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Intermittency of three-dimensional perturbations in a point-vortex model
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Three-dimensional (3D) instabilities on a (potentially turbulent) two-dimensional (2D) flow are still incom-
pletely understood, despite recent progress. Here, based on known physical properties of such 3D instabilities, we
propose a simple, energy-conserving model describing this situation. It consists of a regularized 2D point-vortex
flow coupled to localized 3D perturbations (“ergophages”), such that ergophages can gain energy by altering
vortex-vortex distances through an induced divergent velocity field, thus decreasing point-vortex energy. We
investigate the model in three distinct stages of evolution: (i) The linear regime, where the amplitude of the
ergophages grows or decays exponentially on average, with an instantaneous growth rate that fluctuates randomly
in time. The instantaneous growth rate has a small auto-correlation time, and a probability distribution featuring
a power-law tail with exponent between —2 and —5/3 (up to a cutoff) depending on the point-vortex base
flow. Consequently, the logarithm of the ergophage amplitude performs a Lévy flight. (ii) The passive-nonlinear
regime of the model, where the 2D flow evolves independently of the ergophage amplitudes, which saturate
by non-linear self-interactions without affecting the 2D flow. In this regime the system exhibits a new type of
on-off intermittency that we name Lévy on-off intermittency, which we define and study in a companion paper
[van Kan et al., Phys. Rev. E 103, 052115 (2021)]. We compute the bifurcation diagram for the mean and variance
of the perturbation amplitude, as well as the probability density of the perturbation amplitude. (iii) Finally, we
characterize the fully nonlinear regime, where ergophages feed back on the 2D flow, and study how the vortex
temperature is altered by the interaction with ergophages. It is shown that when the amplitude of the ergophages
is sufficiently large, the condensate is disrupted and the 2D flow saturates to a zero-temperature state. Given the
limitations of existing theories, our model provides a new perspective on 3D instabilities growing on 2D flows,
which will be useful in analyzing and understanding the much more complex results of DNS and potentially

guide further theoretical developments.
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I. INTRODUCTION

Point-vortex flow is a simple (but singular, i.e., weak) so-
lution of the two-dimensional (2D) Euler equation describing
inviscid fluid flow, in which N strongly localized vortices ad-
vect each another chaotically by their induced velocity fields
[1-5]. They admit a famous equilibrium statistical mechanics
description due to Onsager [6,7], who showed that states with
negative temperatures exist in the system, where same-signed
point vortices cluster to form two strong counter-rotating
vortices. Indeed, 2D turbulent flow features isolated vortices
which aggregate and merge over time in a process called
inverse energy cascade, forming a large-scale condensate,
where most of the energy is concentrated in the largest-scale
mode [8—10]. This is in contrast with three-dimensional (3D)
turbulence, where energy is transferred from large to small
scales [11]. Inverse cascades and associated condensation
phenomena are also found in quasi-2D flows, such as turbu-
lence in thin layers [12-16] and rapidly rotating turbulence
[17,18], which feature 3D components, but are predominantly
2D. A review of such flows is given in Ref. [19].
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Point-vortex models have found numerous applications in
simplified descriptions of turbulent fluid flows. An early suc-
cessful simulation of the inverse cascade in 2D turbulence
indeed relied on the point-vortex-based vortex-in-cell approx-
imation [20]. In the 1990s, there was a significant activity
devoted to vortex gas modeling of (particularly decaying) 2D
turbulence [21-25], where merging rules for point vortices
were prescribed, yielding 2D turbulence-like behavior at re-
duced numerical cost. Point-vortex models have also been
used to investigate stirring by chaotic advection [26], as well
as Lagrangian intermittency, pair dispersion and transport in
turbulence [27-29]. Recently, vortex gas scaling arguments
were leveraged to find a highly accurate local closure in
baroclinic turbulence [30]. Other physical problems which
have been fruitfully treated by point-vortex models include the
stability of vortex streets and vortex sheets [31-34], quantum
turbulence [35-38], plasma dynamics [39] and stellar dynam-
ics [40].

For flows in thin layers, rotating flows and flows under the
action of an external magnetic field, it has been proven using
upper bound theory [41,42] that a nondimensional threshold
exists in terms of the layer depth and fluid viscosity (as well as
the rotation rate and or the external magnetic field, if present),
where the flow undergoes exact bidimensionalization (for pe-
riodic or stress-free boundary conditions). Beyond this point,
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3D perturbations away from a 2D flow decay due to the
action of viscous damping. This has profound consequences
for turbulent flows since, as mentioned, the phenomenology
of 2D turbulence differs strongly from the 3D case due to
additional conserved quantities in the 2D case [10,11]. There-
fore, it is important to understand quasi-2D flows close to
the onset of three-dimensionality. The bounding theory only
establishes the existence of a threshold, but since it is built
on rather conservative estimates, it cannot capture the physics
occurring near the threshold. Very recently, in an extensive
numerical study [43], Seshasayanan and Gallet investigated
the linear stability of 3D perturbations on a 2D turbulent con-
densate background flow at the onset of three-dimensionality.
The authors showed that when instability is present, the
time evolution of the energy of linear 3D modes involves
phases of jumplike exponential growth occurring randomly
in time, inter-spaced by plateaulike phases where growth is
absent. Here, in the spirit of the wide range of applications
of point vortices described above, we formulate and analyze a
point-vortex model of localized 3D perturbations in quasi-2D
turbulence, whose dynamics are qualitatively similar to the
exponential growth and decay evolution found in Ref. [43].
The remainder of this article is structured as follows. In
Sec. II, we provide a brief introduction to the concept of
point-vortex temperature, in Sec. III, we formulate the model
to be studied. In Sec. IV, we describe the method of our
investigation. Then, in Sec. V we present the results of our
numerical simulations and finally in Sec. VI we discuss the
implications of our results and remaining open questions.

II. BACKGROUND: TEMPERATURE OF
POINT-VORTEX STATES

We briefly summarize the concept of the temperature of
point-vortex flow, which was introduced in 1949 by Onsager
[6]. The energy of a set of point vortices is given by the
Hamiltonian H, which only depends on the vortex positions
(x, ). These positions are the conjugate variables of the point-
vortex Hamiltonian. In bounded domains, the total phase
space volume is therefore finite. We denote by Q2(E) the phase
space volume occupied by states whose energies H lie in
the interval [E, E + dE]. Then the thermodynamic entropy
is kg In((E)/), where kg is the Boltzmann constant and
Q is a reference volume required for dimensional reasons. In
the extreme situation where vortex dipoles (vortex-antivortex
pairs) collapse, which corresponds to negative energies E <
0, the available phase space volume is vanishingly small,

QE) F25°0. The opposite limit of large positive energies

occurs when like-sign vortices concentrate at a point, in which

E . .
case also Q(FE) 227 0. Since the total volume is nonzero,

the nonnegative function Q(£) must reach a maximum at an
intermediate energy —oo < E,, < oco. The associated micro-
canonical inverse temperature,

dIn[Q(E
ﬂ(E)EM, (D

oE
is thus positive for E < E,,, but vanishes at £ = E,, and is
negative for £ > E,,. Negative-temperature states can gener-
ally arise in both classical and quantum systems with a finite
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FIG. 1. Overview of point-vortex states at negative, zero and
positive inverse temperatures 8. Clustering occurs for 8 < 8. < 0, a
homogeneous state is found at 8 = 0, and pair condensation occurs
for B8 > B.

number of degrees of freedom whose state space is bounded,
such as localized spin systems [44—46]. In the point-vortex
system, high-energy states at negative temperatures, corre-
sponding to condensates featuring same-sign vortex clusters,
have been extensively studied since Onsager’s initial contri-
bution [6,7,47,48]. In particular, there is a negative clustering
temperature f., which marks the onset of same-sign vortex
clustering. Similarly, there is a positive pair condensation
temperature 8., at which opposite-sign vortices form dipole
pairs which propagate through the domain, see Ref. [49]. The
vanishing inverse temperature at £ = E,, corresponds to a
homogeneous state with positive and negative vortices spread
out evenly over the domain. The point-vortex states at differ-
ent temperatures are summarized in Fig. 1. Such point-vortex
states at any given inverse temperature § may be generated
using the noisy gradient method presented in Appendix B,
which was previously introduced in Ref. [50]. Specifically,
once a statistically stationary state is reached, this numerical
method generates random point-vortex states according to the
canonical distribution associated with the inverse temperature
B. For a given value of B, the mean energy in the statisti-
cally stationary state can be measured from the time series.
Thus, like every microcanonical temperature corresponds to
an energy E according to Eq. (1), in the noisy gradient method
every value of B corresponds to a mean energy (E) in steady
state. The resulting mean energy as a function of temperature
is shown in Fig. 2.

III. THE MODEL

Here we construct the simplified model of the interaction of
2D and 3D flow studied in this paper. The model is in the same
spirit as shell models of turbulent cascade processes [51],
which replace the Navier-Stokes dynamics with a simpler set
of coupled nonlinear ordinary differential equations, which
conserve a number of quantities including total energy and
enstrophy in the 2D case, aiming at providing insights into
turbulent cascade processes. The present model, as we show
below, may similarly provide insights into the dynamics of 3D
instabilities on turbulent 2D flows.

For the sake of simplicity and clarity, the theoretical for-
malism is presented in the infinite domain. In Appendix A,
we provide the equations for the 2D doubly periodic domain
[0,27 L] x [0, 27 L], where the statistical point-vortex tem-
perature from Sec. II is well defined.
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FIG. 2. Mean point-vortex energy (E) of N, = 32 vortices versus
B, computed using the method described in Appendix B in the peri-
odic domain [0, 27r] x [0, 277 ] (with a truncation at distances smaller
than € = 0.1, cf. Appendix B). This curve allows a translation from
vortex energies at steady state to corresponding temperatures.

Our main goal is to arrive at a model of minimum com-
plexity describing the growth of 3D perturbations on a 2D
large-scale condensate flow. Two key ingredients must be
selected. First, a model of the two-dimensional base flow must
be chosen. Here we opt for 2D point-vortex flow, in view of
its many successful modeling applications to two-dimensional
turbulent flows, as presented in the introduction. Specifically,
we consider an even number N, of point vortices with circu-
lations I'; = T" for odd i and I'; = —TI" for even i, located at
positions x{) = (x{, y{).

Second, the 3D perturbations have to be modelled. While
there exist 3D vortex filament models, commonly used in
quantum turbulence, which describe mutual advection of
curved vortex lines [52,53], these are significantly more com-
plex than their 2D counterparts—in particular, each segment
of every vortex line is advected by all other vortex lines via
the Biot-Savart law, and in addition proper handling of vortex
reconnections is a complicating factor. Instead, here we seek
a simpler description. Simulations of turbulent flows close to
the onset of three-dimensionality reveal that 3D perturbations
are strongly localized (spatially intermittent) in the 2D plane
[14,15,43]. Indeed, close to the onset of three-dimensionality,
high wavenumbers in the third dimension are suppressed
by viscous damping. Hence, the 3D instability, while being
strongly localized in the 2D plane, is also expected to have
a simple spatial structure in the third dimension, and its in-
tensity can be approximately characterized by a single scalar
amplitude.

Combining these two insights, we model 3D motions as N,
localized, pointlike entities in the plane whose detailed spatial
structure in the third dimension is ignored, and whose inten-
sity is characterized by an effective perturbation amplitude Ay,
for k=1, ..., N,. We name these entities “ergophages” and
denote their positions by X;,k) = (x;k), yg‘)). While the model
describes 3D flow, the mathematical structure of the model
is effectively 2D. We stress that this is not a contradiction,

since the reduction is based on the physical properties of 3D
perturbations close to onset, and retains 3D information.

Point vortices and 3D perturbations induce velocity fields
that advect each other following the equations:

d @ 4 ) 4 @
P x{) =U + U +uf )
and
d
()
r X3 = Ul 4+ v, 3)

where UV is the velocity induced on vortex i by all point
vortices i # j, UJ is the velocity induced on vortex i by the
3D ergophages and U is the velocity induced on ergophage
k by all N, point vortices. Finally, uff) and V(;‘) are externally
imposed velocity fields that could inject energy to the sys-
tem. Also, note that ergophages do not advect each other, a
choice which is made for simplicity—mutual advection of
ergophages can easily be included in the model presented
below (while this was not studied in detail, it did not seem
to affect the qualitative model behavior).

In the absence of ergophages and external velocities, the
model reduces to classical point-vortex flow. In this case,
point vortices move due to their mutual advection, following
Hamiltonian dynamics so that the velocity field U/f)’) can be

written as
. 0.aoH
U/(l) — F._l Yu , 4
v 1 _afoUH ( )

corresponding to the advection of the ith vortex by all vortices
j # i. The Hamiltonian H in R? is given by

Ny
H(xfjl), . ,xf,N“)) = —% Z Il log (’xz(f) — xf}j)D, 5)
:,l/#:]l
which is a sum over pairs depending on the vortex-vortex
distances alone. The velocity field U% closely resembles
U’ff), but it includes the advection due to all N, vortices,
formally omitting the condition i # j in H before differentiat-
ing in Eq. (4) and evaluating at x{ — x{*). The Hamiltonian
also gives the kinetic energy of the flow (up to a factor
of (2m)~! times the constant fluid density, and an additive
infinite constant due to self-energy), which is conserved.
The point-vortex energy increases when same-sign vortices
approach each other and when opposite-sign vortices move
apart, while it decreases when same-sign vortices move apart
and when opposite-sign vortices approach each other.

In the presence of ergophages, energy of the 2D field can be
transferred to the 3D field perturbations. Thus, to gain energy,
an ergophage must reduce the energy of a given point-vortex
configuration on which it is superimposed. Each ergophage in-
duces a 3D perturbation velocity field uj(x) of amplitude A7
Importantly, despite the model being formally 2D, the fact that
ergophages represent 3D structures implies that ufnk)(x) has a
nonzero divergence in the (x, y) plane. This is in contrast to
the velocity field U{”(x) induced by 2D point vortices, whose
2D divergence vanishes. The total velocity field induced by
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FIG. 3. Illustration of how a velocity field u, (steam lines) due to
a 3D perturbation at x,,, can reduce point-vortex energy. This is done
by increasing the distance between the same-sign vortices at x{", x®
and/or decreasing the distance between opposite-sign vortices at
x®, x¥. The bold black arrow passing through x,, represents the
dipole moment.

the ergophages is then given by

N,
U,(x) =Y Ajud(x), ©6)
k=1

such that the velocity induced on vortex i can be written as
U = U,(x). This field modifies the point-vortex positions
and thus their energy, allowing ergophages to grow under
suitable conditions.

Our choice for u{"(x) should be the simplest possible. It
is shown in the Appendix D that the choice of a monopole,
which at first does suggest itself for its simplicity, cannot
produce 3D instability. Hence, the simplest nontrivial choice
for u{(x) is given by a dipole field,

n (k)
u®) = (d, - V)(?iz(k)) 7)

where c?k = [cos(¢r), sin(gy)] is the dipole moment with ¢
the angle between the dipole moment and the x-axis. The
potential ¢*) is given by

pP(x) = —1clog (‘xg‘) —x

), @®)

where c is a coupling coefficient. An example of dipole in-
teractions is shown in Fig. 3. In this case the perturbation
velocity field makes same-sign vortices approach each other
(e.g., xV and x{») in Fig. 3) and opposite-sign vortices move
apart (e.g., x> and x* in Fig. 3), thus reducing the point-
vortex energy. Now, assume one were to interchange x{!) <
x(Y and x{? < x{ in Fig. 3, keeping x,, the same. The dipole
field would then cause an increase in point-vortex energy and
thus would no longer lead to any 3D instabilities. However, it
suffices to rotate the dipole moment by 180° to recuperate a
3D instability. This example illustrates that the dipole field can

lead to 3D instability for a given vortex configuration (even if
monopole field would not), provided that the orientation of the
dipole moment is suitably chosen. For simplicity the dipole
moment in this work will always be chosen such as to ensure
maximum (positive) energy extraction from the 2D field.

In our model we assign to the ergophages the 3D energy

1
Esp = 3 Zk:Ai. 9)

The energy exchanges between 2D and 3D flow must be
conservative. Thus, any decrease of the point-vortex energy
should correspond to an increase of 3D ergophage energy. We
let the amplitudes A evolve according to

dAy 3

— = (" — V)Ax — 84y (10)

dt
(no implicit summation), where y; is an instantaneous growth
rate due to interactions with the point vortices, v (propor-
tional to viscosity) is a linear damping coefficient and § is
a nonlinear damping coefficient due to self-interactions. Such
nonlinear effects in three-dimensional velocity fields are as-
sociated with a Kolmogorov forward energy cascade, whose
amplitude will generally depend on system parameters, such
as domain geometry and system rotation rate. Hence the co-
efficient 6 should also depend on these system parameters. In
order for the coupling to conserve energy, the growth-rate is
given by

Ny
== u(x)) - V. (an
i=1

As is shown in Appendix C, these model equations imply that
the total energy

1o

E[ot=H+§kX_;Ai=H+E3D (12)

is conserved, provided u = § = 0 (no dissipation) andu; = 0
(no energy injection). Note that for Ey to be dimension-
ally consistent, A; must have dimensions of circulation. In
addition to the energy, the 2D Euler equation conserves the
so-called Casimir invariants, which are of the form f w"d?x,
(n = 2 gives the enstrophy), where w denotes vorticity. In the
point-vortex model, the vorticity depends only on the number
and circulation of vortices, both of which are conserved in our
model.

In the presence of dissipation it is useful to have a driving
mechanism as well, so that a nontrivial steady state is reached.
This is achieved by the choice

ul = e[V H + 18717 0i(0)], (13)

where ;. (t) = (n{(t), n{(t))" with independent white Gaus-
sian noise components ! satisfying (n}(t)) = 0 and (nin},) =
28; 8k 1 8(¢t — t') for the ensemble average (-). In the absence
of ergophages, this noisy-gradient driving leads to a point-
vortex flow with temperature 7! and is described in detail
in Appendix B. We emphasize that the driving Eq. (13) can
either increase or decrease the 2D energy. If the 2D energy at
any given time is above the equilibrium value corresponding
to the temperature ,3;1 (shown in Fig. 2), then the driving will
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act to decrease energy to the equilibrium value. Conversely,
if the 2D energy is below that equilibrium value, the driving
will act to increase the 2D energy. We also point out that, as a
consequence of the inverse energy cascade, 2D flows typically
feature the formation of large-scale coherent structures at late
times. Such a structure is observed in the point-vortex system
at negative B. At intermediate stages of the inverse cascade
process, for instance if the cascade is interrupted by large-
scale friction, one finds an approximately homogeneous gas of
vortices [54]. In the point-vortex system, this is realized when
B =~ 0. At B > 0, the point-vortex model is characterized by
vortex-antivortex bound states. To the best of our knowledge,
however, these are never observed in laboratory experiments
[13,55] nor numerical studies [12,14,15] of turbulent quasi-
2D flows. We conclude that the regime 8 < 0 is the physically
relevant one.

Finally, since the total energy is independent of the er-
gophage positions, we chose vy to be a noise term, without
altering the energy dynamics,

v =on0), (14)

where 7; = (ngl), n}z)), with nfj ) pairwise independent zero-

mean white Gaussian noise terms. The noise is added to
eliminate a remaining dependence on initial conditions. Note
that in our model, different ergophages do not directly affect
each other, neither in terms of their amplitudes, nor their po-
sitions. They can only affect each other indirectly by altering
the background 2D flow nonnegligibly and thus changing the
growth rate y; experienced by each ergophage. This is mainly
motivated by our goal of maximum simplicity. First, the model
3D energy is independent of ergophage positions, thus we may
decide to neglect mutual advection of ergophages in a minimal
description of how 3D energy evolves. Second, while in a
strongly 3D flow, the 3D components of the flow will feed
back on one another, the growth or decay of 3D perturbations
at small to moderate 3D amplitudes on a primarily 2D flow
should be mainly determined by direct interactions between
2D and 3D components, rather than interactions between 3D
and 3D components.

Equations (2), (3), and (10) define the time evolution of our
model, which we solve numerically in the following sections.

IV. NUMERICAL IMPLEMENTATION

We developed a fully MPI-parallelized Fortran program,
using a fourth-order Runge-Kutta time stepper, to simulate the
model in the 2D doubly periodic domain [0, 27 L] x [0, 27 L],
based on the Weiss-McWilliams formalism introduced in
Ref. [56]. The parallelization is implemented by assigning a
subset of vortex-vortex pairs and vortex-ergophage pairs to
each processor, over which to sum when computing quanti-
ties involving such pairs such as U, U, H, and y;. The
specific model equations for the periodic domain are given
in Appendix A. Since the periodic domain has a finite area,
the statistical point-vortex temperature introduced in Sec. II
is well defined here and no vortices can escape to infinity. A
regularization was introduced at distances smaller than a pos-
itive cutoff € « 2L (we set € /(2w L) = 0.015), similarly as
in Ref. [34]. This regularization is required to avoid blow-ups,

i.e., events where the time step required by the CFL con-
dition [57] for well-resolvedness becomes extremely small.
The way the cutoff is introduced approximately corresponds
to smearing out the delta-peaked vorticity over a circular
patch of constant vorticity, also known as a Rankine vortex
[58]. In a realistic turbulent flow, there is a cutoff at small
length scales related to viscosity. We note that vortex merging
does not occur in the point-vortex model used here, with or
without a cutoff (however, it may be added explicitly as in
Refs. [21-25]). The time step At for the Runge-Kutta scheme
is dictated by the maximum growth rate y;, which is associ-
ated with close encounters where some distances are of the
order of €. For highly condensed configurations, where N, /2
vortices form a cluster for each sign of circulation, each clus-
ter comprises approximately Nf /8 vortex pairs contributing to
v« At small distances |u(pk)| = O(¢ %) and |Vx‘v”H| = 0@,
such that the time step thus bounded above by

3

At < [max(y)] ™! 8i. (15)
For dilute vortex configurations, the largest growth rates stem
from encounters between a single ergophage and a single
vortex, such that At < €. This strong dependence of the
required time step on the cutoff €, and the number of vortices
N, for dense configurations, is an important limiting factor
in terms of computational cost. The operation of the highest
numerical complexity at every time step is the evaluation of
Yk, since it requires summing O(N?) vortex-vortex pairs for
everyk=1,...,N,.

V. SIMULATION RESULTS

To study the model introduced in Sec. III, we first use the
noisy gradient method described in Appendix B to generate
point-vortex states with NV, = 32 vortices at both positive and
negative temperatures. This relatively small number of vor-
tices is chosen to be able to run simulations for long times
to obtain satisfactory statistics. The energy of the resulting
equilibria as a function of their inverse temperature 8 is as
shown in Fig. 2. We note that at this relatively low number of
vortices, the transitions to a condensate and to pair condensa-
tion are not sharp. Using these states generated by the noisy
gradient method as initial conditions for the point vortices, we
proceed in the three following steps:

(A) The passive, linear regime: perturbation amplitudes
Ay/T « 1 and § — O for a given background point-vortex
flow. In this limit, the evolution Eq. (10) of A is linear and the
point-vortex energy H is constant in time since U, = O(A,%)
is negligible with respect to the conservative Hamiltonian
advection terms. To investigate this limit we set U, =0 in
Eq. (3) and 6 = 0 in Eq. (10). Since there is no dissipation in
the system we also set uy = 0.

(B) The passive, nonlinear regime: still A;/I" <« 1, such
that H still remains unaffected by the 3D instabilities, but we
include saturation of the amplitude A; due finite 4, i.e., non-
linear self-interaction (in both the linear and passive nonlinear
regimes, individual 3D perturbations evolve independently).
In this limit U, = uy = 0 in Eq. (3) as well.

(C) The fully nonlinear regime, where the amplitudes
Ar/T = O(1), thus the induced ergophage velocity U, is fi-
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FIG. 4. Snapshots from two simulations with N, = 128 pertur-
bations (black dots) evolving on a point-vortex flow consisting of
N, = 32 individual vortices, which is highly condensed at g = —1

8
(top) and dilute at 8 = ——< (bottom).

1
128

nite and its effect on point vortices cannot be neglected. In
this case H is no longer conserved. To sustain the dynamics
against dissipation, the “driving” term u, given in Eq. (13) is
included.

A. The passive linear regime

We initialize the simulation with N, = 32 vortices at an
inverse temperature 8 < 0, with half of the vortices having
circulation I'; = T, and the other half having circulation I'; =
—I'. In addition, we introduce N, = 128 randomly placed
ergophages of some small initial amplitude (the same for
every perturbation). It is worth reiterating that in the linear
phase of the evolution, since there is no feedback on the flow,
each ergophage is evolving independently from all the others.
Furthermore in the linear phase the effect of the damping
parameter v is to induce a mean exponential decay. The time
evolution of A, (¢, v) for any value of v can thus be recovered
from the v = 0 case as A (f, v) = A (¢, 0)e™"". For this reason
only the v = 0 case is examined and the growth rate y, of a
v # 0 case is obtained as y, = y, — V.

The configuration under investigation is illustrated in Fig. 4
for a highly condensed case (8 = —%) and a dilute case (8 =

10162:

1096

Esp

1030

10—36:

1

0.010 0.020 0.030

FIG. 5. Lin-log plot showing the time series of the energy of
N, = 128 localized 3D perturbations (total energy shown in solid
blue, selected individual contributions %A% in dashed black lines) in
the passive linear regime with v = 0, growing on a highly condensed
background 2D flow at 8 = —¢.

- llﬁ). Then we let the system evolve in time and obtain a time
series like the one shown in Fig. 5 for the highly condensed
case, where the 3D energy (solid blue line) alternates between
plateaulike phases of slow growth and phases of abrupt ex-
ponential growth. The time series bears resemblance to that
obtained from the complete linear stability analysis of 3D in-
stabilities on a turbulent 2D flow performed by Seshasayanan
and Gallet (see Fig. 1 in Ref. [43]). In the same Fig. 5, we also
show the energy of individual ergophages, %Ai, by dashed
lines. Their sum is equal to the blue solid line.

Two points need to be made. First, one observes in the time
evolution of individual ergophages that there are alternating
phases of slow growth/stagnation and of rapid exponential
growth. Second, at a given time ¢, E5p(?) is dominated by the
ergophage with the largest amplitude A (¢). Abrupt growth
events in E3p also occur when another ergophage A grows
exponentially and “overtakes” Ay, thereby leading to abrupt
growth of the sum.

Each of the N, localized perturbations experiences a differ-
ent, time-varying growth rate y;(¢). To understand this linear
growth, we need to quantify the statistical properties of these
random growth rates.

In Fig. 6, we plot histograms of y; sampled over all k =
I,...,N, and all time steps. In both cases, one observes a
power-law range in the PDF. For the dilute case (8 = —ﬁ)
the power-law exponent is close to —2, while for the dense
state (8 = —é) it is closer to —5/3. These two exponents can
be understood if one identifies the dominant interactions.

In the dilute case |8]| < 1, where point vortices are far
apart, an ergophage maximizes its energy extraction when
being close to a single point vortex. It does so by displacing
the vortex towards the nearest opposite-sign vortex and/or
further apart from the nearest same-sign vortex.

In the dense (condensate) case —p > 1, point vortices
form high-density, same-signed clusters. In order for an er-
gophage to maximize energy extraction, it needs to be located
close to these clusters.
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FIG. 6. Two histograms of the growth rate y;, sampled over all
time steps and all 128 ergophages from the run corresponding to
the two linear simulations with a dilute vortex state at 8 = —1/128
(top) and a condensed vortex state at § = —1/8 (bottom) visual-
ized in Fig. 4. Power-law ranges with exponents —2 and —5/3 can
be discerned, as predicted for dilute and dense vortex base states,
respectively.

The PDF of the growth rate y; can then be calculated by
assuming that all positions in space are equally probable and
that at each time it is the interaction with the closest pair of
point vortices that dominates. A detailed calculation, given in
Appendix E, yields

2

P(y) oy ™ atlarge y, (16)

for the dilute limit |8] < 1, while for the dense limit —8 > 1
one obtains

P(y) o y=3 atlarge y. a7

The predicted power laws agree with the PDFs obtained nu-
merically. Note, however, that in our numerical set-up these
results are valid up to a large-y cutoff resulting from the reg-
ularization at distances less than €. This is important because
without this regularization, the variance and the mean would
be infinite for the power-law PDFs of y; found here. This
implies that some of the results observed here have an explicit
dependence on €.

Besides the growth-rate distribution, to characterize the
statistical properties of y; we also need to quantify its auto-
correlation time T,c.

We define t,. in terms of the normalized auto-correlation
function T'(t) = (y(t)y(t + 1))/{y (¢)?), as the smallest T

100‘ ]
I>~10-1/ .
R
10724 .
100 10! 102

o?/r

FIG. 7. Log-log plot of the auto-correlation time 7,  of the
growth rate y (see text for the definition of t,.) in a passive, linear
simulation at 8 = —1/16, nondimensionalized by the mean growth
rate, versus the squared amplitude of the noise acting on 3D pertur-
bations, nondimensionalized by the r.m.s. vortex circulation.

for which I'(r) < 0.5, where I'(0) =1 by definition and

(fly)) = 1\# fOT dt Zf;l f((t)) is an average over time ¢
(T is the time at the end of the simulation) and realizations
(ergophages). We stress that the small-distance cutoff intro-
duced in the velocity field, leading to a large-y cutoff in P(y)
is essential for obtaining a finite mean growth rate (y) and
finite variance, since a PDF featuring power-law tails with
exponents —2, —5/3 does not have a finite mean or variance
otherwise.

Figure 7 shows that the auto-correlation time decreases
monotonically with o [defined in Eq. (14)], as T, ~ o2
By increasing o sufficiently, one obtains an arbitarily small
auto-correlation time. When t.(y) <« 1, the random process
vk (t) can be approximated as uncorrelated in time.

Summarizing the above findings, the increments of A are
randomly distributed according to a PDF with power law
tails whose exponents are between —2 and —5/3 and ap-
proximately white in time since it is uncorrelated in time
beyond a small correlation time (for sufficiently large o).
These properties imply that the evolution of A; due to y; is
well approximated by a Lévy flight process.

A Lévy flight is a random process with independent
stationary increments 7, where the increments follow a heavy-
tailed PDF. By the generalized central limit theorem [59], the
sum of many such heavy-tailed increments follows a stable
PDF P, z(n) depending on two parameters « € (0, 2] and
Bel-1,1]. Lévy flights were first introduced in Ref. [60]
and have since found numerous applications in physics and
beyond [61,62]. The influence of «, B on the PDF P, B (n)isas
follows. For & = 2, one obtains the Gaussian distribution. For
o < 2, a stable distribution features power-law tails P(n)
{1+ Bsign(r/)}r/")"1 at |[n| — oo. The parameterB measures
the asymmetry of PDF. For =1 and « < 1, one obtains
a one-sided PDF with support on R only. Stable PDFs are
known to occur for velocity and velocity difference statistics
in 2D vortex flows in particular [63]. The fact that the PDF of
vx shows power-law tails in our model can be understood as a
consequence of this property of 2D vortex flows.
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If y is interpreted as noise, then Eq. (10) is a stochastic
differential equation with multiplicative Lévy noise whose
parameters depend on the 2D flow temperature. The dense
and dilute cases described above, for which the y; PDF has
power law ranges with exponents —5/3 and —2, respectively,
correspond to noise parameters o« = 2/3 and o = 1, respec-
tively, and B = 1 since the linear growth rate y; is positive
definite in the model by construction.

The theory of systems with multiplicative Gaussian white
noise has found a plethora of applications, in particular to
noise-induced transitions [64] and the phenomenon of on-off
intermittency [65-67]. While the role of long-time corre-
lated noise in on-off intermittency has been considered before
[68-71], the case of on-off intermittency with heavy-tailed
noise has not previously been studied explicitly, to our knowl-
edge. Our companion paper [72] is devoted to this topic.
Here we summarize only the relevant results. It is shown in
Ref. [72] that in the case o < 1 and B = 1, which applies
here, the system Eq. (10), with y; interpreted as white Lévy
noise, is unstable for all values of v: since the mean value of
(yx) — 400, viscosity v, no matter how large, cannot stop the
growth of A;. If, however, the possible values y; are restricted
(“truncated”) to be below some maximum, so that a finite
value of (y;) exists, then there is a critical value of viscos-
ity v. above which all trajectories converge to zero Ay — 0.
However, this critical value depends on the truncation value
of yi, which implies that the threshold v, will depend on the
regularization cutoff €. At long time scales the system displays
on-off intermittency.

B. The passive nonlinear regime

We solve the model equations for N, = 32 passive non-
linear dipole ergophages evolving on a highly condensed
background flow of N, = 32 point vortices at temperature
B = —1/8, fixing the nonlinear damping coefficient at § = 1.
For a given v, we initialize the ergophages at random posi-
tions and with small amplitudes. We let the system evolve
for long times, such that the perturbation amplitude either
decays or reaches a statistically steady state. We then measure
the steady-state time average of the moments M, = (A"), in
terms of (f(A)) = limy_, TIT,fOT Zgil f(Ap)dt. We also
define the “zeroth” moment as M, = exp({log(A))), By the
inequality of arithmetic and geometric means the moments
are ordered My < M, < le/2 < M31/3 < .... The resulting
bifurcation diagram of My, M, M, as a function of v is shown
in Fig. 8.

On-off intermittency predicts that all nonzero moments
scale linearly with v, — v, M, & (v, — v), while the zeroth
moment scales as My « exp(—cst./(v. — v)). Comparing this
with the bifurcation diagram shown in Fig. 8, where the
scalings from the Gaussian case are shown by dashed lines,
one sees that the time-averaged moments and the Gaussian
scalings agree well within the errorbars. This is a consequence
of the truncation in the model, which subjects the statistics to a
convergence to the Gaussian case, albeit “ultraslow” [73], by
the central limit theorem after the sample averaging and/or
long-time averaging procedures.

Another prediction of on-off intermittency is that the PDF
of the unstable field shows an integrable powerlaw divergence

120 X
100 \
= 801
S 60<§>
E ’it“
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FIG. 8. Bifurcation diagram for N, = 32 passive nonlinear (i.e.,
independent) dipole ergophages on the background flow at g =
—1/8, 6 = 1. The values of (X), is averaged over the statistically
steady state. Error bars are given by the sample standard deviation
of the time series in steady state. The dashed lines show the scalings
from the Gaussian noise case.

at zero amplitude with an exponent that approaches the value
—1 from above as v — v, while an exponential cutoff is
expected for large values of A;. Figure 9 shows the PDF of
Ag. At small values of A the PDF displays a power law A* with
k approaching —1 as v — v, in agreement with the Gaussian
on-off prediction. At large A the PDF shows a steeper power-
law scaling. In the companion paper [72], the asymptotics
P(A) o« A=3log=?/3(A) at large values of A are derived ana-
lytically from a fractional Fokker-Planck equation associated
with Eq. (10) for nontruncated multiplicative Lévy noise with
parameters o = 2/3, 8 =1 (in the Stratonovich interpreta-
tion), which fits the present data well. Since A~!log™*(A)
is only integrable at A — oo for « > 1, the scaling P(A) «
A3 1og™?3(A) implies that without a cutoff, only the mean
is finite, while the variance and all higher moments diverge.
With a cutoff at length €, all moments are finite, but only
the mean is of order one, while all higher moments depend

b e v/y.=0.15
1027.’. e v/v.=03
"’-.,_’*. 1 e v/v.=045
3 - ¢
101 ;. ....."o.::fi e vy, =06 |[]
0 "'“'..'.. ° ’ﬁ. e v/v.=075
— 10" e, .".'Q v/v. =0.98 |1
Q: "'-m“..‘. ..'}-r
107t
1072
107 s
-
—1 >
10 4 L

1070 102 100 /%00 00 102 108

FIG. 9. Steady state PDF of ergophage amplitudes from the nu-
merical solution of the model in the passive nonlinear regime for
6 =1,v/v. = 0.15 on the background flow at 8 = —1/8.
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FIG. 10. PDF of sample mean (A), over ngmp realizations (inde-
pendent ergophages) from the passive nonlinear point-vortex model
with parameters § =1, v/v. = 0.15. For ngmpe = 1, the PDF is
close to the theoretical prediction for the nontruncated system, and
converges to a Gaussian PDF (thin dashed line) as ngmpc is increased.

on the cutoff value €, increasing as the latter is decreased.
This is an important difference from the Gaussian noise case.
We note, however, that this difference is diminished as larger
samples are used due to the imposed truncation and the law of
large numbers. This is demonstrated in Fig. 10 which focuses
on this power-law tail far from threshold v/v, = 0.15, and
averaging A over independent samples leads to a convergence
towards a Gaussian distribution. For a single realization, how-
ever, we observe a form close to the theoretical prediction for
the nontruncated Lévy process.

C. The fully nonlinear regime

We now enable ergophages to feed back on the point-vortex
flow and include the driving velocity uy. Initializing a simu-
lation at a condensed vortex state with § = —1/8, N, = 32
vortices, N, = 32 ergophages at random locations with small
initial amplitudes A; for given values of v, § and using a
forcing temperature 8y = —1/8, we let the system evolve in
time and measure the mean energy around which the energy
fluctuates at late times. The choice 8 = B for the initial con-
dition is arbitrary, the system will relax to the same stationary
state at late times, independently of what initial condition is
chosen. However, since we are interested in the stability of
condensate flows, it is a natural initial condition.

Figure 11 shows time series of the 2D energy H in the fully
nonlinear regime for v/v. = 0.15 for different values of §.
For large § = 10%, the 3D instabilities cannot grow to large
amplitudes and therefore do not disrupt the highly energetic
condensate. For § = 10°, a slightly less energetic condensate
persists, but is disrupted at random times by catastrophic
events which reduce the 2D flow energy significantly, just to
rebuild again thanks to the driving. These are the traces of
the jumps associated with Lévy flight dynamics which remain
present in the nonlinear regime. Disruptive events occur when
an ergophage comes very close to the point-vortex clusters

§=10"2

§=6x10*
0 =10

0.0 02 04 06 0% 1.0

FIG. 11. Time series of the 2D energy H, normalized by the
equilibrium energy E(f;) at temperature '3;1 , in the fully nonlinear
regime at v/v. = 0.15 for different values of . At§ = 10°, the flow
is close to a 2D condensate, up to abrupt events when the condensate
is disrupted. For decreasing values of §, ergophages grow to larger
amplitudes and lower the energy of the 2D flow further. The vertical
dashed line indicates the time at which the snapshots in Fig. 12 are
taken.

shown in the top panel of Fig. 4, extracting the cluster’s energy
by partially breaking it up. With decreasing values of §, the er-
gophages disrupt the condensate further and further until they
reduce its energy to close to zero, driving all point vortices
apart. The snapshots of the point-vortex configurations for
different § at a fixed time are shown in Fig. 12. They illustrate
the gradual disruption of the condensate as § is decreased from
§=10t08 = 1072

For each simulation, we use the correspondence between
mean energy and inverse temperature visualized in Fig. 2 to
assign a vortex temperature based on the measured average
point-vortex energy at late times. We repeat this procedure

X §=10""2 J =10°
6 eo ° 1t oo |
5’: ... . 1 L . .,
=il e o e °e |
[ ] |
2’ ... ®
1t () b Qe i
Ol s s s Y @,
6 J =6 x10* § =10
. T T T T ]
5t |
4.‘.. ‘ g |
> 3t |
2t ® ° .—
1, i L i
01 23456 012345F€6
X X

FIG. 12. Snapshots of the point-vortex configuration correspond-
ing to the time indicated by the vertical dashed line in Fig. 11. As §
is decreased, the 3D perturbations are allowed to grow stronger and
disrupt the condensate more and more.
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FIG. 13. Plot of mean temperature of the point-vortex flow in a
fully nonlinear regime in the presence of N, = 32 perturbations for
varying 8, different curves show different v. At v/v. > 1, the flow
temperature is exactly that of the forcing, i.e., 8 = By = —1/8, since
all 3D perturbations decay.

for several values of v and § to obtain the diagram shown in
Fig. 13.

For v/v, > 1, 3D perturbations decay and the 2D con-
densate is stable for all values of §. As discussed below
Eq. (13), where the driving mechanism is defined, the forced
system converges to a finite average energy at late times in
the absence of ergophages. In other words, the forcing does
not inject a constant energy, but acts rather like a thermostat
that aims to maintain the system at a fixed temperature. For
v/v. < 1, B increases with decreasing 6. This is the onset
three-dimensionality, which we characterized in detail in the
passive nonlinear regime. For smaller values of §, the pertur-
bation amplitudes saturate at larger values, thus disrupting the
2D condensate more strongly. When § is small enough, the 2D
flow reaches B = 0, which corresponds to a total disruption
of the condensate. For v = 0, this occurs at § = 1. Since
the energy-f8 curve shown in Fig. 2 is very steep at small
energies, small deviations in the energy do not necessarily
correspond to vanishing f. Furthermore we note that positive
values of B induced by the ergophages were never observed.
Since such states would correspond to flows comprised of
long-lived bound vortex-antivortex pairs, the absence thereof
is consistent with DNS and experiments of turbulent quasi-2D
flows, where such configurations do not arise spontaneously.

The role of the remaining parameters B¢, €, Ny, N, which
do not vary in Fig. 13, is discussed now. Changing 8, would
alter the 2D background flow. Decreasing 8y would give a
more condensed background flow, reducing the surface area
of the vortex clusters and thus the chances that an ergophage
comes close enough to a cluster to disrupt it. This would
require longer simulations and/or larger N, to obtain reli-
able statistics. At larger By, the background state ceases to
be a condensate, which is undesirable given our focus on
condensed base flows. Changing € would affect the minimum
inter-vortex distance in the clusters. Decreasing €, the required
time step decreases rapidly according to Eq. (15), which is nu-
merically challenging, while larger ¢ would be incompatible

with the strong localization of 3D perturbations. Changing €
also affects the mean growth rate and thus v,. Finally, we do
not expect N, N, to qualitatively change the system behavior.
A larger number of vortices making up the condensate implies
more 2D energy for ergophages to extract. More ergophages,
in turn, are more likely to approach the vortex clusters and
thus deplete them. Based on the above discussion, while we
did not undertake a systematic parameter study, we expect the
qualitative model behavior to be robust to parameter changes
within appropriate bounds.

In summary, above the onset of three-dimensionality, stud-
ied in detail in the passive nonlinear case, the 2D vortex
temperatures depend on the linear and nonlinear damping
coefficients of the 3D flow, ranging from a stable condensate
to a complete disruption of the latter. The jumplike Lévy flight
dynamics discussed for of the linear and weakly nonlinear
regimes traces through to the nonlinear regime, and shows in
the time series in Fig. 11 by a random disruption of the 2D
condensate followed by a rapid subsequent rebuilding of the
latter due to the driving.

VI. CONCLUSIONS

We have formulated and analyzed a point-vortex model of
localized 3D instabilities on 2D flows. Although the coupling
of the 3D perturbations to the 2D flow in the model is ad-hoc
and does not stem directly from the Navier-Stokes equations,
it has some attractive properties, being energy conserving and
reducing to the classical point-vortex model in certain limits.
Most importantly, the model has led to some very interesting
behaviors and predictions that could apply to more realistic
quasi-2D systems exhibiting spectral condensation.

First of all the model predicts fluctuating growth rates with
power-law tails, which lead to a Lévy flight in (logarithmic)
perturbation amplitude. This may be related to recent DNS
results [43], where abrupt, jumplike 3D instabilities were
observed on a strongly condensed, turbulent 2D background
flow. We point out that in Ref. [43], despite the fact that
modern GPU computing power was harnessed and after in-
tegrating for long times, the time series in their Fig. 1 only
contains a few abrupt growth events, far too few to deduce
reliable statistical information about the growth rate. This
underscores the need for a simplified model like the one
presented here, where such information is more readily ac-
cessible. Furthermore the model suggests that the onset of the
instability depends on the regularization cutoff €. In realisitic
flows, a small-scale cutoff is provided by viscosity.

A new type of intermittency near the onset of an instability
was discovered. The corresponding situation of on-off inter-
mittency in the presence of ideal, nontruncated Lévy noise, is
discussed in the companion paper [72].

In the passive nonlinear regime of the model, we ob-
served a continuous transition from finite to vanishing 3D
amplitudes, with on-off intermittent behavior close to onset.
However, a deviation from the predictions for Gaussian noise
was observed at large values of the 3D amplitude, in the
form of a power-law tail whose exponent matches theoretical
predictions derived from a fractional Fokker-Planck equation
in the companion paper [72]. This exponent also implies that
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the saturation amplitude of the second and higher moments
would depend on the regularization cutoff €, but not the mean.

In the fully nonlinear, strongly coupled regime, where the
vortex temperature is affected by the presence of perturba-
tions, we characterized the dependence of vortex temperature
on the ergophage damping coefficients and showed that at
large amplitude of the 3D perturbations this temperature
reduces to zero. We also showed that at intermediate values of
the parameters § and v, a highly energetic condensate, present
when 3D perturbations are small, is disrupted at random times
by catastrophic events where 3D perturbations grow and the
condensate amplitude is reduced significantly, after which it
recovers. Such events have also been observed in simulations
of thin-layer and rotating flows [15,43,74].

In view of the limitations of existing theories, our model
provides a new perspective on 3D instabilities growing on 2D
flows, which will be useful in analyzing and understanding
the much more complex results of DNS and potentially guide
further theoretical developments.

ACKNOWLEDGMENTS

We thank three anonymous referees for their comments,
which helped us improve the clarity of this paper. We also
thank G. Krustolovic for pointing out an important typo
in an earlier version of this manuscript. This work was
granted access to the HPC resources of MesoPSL financed
by the Region Ile de France and the project Equip@Meso
(Reference No. ANR-10-EQPX-29-01) of the programme In-
vestissements d’ Avenir supervised by the Agence Nationale
pour la Recherche and the HPC resources of GENCI-
TGCC & GENCI-CINES (Projects No. A0070506421, No.
A0080511423, and No. A0090506421), where the present nu-
merical simulations have been performed. This work has also
been supported by the Agence nationale de la recherche (ANR
DYSTURB Project No. ANR-17-CE30-0004). A.v.K. ac-
knowledges support by Studienstiftung des deutschen Volkes.

APPENDIX A: THE MODEL EQUATIONS FOR PERIODIC
BOUNDARY CONDITIONS

In the main text, the model is presented in infinite space
for clarity. Here, we describe the case of 2D doubly periodic
domain [0, 27 L] x [0, 2 L], in which an overall neutral set
of an even number N, of point vortices with circulations
I, = (—1)"T, located at positions x{) = (x, y) move due
to their mutual advection. We describe this configuration us-
ing the Weiss-McWilliams formalism introduced in Ref. [56].
In addition, as in the main text, we introduce to N, localized
3D perturbations (‘“‘ergophages”), idealized as being pointlike,
at positions xg‘) = (xg‘), y;k) ), which are advected by the 2D
point-vortex motions through the 2D domain, and whose am-
plitude A; may grow by extracting energy from the 2D flow.

1. Equations of motion and Hamiltonian

The equations of motion of the point vortices and er-
gophages in the periodic domain are given by the same
equations as in the infinite space, Eqs. (2) and (3) along with
Eq. (4). The Hamiltonian in the periodic domain differs from

that in the infinite plane, and is given by

ZF T h (l) (Uj))7

ij=1
i#j

H({x{? —x{"}) (A1)

with x3, = x? — x{/) = (x],, y¥,) and the vortex-pair energy

function in the perlodlc domain given by

hx,y) = i n (cosh(x/L —27m) — cos(y/L)>

cosh(2mrm)

m=—00

x2

ConL?’

where the infinite sum over m stems from the sum over all
copies of the periodic domain, as shown in Ref. [56]. A useful
alternative notation for the 2D point-vortex advection is given
in Ref. [56] as

+0,0H al S(yf);n X;v)
r- E T , A3
' < 8(”H) j=1 <+S( vv’yijv) ( )
J#i

(A2)

in terms of the rapidly converging series

(o]

sin(x/L)
Sy =7 ) / . (A
L & cosh(y/L —2mm)— cos(x/L)
Equation (A3) relies on the identities 0h/0x(x, y) = S(x,y) =

dh/dy(y, x). We note that at small distances, the periodic
copies are negligible and one recovers the results valid
in the infinite plane. In particular, for x,y < 1, S(x,y) =~
xL/(x? 4+ y?). This enables us to transfer all results pertain-
ing to small distances in the infinite plane to the periodic
case.

2. Interactions

As in the main text, each of the localized 3D perturbations
is assigned an amplitude A 20,k=1,..., Ny, with an as-
sociated energy A7 /2, such that the total energy is again given
by Eq. (12), with H given by Eq. (Al). For the velocity U(’)
induced by the ergophages on the point vortices, we choose
again the form given in Eq. (6). The expression for the dipole
field given in Egs. (7) and (8) must be adapted to satisfy the
periodic boundary conditions. This is done by tiling R? with
infinitely many copies of the domain [0, 27t L] x [0, 27 L] and
summing over all copies. For a periodic monopole, one ob-
tains

;)kZH()nopole (X) v ¢k (X) ’ (AS)
where the potential ¢k is given by
o) = hx = x,7.y = 3;7). (A6)

in terms of the vortex-pair energy function /(x, y) defined in
Eq. (A2). The dipole field arises from the difference between
two monopoles at small distances, and it is therefore equal to
the derivative of the monopole field along the dipole moment

di = [cos(gx), sin(gp)],

u(x)=(d Voul) (x).

p,monopole

(A7)
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As in the main text, if the A; obey Eq. (10) with y; given
by Eq. (11), then the total energy is conserved in time for
arbitrary @1, provided that 4 = § = 0 (no dissipation), and
Uy = 0.

The dipole phase ¢ is an important degree of freedom,
which can be adjusted for sustained growth of ergophage
amplitude. Indeed, one can rewrite the growth rate as

= O cos(px) + Xy sin(ey), (A3)
with
Y92 (xD) 9H 02k (xV) 9H
o= ( ¢k( ) (@) ¢:()( (z>) PG} (A9)
. (Bx,(f)) oxy ax"ay” gyl
and
S (7 (x) 0H  9*u(x))) 9H
L =— ( ¢:zk)( v(i)) ) ¢k((-)v2)_<i) - (Al0)
=\ 0xy dyy Oxy (ayv’) ayy

The form of Eq. (A8) implies that for any vortex configura-
tion, there is an optimum value of the phases ¢y, for which the
growth rate y; is at its (positive) maximum, is given by

@; = arctan (|2 /Q|). (A11)
The above formulas also apply to dipole ergophages in the
infinite domain with the potential Eq. (8). We let ¢, = ¢} for

all k at every instant, implying growth of 3D instabilities in
the inviscid case.

3. Numerical implementation of the model

We implemented the equations corresponding to Egs. (2),
(3), and (10) with Egs. (A7) and (All) in a fully MPI-
parallelized Fortran program using a fourth-order Runge-
Kutta time stepper. For the numerical implementation, a
regularization was introduced at distances smaller than € <
2rL, for € > 0, in a manner inspired by Ref. [34]. Specifi-
cally, we replace

hx,y) > _i In (COSh ()%:3(2;2? (D) + 62)
m= 102
-5 (A12)
and
Sxy) = %m;oo cosh(y/L — 2211:))6/—L<):os(y/L) +e?’
(A13)

As mentioned in the main text, the parallelization is im-
plemented straightforwardly by splitting up the sums over
vortex-vortex pairs and vortex-parasite pairs into chunks, each
of which is assigned to one processor. The choice of the time
step is discussed in the main text.

APPENDIX B: METHOD FOR GENERATING
POINT-VORTEX CONFIGURATIONS AT A
GIVEN TEMPERATURE

Consider N point vortices located at positions (x;, y;), i =
I,...,N in a given finite domain, with associated Hamil-
tonian H. Pick a positive or negative temperature 7 € R.
Consider the stochastic gradient dynamics defined by

dx; oH
— = —sen(T)— + Vks|TIn'"0), (B1)
dt Bx,»
dy; OH
2 —sen(M) g+ VhalTIn™ (0. (B2)

where n(l)(t) and n(z)(t) are pairwise independent delta cor-
related Gaussian noise terms, i.e., (1; o )y = (n(z)) =0 and
(ni(])(t)n};’d)(t/)) 25(t —1t')8; 78y, in terms of the ensem-
ble average (-). Denote by X the state vector with entries
Xon—1 = X, Xon = ypforn =1, ..., N. Further, let Vx denote
the 2N-dimensional gradient operator with respect to X, then
the Fokker-Planck equation for the probability density P(X, t)
associated with the given gradient dynamics reads

3P =Vx-F, where F=sgn(T)(VxH)P+ks|T|VxP.
(B3)

In steady state, the flux of probability vanishes if there is no

absorption or injection of probability at the boundaries. Solv-

ing the zero-flux condition gives the stationary probability
H(X) )

density Ps(X),
1
P(X)=— —
X) Zexp( e

which is the Boltzmann equilibrium distribution of the system
at temperature 7. Thus, solving Egs. (B1) and (B2) numeri-
cally, the system reaches a steady state which is precisely the
equilibrium at temperature 7. Importantly, adding the Hamil-
tonian advection term U as in Eq. (2) does not change this
equilibrium, since the associated terms in the Fokker-Planck
equation cancel for every index i (being the divergence of a
curl).

(B4)

APPENDIX C: CONSERVATION OF ENERGY

For the evolution Eqs. (2), (10), and (11), for u =6 =0
and no forcing, one finds that the total energy is conserved,
since

N,
dEwt dH dAk
-G @
N, N,
=Y U -VoH+ ) AnA) (€
i=1 k=1
N, Ny
= Aiufpk)( (U)) . VXLi)H
i=1 k=1
N, N,
_ Z Aiu(k)( @) VoH (C3)
k=1 i=1
=0. (C4)
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This conservation of energy is independent of the modeling
choice of the velocity field u, and of the particular form of
the Hamiltonian. Hence the conservation holds for arbitrary
boundary conditions.

APPENDIX D: VANISHING MEAN GROWTH RATE FOR
MONOPOLE 3D PERTURBATIONS AND DERIVATION OF
DIPOLE FORMULAS

The simplest possible choice for the velocity induced by
3D perturbations, u,(x), in infinite space is an isotropic radial
profile,

(k)

X —X

u(x) = —— (D1)
x—x;

i.e., a monopole profile. Since it decays at infinity, it is admis-
sible in the infinite plane. In a periodic domain, however, it
needs to be adapted to the boundary conditions by summing
over an infinite grid of images:

u, (X)(k) — Z

n,m=—00 |X —

B R 1)

~str-ofx =)

where S(x, y) is as defined by the rapidly converging series
given in Eq. (A4) and regularized in Eq. (A13). Equation (D2)
provides an alternative expression for the periodic monopole
field, equivalent to that in Eq. (A6). We note that the infinite
sum is exactly the double series calculated by Weiss and
McWilliams in Ref. [56]. The corresponding growth rate of
perturbation k given in Eq. (11) can be rewritten as

(D2)

N[’
Cc
ve=5 D TilVhly - (Vhlg — Vhlg),  (D3)

ij=1
i#j

with xy, = x{? — xi/ and x* = x — x®_ It has been used
that from Eq. (A4) that dh/dx(x,y) = S(x,y) = dh/dy(y, x).
For simplicity, since the sum is over vortex pairs, consider a
single such pair with circulations I'j, I'; at arbitrary positions
X|, Xp. Place a single ergophage at position (x, y). The sum
over i, j in Eq. (D3) reduces to a single term. Applying the
averaging operator over ergophage positions,

o 1 2nL 2nL
F=—— F (x, y)dxdy,
prer) A MR ACRO

to the growth rate gives zero, since # is 27 L-periodic in both
the x and y directions. We conclude that the mean growth rate
of a monopole ergophage due to a single vortex pair vanishes,
for arbitrary vortex positions. Thus, the mean total ergophage
growth rate, being the sum of pair contributions, also vanishes.
Assuming that for a given vortex configuration, all ergophage
positions are equally likely, then the resulting mean growth
rate vanishes in the absence of dissipation. When dissipation
is added, then 3D perturbations must decay at long times. This
is illustrated by a long run with N, = 32 passive nonlinear
monopole ergophages and N, = 32 point vortices in Fig. 14.

107 —

y (log(A))
107+

1077.
10—10 i

10713 i

10716 \

FIG. 14. Lin-log plot of the time series of the first moment
M; = (A) and the zeroth moment M, = exp({log(A))) of ergophage
amplitude, in terms of the sample average (f(A)) = Ni,, > A,
from a passive nonlinear simulation with N, = 32 ergophages induc-
ing a monopole field, experiencing disspation v, § > 0. The zeroth
moment decays exponentially, indicating that the mean growth rate
is negative. Both moments clearly decay at late times as predicted
theoretically.

Therefore, the monopole model is insufficient and the dipole
model suggests itself as having the minimal complexity to
capture mean growth of 3D perturbations.

APPENDIX E: POWER LAWS IN GROWTH RATE
PROBABILITY DENSITY

For the dipole parasites introduced in the main text, con-
sider the growth rate of the amplitude of a given ergophage at
location x,, associated with a vortex pair of circulation I'y, I",
at positions x; = (£/2,0), x, = (—£/2, 0). We are interested
in the tails of the probability density function (PDF), where
the ergophage is very close to one or several point vortices,
hence boundary conditions are irrelevant and we perform the
analysis in the infinite plane. The localized perturbation has a
dipole moment d= [cos(p), sin(¢)] attached to it as well as
an amplitude A, whose growth rate is given by

iy cos(p)

T {( 9y

2[(% - x) cos(p) — ysin(tp)](% — x)
[(c= 9" +»T

cos(¢)

2[(% 4 x) cos(p) + ysin(e)] (% +x):|. ED
[(5+)" +»T

There are two limits of interest to be considered, namely

the dilute limit corresponding to small inverse vortex tem-

peratures |B| < 1 and the dense limit corresponding to
large(-magnitude) inverse vortex temperatures, i.e., pairs of
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opposite-sign vortices for 8 > 0 and clusters of same-sign
vortices for 8 < 0.

1. The dilute limit

In this case, the tails of the PDF of y are generated
by events in which the perturbation is closer to a sin-
gle point vortex than to any other vortices, i.e., X, = X; +
r[cos(¢), sin(¢)], r < £. In this case,

rr
r?
I,

=0 cos(260 + ¢). (E2)

~

2 [sin(g) sin(20) — cos(g) cos(20)]

Since we consider the case where ¢ is optimal at every posi-
tion, one finds ¢ = —260 + nw,n € N and

[T (3] 144
~ ~ . E3
Y 02 < rly)~ T\ (E3)

Assuming that all ergophage positions are equally probable,
then the probability of of being at distance between r and r +
dr is proportional to the ring area 2; rdr. This can be inverted
using Eq. (E3) to obtain a prediction for the PDF of y, namely,

dr(y) 1

P(y)=r(y) dy cxﬁ-

(E4)

2. The dense limit

In this case, the tails of the PDF of the growth rate stem
from encounters of the localized perturbation with pairs of
vortices, i.e., X, = r[cos(f), sin(8)], r > £. Then, one finds
at leading order in £ that

- FIEFZ <_2£ cos((p)scos(e)

r

12e? sin(p)(y? — 3x?) —62x cos(p)(x> — x2)>
r
2N,
~ — 3 cos(360 — @)
3
Again assuming that ¢ is optimal, then ¢ = =30 +nm, n €
N, such that
2|1 1|
vy 3
;

which leads to the growth rate PDF, again under the assump-
tion that all ergophage positions are equally probable,

P(v) — dr(y) 11

(y)= 7(7/)7 X m = W
with an exponent —5/3, whose magnitude is less than 2.
For both cases (dense and dilute), the PDF has neither a
finite mean, nor a finite variance. We note that the exponent
—5/3 found here bears no relation to Kolmogorov’s spectral
exponent, it is merely a consequence of the modeling choices
made.
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