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Using computations of three-dimensional magnetohydrodynamic !MHD" turbulence with a Taylor-Green
flow, whose inherent time-independent symmetries are implemented numerically, and in the absence of either
a forcing function or an imposed uniform magnetic field, we show that three different inertial ranges for the
energy spectrum may emerge for three different initial magnetic fields, the selecting parameter being the ratio
of nonlinear eddy to Alfvén time. Equivalent computational grids range from 1283 to 20483 points with a unit
magnetic Prandtl number and a Taylor Reynolds number of up to 1500 at the peak of dissipation. We also show
a convergence of our results with Reynolds number. Our study is consistent with previous findings of a variety
of energy spectra in MHD turbulence by studies performed in the presence of both a forcing term with a given
correlation time and a strong, uniform magnetic field. However, in contrast to the previous studies, here the
ratio of characteristic time scales can only be ascribed to the intrinsic nonlinear dynamics of the paradigmatic
flows under study.
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I. INTRODUCTION

Turbulence forms the backbone of many natural phenom-
ena in the atmosphere and ocean, as well as in astrophysical
flows. In the latter, it is often accompanied by the coupling of
vortices and current structures. For incompressible neutral
fluids, under the assumption of a high Reynolds number !and
therefore a long dissipation time", as is the case for many
geophysical flows, the relevant time scale for the problem is
the nonlinear eddy-turnover time. For such flows, the phe-
nomenology developed by Kolmogorov in 1941 !hereafter
referred to as “K41”" #1$, predicting a kinetic-energy spec-
trum EK41

V !k"%k−5/3, represents a good first approach even if
corrections to this phenomenology for higher-order statistics
are known to exist due to the breakdown of the self-
similarity represented by a simple power-law energy spec-
trum. When electromagnetic forces are introduced, other
time scales can arise, such as the Alfvén time, associated
with the propagation of transverse waves along magnetic
field lines. K41 phenomenology may still apply, but one
must also consider the role of Alfvén waves in producing a
different power law for the total-energy spectrum, as illus-
trated independently by Iroshnikov and Kraichnan !hereafter,
“IK”" #2$: EIK

T !k"%k−3/2.
Isotropy is assumed by both K41 and IK, but it is not

necessarily achieved. In neutral flows, if the anisotropy of
the small scales, in the form of elongated vortex filaments,
occurs locally in space, isotropy may be recovered overall
because the filaments are randomly oriented and the vorticity
spectrum k2EV!k", which peaks in the small scales, contrib-
utes little to the large-scale energy spectrum. In contrast, the
anisotropy of magnetohydrodynamics !MHD" originates
from a large-scale magnetic field, which can be dominant
energetically and relevant at all scales. Studies of anisotropic
MHD date back to the mid-1950s for liquid metals at low

magnetic Reynolds number #3$ !see also #4$" and a bit later
for fully developed MHD turbulence #5,6$. More recently, a
wealth of new studies on MHD turbulence has been made
possible #7–9$ in part by the revival of weak turbulence
theory !e.g., #10$ for MHD", the availability of more detailed
observations #11,12$, and improved resolution in numerical
simulations #13–17$.

From the theoretical point of view, the presence of a
strong background magnetic field B0 allows for the existence
of a small parameter characterizing the ratio of velocity and
magnetic field fluctuations to &B0&, enabling an analytical so-
lution via the weak turbulence !hereafter, “WT”" approach.
In contrast to the K41 and IK spectra, the WT energy spec-
trum is anisotropic: EWT!k! ,k'"%k!

−2, where perpendicular
and parallel are relative to the direction of B0; there is, in
fact, no prescribed transfer in k' at lowest order. Note that,
interestingly, the IK phenomenology is compatible with
weak turbulence in the isotropic limit, giving it a stronger
theoretical footing. Other phenomenological approaches hy-
pothesize that even with a strong background field B0 mak-
ing the flow highly anisotropic, an “anisotropic Kolmog-
orov” scaling of the energy spectrum is possible by way of a
dynamical effect that makes the two characteristic times of
the problem !the Alfvén time and the eddy-turnover time"
equal at all scales #18$. In fact, when this hypothesis is re-
laxed to a constant ratio across the inertial range !not neces-
sarily equal to unity", the dynamics can then be shown to be
compatible with a variety of inertial range scalings including
K41, IK, and WT #8$. Weak MHD turbulence has been ob-
served in the magnetosphere of Jupiter #11$, where the strong
Jovian field creates a favorable environment for wave inter-
actions to dominate the dynamics. In the solar wind, data for
a long time have indicated that the spectrum appears Kol-
mogorovian #19$, although recent observations indicate a
more complex dynamics !discussed further in the conclu-
sion".
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Numerical simulations to date are unable to give a defini-
tive answer to the question of spectral index in the large
!MHD" scales of plasma turbulence, at least in three dimen-
sions. The difference between the K41 and IK scalings is
subtle enough that any type of contamination, in particular
by intermittency as well as dissipative small-scale effects,
will blur the results. Intermittency, the sporadic occurrence
of intense small-scale structures, tends to steepen the direct
cascade energy spectrum. In fact, it has been shown both in
two and three spatial dimensions that intermittency in MHD
generally leads to stronger corrections to high-order structure
functions than in neutral fluids #14,20,21$ and that the mag-
netic field is more intermittent than the velocity #20,22$.

Recent studies indicate that, in the presence of an external
force with a given autocorrelation time and/or a strong, uni-
form magnetic field, the energy spectrum can exhibit differ-
ent power laws !e.g., #15,23,24$". Such varied spectral indi-
ces can be ascribed to the variation of time scales #13$ or to
the presence of complex structures, such as ribbons !see #15$
and references therein and also #25$". However, the possibly
simpler problem of incompressible MHD decay in three di-
mensions with B0=0 has not been examined in this light
#26$. Therefore, it is the purpose of this paper to do so by
way of high-resolution numerical simulation and to show
that indeed several classes of dynamics are possible in de-
caying MHD turbulence. In the next section, we give equa-
tions and initial conditions; Sec. III is dedicated to the tem-
poral behavior of the flows, Sec. IV to the spectra observed
in this paper and convergence of the results with Reynolds
number, and Sec. V to a discussion and brief concluding
remarks.

II. THREE CLASSES OF MAGNETIC
TAYLOR-GREEN FLOW

The MHD equations for an incompressible flow with a
velocity v and magnetic induction b !in units of Alfvén
velocity" read

!v
!t

+ v · "v = − "p + j " b + #$v , !1"

!b
!t

= " " !v " b" + %$b ,

" · v = 0 = " · b , !2"

with p the fluid pressure and j=""b the current density. In
the absence of viscosity # and resistivity %, the total energy
ET= (v2+b2) /2=EV+EM, cross helicity HC= (v ·b) /2, and
magnetic helicity HM = (a ·b) /2 !where b*""a defines the
magnetic potential, a" are conserved. The Reynolds number
here is defined as Re=vrmsLT /#, with the integral scale and
kinetic and magnetic integral scales defined, respectively, as

LV,M,T = 2&
+EV,M,T!k"k−1dk

+EV,M,T!k"dk
.

Similarly, one can define Taylor Reynolds numbers
R'

V,M,T=vrms'
V,M,T /#, where the Taylor scales 'V,M,T are

defined as

'V,M,T = 2&, +EV,M,T!k"dk

+EV,M,T!k"k2dk
-1/2

.

Ideal MHD !#=0, %=0" has been studied numerically
both in two dimensions #28$ and in three #29,30$, including
with adaptive mesh refinement #31$. Such simulations are
important for understanding the initial nonlinear exchanges
among modes until the smallest resolved scales are reached,
at which point dissipation must be introduced to continue the
computation and reach a fully developed turbulent flow with
current and vorticity sheets. We are interested here in this
subsequent turbulent decay.

The velocity field we choose for our initial conditions is
the Taylor-Green !hereafter, “TG”" vortex #32$ correspond-
ing to a von Kármán flow between two counter-rotating
disks. The simplest TG velocity field can be written as #33$
!see also #34$"

vTG!x,y,z" = v0#sin x cos y cos zêx − cos x sin y cos zêy$ .

The velocity component in the third direction is zero initially
but grows with time. We also define !TG=""vTG !and !
=""v, the vorticity as usual". This TG vortex has been used
not only in numerical studies #35$, but also extensively in
laboratory studies of fluid turbulence and as a driver for the
generation of magnetic fields within flows in liquid metals
#36$.

A generalization of the TG vortex symmetries to MHD
was presented in #30$, where the ideal case was studied with
the following initial magnetic field configuration:

bx
I = b0

I cos!x"sin!y"sin!z" , !3"

by
I = b0

I sin!x"cos!y"sin!z" , !4"

bz
I = −2 b0

I sin!x"sin!y"cos!z" . !5"

It can be shown that the magnetic field bI !which is 2&
periodic in the three dimensions" is everywhere perpendicu-
lar to the faces, or “walls,” of a subvolume defined as
#0,&$3. The current jI=""bI is then found to be parallel to
the walls, which thus can be considered as electrical insula-
tors; for this reason, we refer to this type of TG flow as
“insulating.” Also of interest is that the global velocity–
magnetic field correlation HC is identically zero and bI

=−#b0 /v0$!TG.
Another initial condition for the magnetic field was pro-

posed in #30$, namely,

bx
C = b0

C sin!2x"cos!2y"cos!2z" , !6"

by
C = b0

C cos!2x"sin!2y"cos!2z" , !7"

bz
C = −2 b0

C cos!2x"cos!2y"sin!2z" , !8"

where the current in the #0,&$3 box here is perpendicular to
the walls, which are therefore “conducting.” In this configu-
ration, HC is nonzero but weak !less than 4% at its maximum
over time in a dimensionless measure relative to the total
energy".
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Finally, we also introduce an alternative to the insulating
magnetic induction above, which we call bA !for “alterna-
tive” insulating flow", defined as

bx
A = b0

A cos!2x"sin!2y"sin!2z" , !9"

by
A = − b0

A sin!2x"cos!2y"sin!2z" , !10"

bz
A = 0, !11"

configuration for which again HC=0. Note that the magnetic
helicity is zero in all three configurations.

All flows are initialized at the largest scales in order to
obtain the highest possible Reynolds number and all have
unit magnetic Prandtl number !i.e., #=%". The values of the
parameters for all runs described in this paper are given in
Table I. For the three classes of flow proposed here !named
hereafter “I,” “A,” and “C,” referring to the three induction
configurations", the same TG velocity is applied at t=0 and
the fields are normalized such that EV!t=0"=EM!t=0"
=0.125: at the start of each simulation, the kinetic and mag-
netic energies are in equipartition. The resolutions of the runs
range from 643 to 20483 points !in terms of equivalent grids
for computations that would not exploit the flow symmetries;
see #30$", allowing the range of Reynolds number to vary
over a factor close to 40.

Taylor-Green configurations possess several inherent
symmetries !or antisymmetries" within a cube of length 2&
!periodicity": mirror !anti"symmetries about the planes x=0,
x=&, y=0, y=&, z=0, and z=&; and rotational !anti"sym-
metries of angle N& about the axes !x ,y ,z"= ! &

2 ,y , &
2 " and

!x , &
2 , &

2 " and of angle N& /2 about the axis ! &
2 , &

2 ,z", for N
!Z. All flows are defined in the #0,2&$3 box and satisfy
periodic boundary conditions of the domain. Within the do-
main, the planes of mirror symmetry mentioned above form
the insulating and conducting walls of the smaller #0,&$3

boxes.
As the symmetries of the TG flows are also symmetries of

the MHD equations, they are preserved by time evolution of
the solutions. Numerical implementation of the symmetries
allows for substantial savings in both computing time and
memory usage at a given Reynolds number, with no approxi-
mation or closure scheme needed. The numerical method is
pseudospectral, with minimum wave number kmin=1 and
maximum wave number kmax=N /3, where N the number of
grid points in each direction, using a 2/3-deliasing rule; the
temporal integration is performed using a second-order
Runge-Kutta scheme. The code is parallelized using message
passing interface !MPI" #37$ !see #33$ for a detailed imple-
mentation for Navier-Stokes and #30$ for MHD". It was
checked for runs at a resolution of 5123 grid points !run I3"
that the differences between results obtained with the code
implementing all the symmetries and those with a general
code !in which the symmetries are not imposed explicitly,
but the initial conditions are the same" were small and did
not grow in time. We have checked that the relative differ-
ence for the domain-integrated total enstrophy (T, defined as
()2+ j2) /2, is of the order of 10−5 throughout the computa-
tion !see also #30$"; it should also be noted that this discrep-
ancy is of the order of the time discretization error of the
pseudospectral code itself at this resolution. Further results
concerning such a comparison, as well as an analysis of the

TABLE I. Parameters of the runs. N is the equivalent grid resolution; vrms and brms are the rms velocity
and magnetic field at peak of dissipation; # is the kinematic viscosity and Re the Reynolds number. Note the
growth of brms with Re in all but one case, as well as the decreasing of brms /vrms going from I to A to C flows.
Note that I3 has also been run without imposed symmetries, for comparison purposes.

Run N vrms # brms Re

I1 128 0.27 2"10−3 0.58 250
I2 256 0.27 1"10−3 0.60 490
I3 512 0.27 5"10−4 0.62 940
I4 512 0.27 2.5"10−4 0.63 1800
I5 1024 0.27 1.25"10−4 0.63 3400
I6 2048 0.32 6.25"10−5 0.59 9700
A1 64 0.39 2"10−3 0.43 260
A2 128 0.38 1"10−3 0.46 460
A3 256 0.37 5"10−4 0.46 780
A4 512 0.37 2.5"10−4 0.47 1500
A5 1024 0.37 1.25"10−4 0.48 2900
A6 2048 0.37 6.25"10−5 0.49 5600
C1 64 0.49 2"10−3 0.31 460
C2 128 0.47 1"10−3 0.32 810
C3 256 0.46 5"10−4 0.34 1500
C4 512 0.46 2.5"10−4 0.37 2700
C5 1024 0.46 1.25"10−4 0.39 4900
C6 2048 0.45 6.25"10−5 0.40 9100
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overall dynamics of the I6 flow, are given in #17$.

III. EMERGENCE OF DIFFERENT REGIMES

A. Temporal behavior

As progressively smaller scales become excited, the
volume-integrated vorticity and current density grow until
dissipation sets in, as can be seen in Fig. 1!a" for the highest-
resolution runs I6 !solid line", A6 !dashed line", and C6 !dot-
ted line", following the nomenclature of Table I. The total
level of dissipation is substantially lower for run I6.

The energy exchanges between the velocity and magnetic
fields yield ratios of magnetic to kinetic energy that change
both in time and from flow to flow #Fig. 1!b"$. These differ-
ences can also be understood in terms of the diversity of
nonlinear terms in the MHD equations, their relative impor-
tance depending on the initial conditions. For example, runs
I are dominated by magnetic energy after a short period of
time, although the initial fields are in equipartition. For this
flow, the magnetic field and the vorticity are initially parallel
at every point in space. As a result, the nonlinear terms in the
MHD equations initially lead to a more rapid production of
magnetic energy than in the other flows. At later times, the
action of the Lorentz force differentiates the evolution of the
magnetic field from that of the vorticity. We find thus that the
intrinsic dynamics for the three sets of initial conditions lead
to a magnetically dominated flow !I", quasiequipartitioned
flow !A", or a flow with subdominant magnetic energy in the
large scales !C".

B. Spectral behavior

The variation with wave number of the ratio of the
magnetic- to kinetic-energy spectra for the three high-
resolution runs is given in Fig. 2, one for each class. A sur-
plus of magnetic energy at large scale for the I flow is evi-
dent as is a tendency in all flows toward quasiequipartition at
small scales. A slight excess of small-scale magnetic excita-
tion can be observed, a feature perhaps linked to the absence
of a magnetically induced “eddy viscosity” for the magnetic
energy akin to one for the kinetic energy, as shown in studies
of MHD turbulence using transport coefficients derived from
a two-point closure #38$.

When examining now the energy spectra, averaged over
an interval of time $t=0.5 about the maximum of dissipation
of each flow, one can easily distinguish the three flows, with
measurably different power laws. Figure 3 !top" gives the
total-energy spectra for the three runs, compensated by k5/3,
calculated from data averaged over 11 temporal outputs at
t! #3.75,4.25$ for I6, t! #4.5,5.0$ for A6, and t
! #4.75,5.25$ for C6. The A6 flow is near the K41 scaling;
the C6 flow has a shallower spectrum close to the IK dynam-
ics, with a k−3/2 index, and the I6 flow has a steeper spectrum
close to the WT expectation, with a k−2 power law !see also
Sec. IV". The denotations of the spectra as K41, IK, and WT
are used here for simplicity and as will be discussed later,
more simulations are needed to decide whether these are the
dynamical attractors of the equations or if other solutions
exist. Regardless, the three sets of initial conditions clearly
lead naturally to different spectral behavior, which can be
linked to the several time scales involved in the system as
shown next. We recall that in #14$, the IK spectrum was
followed for larger wave numbers by a steeper spectrum, k!

−2

corresponding to WT. The data in the present study are not
quite sufficient to confirm this finding, but it is possible that
the IK spectrum in C6 !dotted line in Fig. 3" is followed by
a steeper behavior, with a transition occurring, as in #14$, at
the magnetic Taylor scale, indicated by an arrow, whereas no
such transition is visible for the other two classes of runs, A
and I.

In Fig. 3 !bottom", shown is the ratio of the nonlinear
eddy time to the Alfvén time, R*!k"=*e!k" /*A!k", where
these times are defined as

(b)

(a)

FIG. 1. !a" Temporal evolution of the total dissipation for the
highest Reynolds number for each type of flow, represented by runs
I6 !solid", A6 !dashed", and C6 !dotted", as described in Table I. !b"
Ratio of total magnetic to kinetic energy EM /EV for these same
runs. Note that I6 has noticeably less dissipation and more magnetic
energy.

FIG. 2. Ratio of magnetic- to kinetic-energy spectra averaged
over $t=0.5 !1.5–2 turnover times" about the maximum of dissipa-
tion for run I6 !solid", A6 !dashed", and C6 !dotted"; same labels as
in Fig. 1. Note the dominance of the magnetic energy at large scale
for run I6 and the tendency toward equipartition at small scales for
all runs, with a slight excess of magnetic energy.
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*e!k" =
1

.2k3EV!k"
, *A!k" =

1
kB0

,

with B0 the field in the largest-scale mode; hence,

R*!k" =
B0

.2kEV!k"
.

Contrasting the plots in Fig. 3, we may conjecture that it
is the competition between the two characteristic phenomena
in MHD turbulence !nonlinear steepening as measured by
*e

−1 and wave interactions as measured by *A
−1" that produces

different equilibria among scales and therefore different en-
ergy spectra. The fact that these ratios here are always
greater than unity is not significant in itself, as phenomeno-
logical determination of characteristic times leaves them
within some constant factor of order unity, but what may be
significant is their variation from flow to flow, as well as
their variation with scale.

C. Competition between different phenomena
in MHD turbulence

It has been hypothesized that MHD turbulence dynamics
may be understood in the context of an equilibrium between
turbulent eddies and Alfvén wave interactions #2,5,8,18$. In-
deed, the nonlinear MHD equations accept the solutions v

= +b. MHD turbulence can also be viewed as the competi-
tion between nonlinear steepening and !semi-" dispersive ef-
fects, somewhat akin to soliton dynamics #23$. The nonlinear
competition between eddies and waves, in this light, could be
measured by R*. With R*/1 at all scales, a K41-type spec-
trum can occur; relaxing the condition by leaving R* equal to
any constant, independent of scale, models can be devised
#18$ to be compatible with the IK phenomenology and WT
theory as well #8$.

It could be argued that the hypothesis of constancy of R*
across scales is approximately verified by the data displayed
in Fig. 3. However, given *e as defined above, R* must vary
as k1/4, k1/3, and k1/2, respectively, for IK, K41, and WT
dynamics. The results shown in Fig. 3 are in fact compatible
with this interpretation, although the comparative steepening
of R*!k" is subtle.

IV. SCALING WITH REYNOLDS NUMBER

A. Do global features of the TG flows vary
with Reynolds number?

It is notoriously difficult to measure spectral indices of
power laws found in numerical simulations, in particular,
because of the small extent of the inertial range, sandwiched
in wave number space between the energy-containing and
dissipative scales. To address this issue, we now turn to a
convergence study of the data.

Figure 4 shows how the ratio R*, evaluated at the mag-
netic Taylor scale 'M, changes with Reynolds number for
each class of run. We see that it tends toward a constant
whose value depends on the type of flow, although higher
Reynolds numbers should be investigated to confirm this ten-
dency. While the fully converged values may not be present
in our study, a transition toward convergence of R* appears
to take place at Re/3"103 after a long evolution over a
sequence of smaller Reynolds numbers. For this reason,
simulations at moderate Reynolds numbers can only hint at
asymptotic results needed to understand fully developed
turbulence.

(b)

(a)

FIG. 3. Total energy spectra !a" compensated by k5/3 and aver-
aged over $t=0.5 !1.5–2 turnover times" about the maximum of
dissipation and ratio of nonlinear to Alfvén time scales as a function
of wave number !b" for the same runs !labels as in Fig. 1: solid line
for I, dash for A, and dots for C". Slopes are given only as a
reference. The three arrows indicate the magnetic Taylor scale. Note
that the three spectra follow noticeably different spectral laws and
possibly different scale dependence for their time scales as well !see
text".

FIG. 4. Variation with Reynolds number Re of the ratio of eddy
turnover to Alfvén time scales computed at the Taylor scale 'M for
each flow. I1–I6 !+", A1–A6 !!", and C1–C6 !" " are plotted in
order of resolution and Reynolds number, as listed in Table I. All
quantities are computed in an interval of $t=0.5 about the peak of
dissipation for each run. Note the rather different values of these
ratios and onset of saturation for the highest Re indicative of the
beginning of a convergence to a high-Re regime.
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Other indicators can be examined to further suggest con-
vergence, at least for the highest two resolutions !runs 5 and
6" for each class of flow. In Fig. 5 we show—again as a
function of Reynolds number—the variation of the maxi-
mum of dissipation !top" and the Taylor Reynolds number
!bottom". We observe that the maximum of dissipation for
the A and C initial conditions tends to level off toward a
constant value as the Reynolds number is increased, as seen
before in two-dimensional MHD #39,40$, three-dimensional
Navier-Stokes #41$, and an earlier three-dimensional MHD
study #42$. The I flows seem to show a different trend; we
observe a slowing of its decrease and in fact the trend fol-
lows a power-law when examining the first maximum !as
opposed to the absolute maximum, at t/3.25 and /4.75,
respectively, see Fig. 1!a", and #17$". It should nevertheless
be noted that, for each class, the maximum of dissipation
occurs at a time that depends significantly on the Reynolds
number !not shown". Finally, we observe a clear scaling of
the Taylor Reynolds number R' #43$ with the large-scale
Reynolds number Re #Fig. 5!b"$: the two flows at the highest
Reynolds numbers for each class are consistent with R'

%Re1/2, indicating again an asymptotic trend.

B. Evolution of spectra with Reynolds number

With reasonable evidence of convergence of flows beyond
a Reynolds number threshold, we can now turn to the energy
spectra we observe. Figure 6 displays, for each class of initial
conditions, the total-energy spectra averaged again over an
interval $t=0.5 !approximately 1.5–2 eddy-turnover times"
about the maximum of dissipation of each run. The spectra
are compensated by k2 for the I flows, by k5/3 for the A flows,

and by k3/2 for the C flows. These plots strongly suggest that
the scaling predictions of WT, K41, and IK give credible
descriptions of the I, A, and C flows, respectively, recogniz-
ing that intermittency can steepen the spectrum of the self-
similar solutions. We note also that for C6, the k−3/2 scaling
seems to end at the magnetic Taylor scale !'M %0.13", be-
yond which bending of magnetic field lines is felt and a
steeper power law is possible, as already found in #14$, but
no such double power law is observed for the other two
classes of flow. Furthermore, a bottleneck at the beginning of
the dissipation range is noticeably absent or undetectable,
likely due to the intrinsic nonlocality of nonlinear interac-
tions in MHD #44$.

The observed differences in spectra in these particular
simulations are linked to the different initial conditions, but
in a more general sense they are also correlated with the ratio
for time scales, which are only implicitly prescribed by the

(b)

(a)

FIG. 5. Scaling as a function of Reynolds number Re of the
maximum value of the dissipation over time !a" and of the Taylor
Reynolds number R' computed at the instantaneous peak of dissi-
pation !b"; straight line indicates the turbulent scaling R'%Re1/2.
Symbols are as in Fig. 4.

(b)

(a)

(c)

FIG. 6. Total energy spectra averaged over $t=0.5 !1.5–2 turn-
over times" around the time of maximum dissipation for different
Reynolds numbers for the following flows !see Table I": I runs
compensated by k2 !a", A runs compensated by k5/3 !b", and C runs
compensated by k3/2 !c". Dash-triple dots, dash-dots, dashes, dots,
and solid lines represent, respectively, the runs I2–I6, A2–A6, and
C2–C6. Equivalent resolutions range from 1283 to 20483 grid
points.
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initial conditions, as already discussed and displayed in Fig.
3. This finding is further confirmed by the following analy-
sis. It is clear in Fig. 1 !bottom" that at late time !t!5.5", the
ratio of magnetic to kinetic energy does not differ as much
for the three types of flows studied in this paper. We thus
examine in Fig. 7 the ratio of magnetic- to kinetic-energy
spectra !a" and the energy spectra !b" averaged over $t
=0.5, as before, but now at a later time, beginning averaging
at t=6. Indeed, when the kinetic and magnetic energies are
comparable, the energy spectra of the I and A flows likewise
have comparable spectral index, the C flow !dotted line" be-
ing somewhat shallower at this late time, and with a Rey-
nolds number that is lower than in the I case. However, the I
flow is clearly not as steep as at earlier times; we conclude
that, for a given initial condition, different spectra may occur
at different times.

V. DISCUSSION AND CONCLUSION

In order to show that different energy spectra emerge in
decaying MHD turbulence in the absence of a uniform mag-
netic field, we have generalized the Taylor-Green flow to
MHD and studied three different configurations, which, from
a statistical point of view, are a priori equivalent since they
have the same invariants !ET, HC, and HM" and the same
equipartition of kinetic and magnetic energies at initial time.
By taking advantage of the symmetries of these flows, we
have been able to examine higher Reynolds numbers than in
a full direct numerical simulation at a given cost. The sym-
metries also helped to expedite a convergence study in terms
of Reynolds number, attaining R'%960 or above in all three
flows at the highest resolution. We found that the I class
behaves somewhat differently than the other two, with
slower dissipation of energy and a lower maximum of dissi-
pation at a given Reynolds number. We also discovered that
the three flows dynamically partition kinetic and magnetic
energies differently at large scales, likely the source of their
different spectral behavior.

There is a wealth of theoretical, phenomenological, obser-
vational, and numerical studies of energy spectra for MHD
turbulence. Solar wind data seemed for a long while to favor
the K41 classical spectrum, but a puzzling recent result is
that, in some cases, both IK- and K41-type power laws have
been observed for the velocity and magnetic field #12$.
Moreover, recent data on MHD turbulence in the plasma
sheet using the CLUSTER suite of satellites indicate that the
inertial index in this environment may vary but with more
likelihood for a k−2 law and to a lesser extent a k−1.6 power
law for the energy spectrum #45$. The tendency toward K41
or IK dynamics has also been observed recently in several
numerical simulations #13,15,23$ with different forcing func-
tions !see also #46$". In fact, it has been shown numerically
for the reduced MHD equations #5$ that a whole palette of
spectra is possible #23,24$.

The different power laws observed in our study can in
principle be associated with known “solutions” !K41, IK, or
WT" of MHD turbulence !omitting intermittency correc-
tions" and they are found to be correlated with the ratio of
the nonlinear to the Alfvén time. This is linked to the com-
petition between nonlinear steepening and dispersion due to
waves, which can interact as they propagate forward and
backward along a mean field. Whether or not there are other
attractors for MHD remains to be determined. It is conceiv-
able that multiple fixed points can coexist, linked with K41
!fluidlike", IK !balance between steepening and dispersion",
and WT !turbulence and waves" dynamics. For example, one
numerical study, though performed at low resolution, showed
that on long-time scales, multiple attractive solutions are in-
deed possible for decaying incompressible MHD in the ab-
sence of an imposed magnetic field: one dominated by the
velocity, another dominated by the magnetic field, and the
third with quasiequipartition between the two modes of en-
ergy #47$. Are the solutions we observe in our study, which
build up on short-time scales !of the order of the eddy-
turnover time", associated with the various long-time
asymptotic states of decaying MHD? This hypothesis might

(b)(a)

FIG. 7. !a" Magnetic- to kinetic-energy ratio as a function of wave number at late time !t! #6,6.5$" and averaged over $t=0.5. Again,
we plot I6 !solid", A6 !dashed", and C6 !dotted". Note that the excess of magnetic energy at low wave number in I6 has subsided to 1/15 of
its former value. !b" Total energy spectra for the same runs over the same time interval. Arrows indicate the new magnetic Taylor wave
number for each run. In the insert, the same spectra are compensated by k3/2. Note the similar energy ratios and inertial range scaling for the
three flows.
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be tested by analyzing simulations at very long times for the
different TG MHD flows described here and variants thereof,
a task left for future work.

The work presented in this paper can be extended in many
directions. For example, one might consider the effect of the
presence or absence of correlations between the velocity and
the magnetic field or the influence of the degree of intermit-
tency of the flow. Further work should also include exploring
runs at higher Reynolds numbers. Short of waiting for the
next generation of resources !which will be made available,
e.g., through the petascale computing initiative", one can re-
sort to modeling methods, in addition to direct numerical
simulation. Akin to the one presented here, insofar as imple-
menting a reduction of modes at a given Reynolds number, is
the numerical algorithm that decimates modes !somewhat
arbitrarily" in the dissipation range #48$. Another possibility
is the use of large-eddy simulations that compare well
against high-resolution direct numerical simulations, such as
in #49$. Of a different nature is the Lagrangian averaging
approach, or alpha model, which can be viewed as a sort of
direct numerical simulation methodology imposing a filter to
the small scales by means of a closure consistent with pre-
serving the Hamiltonian nature of the flow, although these

averaged equations conserve the ideal invariants using a dif-
ferent norm than L2 #50$. With alpha models !see, e.g., #51$",
it has recently been shown that the result found in #14$ of a
double inertial range in MHD, of isotropic IK followed
!spectrally" by a weak turbulence spectrum, can be recovered
at substantially lower cost. Using a combination of such
modeling tools may allow for parametric investigations of
MHD turbulence and thereby lead to a better understanding
of such flows as they occur in geospace, the heliosphere, and
the interstellar medium, as well as of their influence on
cosmic-ray propagation or solar-terrestrial interactions.
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