasiequilibrium corresponding to condensates at
different wave numbers with an energy barrier between each
of those states.

In the context of the Landau two-fluid model [1] the velocity
vs of the condensate corresponds to the superfluid velocity
and the momentum carried by the exited phonons is written as
P = ρn(vn − vs) where ρn and vn are called the normal density
and velocity respectively. The counterflow velocity defined by
W̃ = vn − vs is a Galilean invariant.

The above discussion shows that, in general the variable
W in the SGLE (42) corresponds to W = vn. In the ther-
modynamic (infinite volume) limit W = vs and there is thus
no counterflow W̃ = vn − vs = 0. For finite-size systems, in
general vs ,= W and W̃ ,= 0.

We thus define (when vs = 0) the normal density by

ρn = ∂Pz

∂wz

∣∣∣∣
wz=0

. (73)

2. Thermodynamics of metastable states at small temperature and
small counterflow

In order to first validate the SGLE in the presence of
counterflow two scans are performed at constant density using
a resolution of 643 and ξkmax = 1.48. The condensate is set at
k = 0 in the SGLE initial data and the temperature is fixed to
T = 0.2. This low temperature allows us to increase the value
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(a)

(b) (c)

FIG. 8. (Color online) Counterflow dependence of momentum Pz

(wx = wy = 0). (Inset) Temperature dependence of ρn = ∂Pz

∂wz
|wz=0.

(b) Histograms of momentum Pz and −Pz (in log-lin) with no
counterflow at T = 1. No asymmetry is observed. (c) Histograms
of momentum Pz and −Pz with counterflow wz = 0.4 at T = 1. An
asymmetry, induced by counterflow, is apparent. Observe that both
histograms are centered at Pz = 0.

of the counterflow wz (hereafter we set wx = wy = 0), keeping
the condensate at k = 0. The dependence of the momentum
Pz on wz is presented in Fig. 8(a). The solid line corresponds
to the low-temperature calculations [Eq. (59) and Appendix B
Eqs. (B9)]. The second run correspond to a temperature scan
(at low counterflow wz = 0.1). The temperature dependence of
ρn is displayed together with the low-temperature calculation
on the inset of Fig. 8(a).

Figures 8(a) and 8(b) display histograms of Pz and −Pz in
physical space, both obtained at T = 1 with the condensate at
k = 0 but with zero and nonzero counterflow. Observe that the
histograms are both centered at Pz = 0 but the nonzero coun-
terflow induces an asymmetry in the statistical distribution that
yields a nonzero value for the mean momentum.

3. Spontaneous nucleation of vortex rings and Arrhenius law

At temperatures and counterflow velocities large enough
the stochastic process defined by the SGLE can jump between
the different metastable states discussed above in Sec. V A 1 .
In this section, we show how the different states are explored,
under SGLE evolution, by spontaneous nucleation of vortex
rings. To wit, we present a numerical integration of SGLE
at resolution 643 with ξkmax = 1.48. With this choice of
parameters the velocity quantum (19) is fixed to 0.2. The
temperature is set to T = 0.775 and the counterflow to wz =
0.8. The condensate is set at k = 0 in the SGLE initial data
and the density is kept constant to ρ = 1.

The temporal evolution of the momentum Pz is displayed
in Fig. 9(a) (right scale).

Observe that the system first spends some time at the state
(I) with Pz ≈ 0.05 and that, around t = 55, it jumps to the state
(II) with Pz ≈ 0.225. These two metastable states correspond

(a)

(b)

(d)

(c)

FIG. 9. (Color online) (a) Temporal evolution of |A0|2 and
|A1|2 (left scale) under SGL dynamics. Observe that there are two
quasistationary states (I and II) and the condensate makes a transition
from k = 0 to k = 1. The temporal evolution of the momentum pz is
displayed in the same plot (right scale). Observe that transition from
one state to the other is accompanied by an increase of momentum.
(b) 3D visualization of density at t = 54.5, t = 56, and t = 60.5; the
gray (blue) clouds corresponds to density fluctuations and the vortices
are displayed as gray (red) isosurface (see the color bar in Fig. 12).
(c) Histogram of momentum pz and −pz at the two quasistationary
states (I and II) in lin-lin plot. (d) Arrhenius law: data form SGL
dynamics (points) and theoretical Eq. (74) (solid line).

to quasiequilibrium at k = 0 and k = 1 as is apparent in
Fig. 9(a) (left scale) where the temporal evolution of |A0|2
and |A1|2 [see Eq. (16)] is displayed.

In order to illustrate the dynamic of the condensate jump
from k = 0 to k = 1 we now present 3D visualization of the
density at t = 54.5, t = 56, and t = 60.5 on Fig. 9(b). To
produce this figure, the wave function ψ was first low-pass
filtered and the density was then visualized using the VAPOR
software. At early times (t < 50, pictures not shown) no
vortices are present in the box. At t ≈ 54 a vortex ring is
nucleated. It then increases its size under SGLE evolution
until it reconnects with the neighbor rings (recall that periodic
boundary condition are used). The ring finally contracts and
disappears (pictures not shown). During this evolution, the
local phase defect of the ring becomes global and changes
the condensate wave number. Histograms of momentum Pz

and −Pz in the two metastable states I and II are presented
in Fig. 9(c). Observe that both momentum histograms of
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metastable states are asymmetrical [as it was the case on
Fig. 8(c)]. However, note that I is centered at Pz = 0 and II
at Pz = 0.2, respectively, corresponding to the wave numbers
k = 0 and k = 1.

It is well known that the escape time of a metastable
quasiequilibirum is given, in general, by an Arrhenius law
[46,47]

tesc ∼ tce
−β3F , (74)

where 3F is the activation energy of the nucleation solution
and tc is a characteristic time. Here, the nucleation solution is
given by a vortex ring that satisfies ∂F

∂ψ∗ = 0. The energy barrier
is thus determined by 3F = Hring(R∗) − Vring · Pring(R∗),
where the analytic expressions for the energy Hring, the
momentum Pring, and the radius are given by

Vring = h̄

2m

1
R∗

[
ln

(
8R∗

ξ

)
− a

]
, (75)

P ∗
ring = 2π2h̄ρ∞

m
R∗2, (76)

H ∗
ring = 2π2h̄2

m2
ρ∞R∗

[
ln

(
8R∗

ξ

)
− 1 − a

]
, (77)

where ρ∞ is the density at the infinity and a is a core
model-depending constant with value a = 0.615 for the GPE
vortices [4]. Formulae (75)–(77) and the value of a have been
numerically validated in Ref. [48] using a Newton method
[49–51].

In order to numerically check that the escape time indeed
follows an Arrhenius law we now perform runs with with
ξkmax = 1.48 and resolution 323. The counterflow is fixed at
w = 1.4 and the condensate is set initially at k = 0 (constant
density ρ = 1). At each fixed temperature T , several numerical
integration of SGLE are performed and the escape times for
the condensate to leave the wave number k = 0 are measured.
These escape times are then averaged over more than 10
realizations. Figure 9(d) displays the escape time tesc obtained
in this way as a function of the inverse temperature 1/T
in log-lin. The slope of the solid line is computed using
the analytic formulas (75)–(77) of 3F . Both numerical and
theoretical Arrhenius laws are in good agreement. The main
consequence of this Arrhenius law is that it is practically
possible to use the SGLE dynamics to prepare metastable states
with finite value of counterflow and lifetime quantitatively
given by (74).

B. Dynamical effects of finite temperature and
counterflow on vortices

We now turn to the study the dynamical effects of
counterflow on TGPE vortex evolution. To wit, we set up
finite temperature and finite counterflow initial states that also
contain vortices. Two cases are investigated: (i) vortex lines, in
a crystal-like pattern that do not produce self-induced velocity,
and (ii) vortex rings, producing self-induced velocity.

1. Lattice of vortex lines

To numerically study the effect of counterflow on vortices,
we prepare an initial conditionψlattice consisting of a periodical
array (of alternate sign) straight vortices. This initial condition

is the 3D extension of that used in Ref. [52] to study the
scattering of first sound in 2D. The lattice is obtained using a
Newton method [49–51]. It is an exact stationary solution of
the (periodic) GPE. As the vortices are separated by a fixed
distance d = π , they can be considered isolated in the limit
ξ ( d. Let us remark that this limit is automatically obtained
when the resolution is increased at constant ξkmax. To include
temperature effect we prepare absolute equilibria ψeq using
SGLE with the counterflow aligned with an axis perpendicular
to the vortices in ψlattice. The initial condition ψ = ψlattice ×
ψeq is then evolved using the TGPE. The counterflow induces
a motion of the lattice as is apparent on the 3D visualizations
of the the time evolution of the density that are displayed on
Fig. 10 [figure obtained in the same way as Fig. 9(b)].

Several runs were performed at different resolutions (with
ξkmax = 1.48), temperatures, and counterflow values [see
legend on Fig. 11 (b)].

Figure 11(a) displays the temporal evolution of (R‖,R⊥)
the, respectively, parallel and perpendicular component of the
vortex filament to the counterflow for T = 0.5, 1 and wz =
0.4. The trajectories are obtained by first averaging along the
direction of the vortices, then the (averaged) coordinate of
the vortices is found by seeking the zero of the reduced 2d
wave function. Observe that the vortex, originally located at
( 3π

2 , 3π
2 ), moves in the direction of the counterflow and its

velocity clearly depends on the temperature. It is apparent
that a perpendicular motion is also induced at short times.
This motion has two phases, the first one is related to an

(a) (b)

(c) (d)

0 0.375 1.125 1.50.75

FIG. 10. (Color online) 3D visualization of density at t = 0, 40,
60, and 120 at temperature T = 1 and counterflow W = 0.4. The gray
(blue) clouds correspond to density fluctuations and the crystal-like
vortex lattice is displayed in gray (red) isosurfaces.
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FIG. 11. (Color online) (a) Trajectory of a straight vortex in the
crystal pattern for T = 1, T = 0.5, and wz = 0.4 at resolution 643.
(Inset) Run with T = 1 until t = 600. (b) Temperature dependence
(Tλ = 3.31) of the advection velocity v‖/wz for the lattice and
3vL/ui for the vortex rings (resolutions 323–1283). The dashed line
corresponds to to Eq. (79) with B ′ = 0.83 and the solid line to the
theoretical prediction (90). (c) Temporal evolution of the square of the
length of the vortex ring for different values of counterflow, T = 1,
and initial radius, R = 15ξ , at resolution 643.

adaptation and makes the crystal-like lattice slightly imperfect.
The perpendicular motion then almost stops (a very small slope
can be observed for long time integration). The initial phase
where the parallel and perpendicular motions have similar
velocities lasts longer when ξ/d is decreased by increasing
the resolution (data not shown). Observe that the imperfection
of the lattice in the final configurations is almost equal for
the two temperatures presented in Fig. 11(a), but the parallel
velocities differ considerably. Thus, the self-induced parallel
velocity caused by the slight imperfection of the lattice is very
small and is not driving the longitudinal motion.

We now concentrate on the measurement of R‖ for which
the present configuration is best suited. R‖ has a linear behavior
that allows direct measurement of the parallel velocity v‖. The
temperature dependence of v‖/wz is presented on Fig. 11(b) for
different values of wz and d/ξ (corresponding to the different
resolutions). For superfluid vortices the standard phenomeno-
logical dynamic equation of the vortex line velocity vL is [4]

vL = vsl + αs′ × (vn − vsl) − α′s′ × [s′ × (vn − vsl)], (78)

where s ′ is the tangent to the vortex line, vsl is the local
superfluid velocity (the sum of the ambient superfluid velocity
vs and the self-induced vortex velocity ui), and vn = w + vs

is the normal velocity. The constants α,α′ depend on the
temperature. Let us note that the existence of the transverse
force [related to the third term of right-hand side in Eq. (78)]
has been subject of much debate in the low-temperature
community in the latter part of the 1990s [53–59] and this
controversy is still unresolved. Applied to the present case,
Eq. (78) predicts v⊥ = −αwz and v‖ = α′wz. The value of
the constant α′, related to the transverse force, depends on the

normal density and the phonon-vortex scattering section. It
can be expressed as

α′ = B ′ ρn

2ρ
, (79)

where B ′ is an order one constant [4]. A fit to the measured
values of v‖/wz yields B ′ = 0.8334; see Fig. 11(b). We thus
conclude that finite-temperature TGPE counterflow effects
measured on R‖ for the crystal pattern are in quantitative
agreement with standard phenomenology [Eq. (78)]. We have
seen above that the effect on R⊥ is of the same order of
magnitude that the one on R‖ but only in the initial phase
as long as crystal imperfection does not come into play.

2. Vortex rings

We now turn to study the effect of counterflow on vortex
rings. The initial condition is prepared as in the previous
section but with the lattice ψlattice replaced by a vortex ring
ψring, that is an exact stationary (in a comoving frame) solution
of GPE. The plane containing the vortex rings of radius R is
perpendicular to the counterflow and the rings are numerically
obtained by a Newton method [49–51].

In the case of vortex rings the general formula (78) yields

Ṙ = −α(ui − wz), (80)

vL = vs + (1 − α′)ui + α′wz, (81)

where ui denotes the ring velocity at zero temperature,
explicitly given by Vring in formula (75) (replacing R∗ by the
corresponding radius). In the special simple case wz = 0, a
finite-temperature contraction of the vortex ring is predicted.
This transverse effect effect was first obtained and measured
by Berloff and Youd, using a finite-difference scheme version
of the TGPE that exactly conserves the energy and particle
number [30].

The temporal evolution of the square of the vortex length
of a ring of initial radius R = 15ξ at temperature T = 1 and
counterflow wz = 0, 0.2, and 0.4 is displayed on Fig. 11(c).
For w = 0, the dynamics under TGPE evolution reproduces
the Berloff ring contraction [30]. The temperature dependence
of the contraction obtained for w = 0 (data not shown)
quantitatively agrees with Berloff and Youd’s results. A
dilatation of vortex rings is apparent on Fig. 11(c) for w larger
than the measured vortex ring velocity vL = 0.23.

However, vL has a very strong dependence on temperature
that is also present for w = 0. The temperature dependence
of 3vL/ui , where 3vL = ui − vL, is displayed in Fig. 11(b).
We have checked that the velocity vL directly measured at
T = 0 is indeed given by ui . Equation (78) predicts (in the
absence of counterflow) a translational velocity for the vortex
ring vL = (1 − α′)ui . Observe that 3vL/ui is one order of
magnitude above the transverse mutual friction coefficient
measured on the crystal-like lattice. Note the presence of
a large spread of the low temperature data for the ring
[see the leftmost data points in Fig. 11(b) corresponding to
T/Tλ = 0.04]. At very low temperatures the effect is very
weak. Thus, the corresponding measured values of 3vL/ui

are influenced by errors on the measurement of position and
velocity of the vortices that are caused by the finite size of
the mesh. In the future, these low temperature uncertainties on
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(a) (b)

(c) (d)

0 0.375 1.125 1.50.75

FIG. 12. (Color online) 3D visualization of density at t = 18, 19,
20, and 21 at temperature T = 1. The gray (blue) clouds correspond
to density fluctuations and a vortex ring of radius R = 20ξ with
thermally excited Kelvin waves is displayed in gray (red) isosurfaces.

the determination of 3vL/ui could be reduced by performing
runs at higher resolution together with more accurate (subgrid)
measurement of the vortex position.

3. Anomalous translational velocity and Kelvin waves

In this section we relate the finite temperature slowdown
[see the top line of Fig. 11(b)] to the anomalous translational
velocity of vortex ring with the finite-amplitude Kelvin waves
that was reported in Refs. [60,61]. Indeed, Kelvin waves are
clearly observed in 3D visualizations of vortex rings driven at
finite temperatures by the TGPE as it is apparent in Fig. 12
[obtained in the same way that Fig. 9(b)].

Following Ref. [61], Kelvin waves of amplitude A and
wavelength 2πR/N on a ring of radius R are parametrized, in
cylindrical coordinates r , φ, and z, as

x = (R + A cos Nφ) cosφ, (82)

y = (R + A cos Nφ) sinφ, (83)

z = −A sinφ. (84)

In the limit N 0 1 the dispersion relation ω(k) of the Kelvin
wave [Eqs. (82)–(84)] is given by [60]

ω(k) = h̄

2m
k2

[
ln

(
8R

ξ

)
− a

]
, (85)

where k = N/R and a is the core model-depending constant
in formula (75).

The anomalous translational velocity caused by an excited
Kelvin wave was first reported by Kiknadze and Mamaladze
[60] in the framework of the local induction approximation
(LIA). The effect was then obtained and numerically charac-
terized within the Biot-Savart equation by Barenghi et al. [61].
The anomalous translational velocity va of a vortex ring reads
(in the limit N 0 1, see Eq. (26) of Ref. [60])

va ≈ ui

(
1 − A2N2

R2

)
, (86)

where ui = Vring is the self-induced velocity (75) without
Kelvin waves.

The variation of the energy of a vortex ring caused by a
(small amplitude) Kelvin wave can be estimated as

3E =
dHring

dR

3L

2π
, (87)

where Hring is the energy given by Eq. (77) and the length
variation 3L produced by the Kelvin wave [Eqs. (82)–(84)]
is given, at lowest order in the amplitude A/R, by 3L =
πA2N2/R. Assuming equipartition of the energy of Kelvin
waves with the heat bath implies 3E = kBT , which yields the
value of A2N2/R2 as function of T :

A2N2

R2
= m2kBT

π2ρ∞h̄2R
(

log 8R
ξ

− a
) . (88)

The equipartition law (88) can also be directly obtained as
the classical limit of the quantum distribution computed by
Bareghi et al. [62], up to a redefinition of the core constant
model a [see Eq. (25) in Ref. [62]]. Let us remark at this point
that, at low temperature and in nonequilibrium conditions,
the presence of a Kelvin wave cascade at scales between the
intervortex distance and ξ (see Refs. [63,64]) can lead to a
different dependence of the amplitude on the wave number.

We finally assume that the slowing-down effect of each
individual Kelvin wave is additive and that the waves populate
all the possible modes. Kelvin waves are bending oscillations
of the quantized vortex lines, with wave number k # 2π/ξ .
The total number of modes can thus be estimated as

NKelvin ≈ 2πR/ξ . (89)

Replacing A2N2/R2 in Eq. (86) by Eq. (88) and multiplying
by the total number of waves NKelvin we obtain the following
expression for the anomalous translational effect due to
thermally exited Kelvin waves

3vL

ui
≡ ui − va

ui
≈ 2kBT m2

πρ∞ξh̄2

1

log 8R
ξ

− a
. (90)

The temperature dependence of the equipartition estimate
(90) of the thermal slowdown is plotted on Fig. 11(b) (top
straight line). The data obtained form the measurements of the
rings velocity in the TGPE runs is in very good agreement
with the estimate (90).

As discussed in Refs. [3,13] the TGPE gives a good ap-
proximation to physical (quantum) Bose-Einstein condensate
(BEC) only for the modes with high phonon occupation
number. In this sprit quantum effects on the Kelvin waves
oscillations must also be taken into account to obtain the total
slowing-down effect in a BEC. The TGPE estimation (90)
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can be adapted to weakly interacting BEC by the following
considerations.

At very low temperatures, because of quantum effects,
only a limited range of low-wave-number Kelvin waves are in
equipartition. This range is determined by the relation k " keq
with h̄ω(keq) = kBT and the dispersion relation (85), it reads:

keq =
√

kBT 2m

h̄2[ ln
( 8R

ξ

)
− a

] (91)

and can also be expressed as

keq =

√√√√ 4π n2/3

ζ
( 3

2

)2/3[ ln
( 8R

ξ

)
− a

]
(

T

Tλ

)1/2

. (92)

where Tλ is the Bose-Einstein condensation temperature of
noninteracting particles (68) and the relation between the
interatomic distance 7 and the vortex-core size ξ are given
in Eq. (66).

Observe that keq varies from keq = 0 at T = 0 to a wave
number of order keq ∼ 7−1 at Tλ and is equal to kξ = 2π/ξ at
T ∗ defined by

T ∗ = 8π2ζ

(
3
2

)2/3[
ln

(
8R

ξ

)
− a

] (
ã

7

)
Tλ. (93)

Therefore, at temperatures T ∗ < T < Tλ, the energy of all
Kelvin waves are in equipartition and equation (90) thus
applies directly.

It is natural to suggest that an additional effect, caused by
the quantum fluctuations of the amplitudes of Kelvin waves,
will take place at low temperatures T < T ∗. This quantum
effect can be estimated by using the standard relation for the
energy of the fundamental level of a harmonic oscillator3E =
h̄ω(k)/2. Applied to the Kelvin waves, this relation yields
the k-independent quantum amplitude A2

Q = m/4π2Rρ. The
quantum effect can thus be estimated as the sum

NKelvin∑

N=N eq
Kelvin

A2
QN2

R2
∼

A2
QNKelvin

3

3R2
= 2mπ

3ρξ 3
= 64π5/2

3
√

2

(
ã

7

)3/2

.

(94)

The total effect is obtained superposing the thermal effect and
the quantum effect and the final result is

3vL

ui

∣∣∣∣
T <T ∗

= 64π5/2

3
√

2

(
ã

7

)3/2

+ (4/
√
π )

ζ
( 3

2

)
C

[
R
ξ

]3/2

(
T

Tλ

)3/2

(95)

3vL

ui

∣∣∣∣
T >T ∗

= 8
√

2π

ζ
( 3

2

)2/3
C

[
R
ξ

]
(

ã

7

)1/2
T

Tλ

, (96)

where C[R/ξ ] = log
(

8R
ξ

)
− a.

In the case of superfluid helium, where ã ∼ 7, the GPE
description is expected to give only qualitative predictions
and, at best, order-of-magnitude estimates (see Ref. [4]). It is
thus difficult to extend the above considerations, obtained in
the case of weakly interacting BEC with ã ( 7, to helium.

Nevertheless, the results obtained above in the weakly inter-
acting case strongly suggest the presence of new slowing-down

effects not included in the usual mutual friction descriptions of
helium that predicts 3vL

ui
∼ ρn/ρ ∼ (T/Tλ)4. The new effects,

because of their temperature dependence [see Eq. (96)], should
be dominant at low temperatures.

The zero-temperature quantum slowdown is independent of
the ring diameter and the finite-temperature effects are stronger
for small rings. Time-of-flight measurements of vortex rings in
4He could be used to determine the translational velocity. The
effect could also be studied in ultracold atomic gases BEC. For
these systems the effect of the inhomogeneity of the superfluid
should be taken into account [65].

VI. CONCLUSIONS

In summary, our main results were obtained by making use
of a stochastically forced Ginzburg-Landau equation (SGLE)
that permits us to efficiently obtain and control truncated
Gross-Pitaevskii absolute equilibrium. This allowed us to show
that the condensation transition observed in Refs. [13,27,28]
corresponds to a standard second-order transition described by
the λφ4 theory.

We also found that thermodynamic equilibrium can be
obtained by a direct energy cascade, in a way similar to that
of Cichowlas et al. [21], accompanied by vortex annihilation
as a prelude to final thermalization. Increasing the amount of
dispersion of the system a slowdown of the energy transfer
was produced inducing a partial thermalization independently
of the truncation wave number. This new thermalization
regime opens up an avenue to a further investigation of vortex
dynamic in coflowing finite-temperature superfluid turbulence.
In this context it would be interesting to study in the future,
using a much higher resolution than in the present work,
the dispersive bottleneck. In particular, to investigate the
possibility of the coexistence of a well-established turbulent
Kolmogorov cascade followed by a dispersive-induced partial-
thermalization zone.

Using the SGLE in the presence of a counterflow we ob-
served that the counterflow can block the contraction of vortex
rings reported by Berloff and Youd [30] and also induce a
dilatation. We directly measured the mutual friction coefficient
related to the transverse force. An unexpected result was found
by immersing a vortex ring in a finite-temperature bath: A
strong dependence of the translational velocity in the tempera-
ture was observed. This effect was an order of magnitude above
the transverse mutual friction effect. We explained this effect
by relating it to to the anomalous translational velocity due
to finite amplitude Kelvin waves that was previously found
by Kiknadze and Mamaladze [60] and Barenghi et al. [61].
Assuming equipartition of the energy of the Kelvin waves
with the heat bath yields a formula that gives a very good
quantitative estimate of the numerically observed effect.

This new formula also gives an experimentally testable
quantitative prediction for the thermal slowdown of vortex
rings in weakly interacting Bose-Einstein condensates and
superfluid 4He. In this context, it would be interesting in the
future to study (using a higher resolution than in the present
work) the vortex dynamic of counterflowing finite-temperature
superfluid turbulence. Note that, in the context of BEC (where
experiments are performed within a confining potential) the
wave function ψ must be expanded using another basis of
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orthogonal independent functions than the Fourier modes (e.g.,
the eigenfunctions of the harmonic oscilator), see Ref. [66]
where the apparent arbitrariness of the truncation parameter is
also discussed. About this last point, also see the discussion
around Eqs. (65) and (70) at the end of Sec. IV B of the present
work about the upper limit keq of the equipartition range that
follows from the quantization of phonons in a physical BEC.

The TGPE dynamics was thus found to contain many
physically sound phenomena of finite-temperature superflows.
This strongly suggests the possibility to obtain the propagation
of second sound waves in the TGPE. Some preliminary results
support this conjecture (data not shown); however, very high
resolutions seem to be needed and this will be the subject of a
future work.
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APPENDIX A: CONSERVATION LAWS AND DEALIASING

In the standard incompressible Euler case, for quadratic
nonlinearities and quadratic invariants, the system can be
correctly dealiased using the 2/3 rule that consists in truncation
for wave number |k| < kmax = N/3, where N/2 is the largest
wave number of the discrete system. With this procedure,
one-third of the available modes are not used. Such a
discrete dealiased pseudospectral system exactly conserves
the quadratic invariant and is therefore identical to the original
Galerkin truncated system.

In the TGPE case, the problem is more complicated because
the equation is cubic and the invariants are quartic. Let us
first recall Parseval’s theorem that states

∫
d3xf (x)g∗(x) =

V
∑

k f̂kĝ
∗
k, where f̂k and ĝk are the Fourier transform of f and

g. This identity remains valid in truncated systems and it holds
whether the functions are dealiased or not. The integration by
parts formula is a consequence of Parseval’s theorem:

∫
d3x f

∂g∗

∂xj

= V
∑

k

−ikj f̂kĝ
∗
k = −

∫
d3x

∂f

∂xj

g∗.

Remark that the product rule (fg)′ = f ′g + fg′ is only valid
if the fields are dealiased.

The conservation of the total number of particles is directly
obtained using the GPE (1)

dN

dt
=

∫
d3x(ψ̇ψ̄ + ψ ˙̄ψ)

= ih̄

2m

∫
d3x(ψ̄∇2ψ − ψ∇2ψ̄) = 0,

where the last equality is a consequence of the Parseval identity
and is thus true independently of dealiasing. Similar relations
lead to the conservation of the energy H .

Using the dealiased TGPE (18) the conservation law for the
momentum reads
dPj

dt
= 2g

∫
d3x[(∂jPG[|ψ |2])|ψ |2 + PG[|ψ |2]∂j |ψ |2].

(A1)

If ψ is dealiased, the 2/3 rule implies that
∫

d3x(PG[|ψ |2]ψ̄)∂jψ =
∫

d3xPG[PG[|ψ |2]ψ̄]∂jψ

∂j (PG[|ψ |2]ψ̄) = (∂jPG[|ψ |2])ψ̄ + PG[|ψ |2]∂j ψ̄

∂j |ψ |2 = ψ∂j ψ̄ + ∂jψψ̄,

it follows that dPj

dt
= 0. Without a Galerkin projector

in Eq. (18) the aliased field would obey (|ψ |2ψ̄)∂jψ +
(|ψ |2ψ)∂j ψ̄ ,= ∂j (|ψ |4) and the conservation of momentum
would therefore be lost.

Conservation of N , H , and P can be numerically checked
by using absolute equilibria with nonzero momentum. The
conservation of P is ensured only if the system is dealiased.
The error of aliased runs grow up to a 50% in a few units
of time and is independent of the time step (data not shown).
We thus believe that it would important to explicitly check
the conservation of momentum when using finite-difference
schemes, even if they exactly conserve the energy and the
particle number.

APPENDIX B: LOW-TEMPERATURE CALCULATION OF
THERMODYNAMIC FUNCTIONS

We are interested in computing the grand partition function
Z in Eq. (47), where F = H − µN − W · P is written in terms
of Fourier amplitudes as

H

V
=

∑

k

h̄2k2

2m
|Ak|2 + g

2

∑
A∗

k3+k1
Ak2A

∗
k4+k2

δk3,−k4 (B1)

N = V
∑

k

|Ak|2 (B2)

Pj =
∑

k

h̄kj |Ak|2V, (B3)

where Ak = 0 if k ! kmax and the second sum in H is over k1,
k2, k3, k4.

The saddle point is determined by the condition ∂F
∂A∗

k
−

µ0A0V δk,0 = 0 that, separately written for k = 0 and k ,= 0,
explicitly reads

(g|A0|2 − µ + µ0)A0 + 2g
∑

k1 ,=0

A0|Ak1 |2

+ g
∑

k1,k2 ,=0

Ak1A
∗
k2−k1

A−k2 = 0 (B4)

h̄2k2

2m
Ak − µAk − h̄W · k Ak

+ g
∑

k1,k2 ,=0

Ak1A
∗
k2+k1

Ak+k2 = 0 (B5)

from which Eq. (48) follows.
To diagonalize F = H − µN − W · P we first apply the

Bogoliubov transformation to H − µN and then show that P
is also diagonal in this basis. Replacing Bp, defined by the
transformation (52), in H − µN (recall that p = h̄k) and then
imposing the diagonalization determines the coefficient Lp:

Lp =
−2|A0|2g − p2

2m
+ µ + ε(p)

|A0|2g
, (B6)
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where ε(p) is given by

ε(p) =

√(
2|A0|2g + p2

2m
− µ

)2

− |A0|4g2. (B7)

The dispersion relation (54) is obtained by replacing |A0|2 by
its saddle-point value Eq. (48).

We now express P in the Bogoliubov base. Using (52)
directly yields

|Ap|2 = |up|2|Bp|2 + |vp|2|B−p|2 + (u∗
pv∗

pBpB−p + c.c.).

(B8)

Replacing Eq. (B8) in the definition of P (B3), the last two
terms vanish by symmetry and using the relation |up|2 −
|vp|2 = 1, the momentum (B3) reads P =

∑
p p|Bp|2V . For-

mula (53) is then finally obtained by gathering H − µN and
W · P.

The mean value of the condensate amplitude is obtained
as V |A0|2 = − ∂*

∂µ0
|µ0=0. All the thermodynamic variables are

directly generated by first putting µ0 = 0 in (59) and then
by differentiation, using relation (32). The fluctuations of the
number of particles are computed as δN2 = −β−1 ∂2*

∂µ2 . These
quantities are explicitly listed below.

|A0|2 = µ

g
− N

Vβµ
f0

[
4mµ

P 2
max

]

p̄ = µ2

2g
+ N

Vβ

(
2
3

− f

[
4mµ

P 2
max

]
+ 2

3
2w2m2

P 2
max

f ′
[

4mµ

P 2
max

])

N̄ = V µ

g
− N

β

(
3

2µ
f

[
4mµ

P 2
max

]
− 8w2m3

P 4
max

f2

[
4mµ

P 2
max

])

S = N
(

f

[
4mµ

P 2
max

](
1 + 2w2m

4µ

)
− log

[
βε(Pmax; µ)

e− 5
3

])

λN = β−1 log [βε(Pmax; µ)] − 1
3β

2w2m2

P 2
max

1

1 + 4mµ
P 2

max

P̄z = N
β

wm

µ
f

[
4mµ

P 2
max

]
+ 3N

10β
w3m2

µ2
f1

[
4mµ

P 2
max

]

δN2 = V

gβ
+ 3N

4β2µ2
f1

[
4mµ

P 2
max

]
, (B9)

f [z] = z − z3/2 cot−1(
√

z) (B10)

f0[z] = 3(z + 3f [z])/4, (B11)

f1[z] = z

z + 1
− f (z), (B12)

f2[z] = d

dz
(f [z]/z), (B13)

The dependence of the entropy on the phase-space normal-
ization constant is manifested by the presence of the logarithm
term in S and λN . Note that the function S + βλN is, however,
completely defined. Also note that the pressure p must be
computed, by definition, at constant total number of modes
N . All the thermodynamic relations discussed in Sec. II B
can be explicitly checked on the low-temperature expressions.
The previous formulas are represented as the solid lines that
are confronted with the SGLE numerically generated data in
Figs. 2(a) and 2(b).
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