
PHYSICAL REVIEW E 103, 052115 (2021)
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We present an alternative form of intermittency, Lévy on-off intermittency, which arises from multiplicative
α-stable white noise close to an instability threshold. We study this problem in the linear and nonlinear regimes,
both theoretically and numerically, for the case of a pitchfork bifurcation with fluctuating growth rate. We
compute the stationary distribution analytically and numerically from the associated fractional Fokker-Planck
equation in the Stratonovich interpretation. We characterize the system in the parameter space (α, β ) of the
noise, with stability parameter α ∈ (0, 2) and skewness parameter β ∈ [−1, 1]. Five regimes are identified in this
parameter space, in addition to the well-studied Gaussian case α = 2. Three regimes are located at 1 < α < 2,
where the noise has finite mean but infinite variance. They are differentiated by β and all display a critical
transition at the deterministic instability threshold, with on-off intermittency close to onset. Critical exponents
are computed from the stationary distribution. Each regime is characterized by a specific form of the density
and specific critical exponents, which differ starkly from the Gaussian case. A finite or infinite number of
integer-order moments may converge, depending on parameters. Two more regimes are found at 0 < α � 1.
There, the mean of the noise diverges, and no critical transition occurs. In one case, the origin is always unstable,
independently of the distance μ from the deterministic threshold. In the other case, the origin is conversely
always stable, independently of μ. We thus demonstrate that an instability subject to nonequilibrium, power-
law-distributed fluctuations can display substantially different properties than for Gaussian thermal fluctuations,
in terms of statistics and critical behavior.
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I. INTRODUCTION

On-off intermittency is a common phenomenon in
nonequilibrium physical systems, which is characterized by
an aperiodic switching between a large-amplitude “on” state
and a small-amplitude “off” state. It was originally studied
theoretically in the context of low-dimensional deterministic
chaos and nonlinear maps [1–4] and has since then been
observed in numerous experimental setups ranging from elec-
tronic devices [5], spin-wave instabilities [6], liquid crystals
[7,8], and plasmas [9] to multistable laser fibers [10], sediment
transport [11], human balancing motion [12,13], and blinking
quantum dots in semiconductor nanocrystals [14,15]. On-off
intermittency has also been observed in numerical simulations
of turbulence in thin layers [16,17] and magnetohydroyd-
namic dynamo flows [18–20].

From a theoretical perspective, on-off intermittency arises
in the presence of multiplicative noise close to an instability
threshold. Therefore, it is natural to study it using appropriate
stochastic models, such as

dX

dt
= [ f (t ) + μ]X − γ X 3, (1)

i.e., a supercritical pitchfork bifurcation [21] with a fluc-
tuating growth rate, where μ is the deterministic growth
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rate, and f (t ) is usually zero-mean, Gaussian, white noise,
〈 f (t )〉 = 0, 〈 f (t ) f (t ′)〉 = 2δ(t − t ′), in terms of the ensemble
average 〈·〉. In this study, we adopt the Stratonovich inter-
pretation [22] of Eq. (1), unless stated otherwise. We may
take X to be nonnegative, since sign changes are incompatible
with the exact solution of Eq. (1) given in Ref. [23] and in
Appendix A. For Gaussian noise, the exact stationary prob-
ability density function (PDF) is known to be p(x) =
Nx−1+μe− γ

2 x2
with normalization N , for μ > 0 [24]. For μ�0,

the distribution approaches δ(x) at late times, with the cumu-
lative distribution function (CDF) (the integral of the PDF up
to x) converging to 1 for all x > 0. In that case, all moments
of the stationary density vanish. For μ > 0 the moments of X
scale as 〈X n〉 ∝ μcn with the critical exponents cn = 1 for all
n > 0, see Ref. [23]. The cn for Gaussian noise are different
from their deterministic “mean-field” values, which are cn =
n/2. This is an instance of anomalous scaling, a phenomenon
which has received much attention in various areas of physics,
in particular in the context of continuous phase transitions
at equilibrium and critical phenomena [25,26], as well as in
turbulence [27,28].

Here, we introduce Lévy on-off intermittency as the case
where f (t ) is given by Lévy white noise, whose PDF is
an α-stable distribution featuring power-law tails associated
with extreme events in terms of noise amplitude [29,30]. The
Gaussian distribution (which is a special case of α-stable
distributions) is of fundamental importance due to its stability:
by the central limit theorem [31], it constitutes an attrac-
tor in the space of PDFs with finite variance. Similarly, by
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the generalized central limit theorem [32,33], non-Gaussian
α-stable distributions constitute an attractor in the space of
PDFs whose variance does not exist. Non-Gaussian fluctua-
tions, which may often be modeled as α-stable, are found in
incompletely thermalized systems or, in general, in systems
driven away from thermal equilibrium: nonequilibrated heat
reservoirs can be considered as a source of non-Gaussian
noise [29,34].

If X (t ) solves Eq. (1) with f (t ) being Lévy white noise,
then Y = log X (t ) is said to perform a Lévy flight in a particu-
lar anharmonic potential. Lévy flights were first introduced by
Mandelbrot in Ref. [35] and have since found numerous appli-
cations, such as anomalous diffusion, for instance in different
fluid flows [36–39], the statistics of 2D fluid turbulence [40],
plasma turbulence [41], finance [42], climatology [43,44],
animal foraging [45,46], human mobility [47] (although a
debate about the applicability in the latter two cases is on-
going [48,49]), COVID-19 spreading [50], human balancing
motion [51], and more [52,53]. We stress that, while Lévy
flights are characterized by rare, large jumps that may be
called intermittent, the phenomenon of on-off intermittency
is distinct from Lévy flights, in that it specifically arises from
multiplicative noise near an instability threshold. Fluctuations
obeying heavy-tailed distributions have also been observed for
neuron activity patterns in the human brain [54]. Moreover,
Lévy walks, a class of random processes similar to Lévy
flights with increments following a heavy-tailed PDF, but with
each step taking finite time [55,56], have been proposed as a
model of blinking quantum dots in semiconductor nanocrys-
tals [57,58]. We highlight that blinking quantum dots and
human balancing motion are two examples which exhibit both
Lévy statistics and on-off intermittency. Furthermore, very
recently, in an idealized model of three-dimensional perturba-
tions in two-dimensional flows, described in the companion
paper to this study [59], it was found that the perturbation
amplitude obeyed Eq. (1) with an approximately white noise
whose PDF had power-law tails due to the power-law structure
of the velocity fields involved. The findings of the companion
paper originally motivated the present study and suggested a
rationale for numerically observed jump-like growth signals
of three-dimensional perturbations in rapidly rotating turbu-
lence [60].

A significant body of theoretical literature is devoted to
Lévy flights in potentials, driven by additive Lévy noise
[61–68], as well as to stochastic processes driven by multi-
plicative Lévy noise [69–73]. For additive noise, it has been
shown that Lévy flights in a quartic or steeper potential pos-
sess finite mean and variance, for all parameters of the Lévy
noise [63]. Many classical problems which are well studied
for Gaussian noise have been revisited using Lévy noise, such
as the escape from a potential well [74–78], noise-induced
transitions and stochastic resonance [79–83], oscillators under
the influence of noise [62,84,85], the Verhulst model [86], the
Lévy rachet [87], and Josephson junctions subject to Lévy
noise [88–93]. However, despite this impressive body of work,
while the impact of colored noise [23,94–98] and higher di-
mensions [99] on on-off intermittency have received attention,
the theory of on-off intermittency due to multiplicative Lévy
noise close to an instability threshold has not been studied
systematically before, to the best of our knowledge.

Here, we show theoretically and numerically that for Lévy
white noise, the phenomenology of Eq. (1) can differ starkly
from the case of Gaussian white noise. In some cases, the
origin never changes stability–there is no critical point. When
there is a critical point, the critical behavior and the properties
of on-off intermittency near onset depend nontrivially on the
parameters of the Lévy noise. It is shown that in stationary
state a finite or infinite number of integer-order moments may
exist, depending on the parameters of the noise.

The remainder of this paper is structured as follows. In
Sec. II, we present the theoretical background of this study. In
Sec. III, we analyze the linear (γ = 0) regime. In Sec. IV, we
present analytical results on the nonlinear (γ > 0) statistically
stationary state and verify our results against numerical solu-
tions of the stationary fractional Fokker-Planck and Langevin
equations. Finally in Sec. V, we discuss our results and con-
clude.

II. THEORETICAL BACKGROUND

Here, we introduce aspects of the theory of stable PDFs
and describe how they are related to Lévy flights.

A. Properties of α-stable probability densities

For parameters α ∈ (0, 2], β ∈ [−1, 1], the α-stable PDF
for a random variable Y is denoted by ℘α,β (y) and defined by
its characteristic function (i.e., Fourier transform),

ϕα,β (k) = exp{−|k|α[1 − iβsgn(k)�(k)]}, (2)

with

�(k) =
{

tan
(

πα
2

)
α �= 1

− 2
π

log(|k|) α = 1
, (3)

see Ref. [33]. A standard method for simulating stable random
variables is given in Ref. [100]. Note that Eq. (2) is not the
most general form possible: there may be a scale parameter
in the exponential, which we set equal to one. One refers to
α as the stability parameter. For α = 2, where β is irrelevant
since � = 0, one recovers the Gaussian distribution. In the
following, we consider α < 2. The parameter β, known as the
skewness parameter, measures the asymmetry of of the distri-
bution, where β = 0 corresponds to a symmetric PDF, while
|β| = 1 is referred to as maximally skewed. When β �= 0, the
most probable value of y, given by the maximum of ℘α,β (y),
differs from the average valye of y, which is equal to zero here
when it exists. We highlight the symmetry relation

℘α,β (y) = ℘α,−β (−y), (4)

which follows directly from the definition. Importantly, there
are two different possible asymptotic behaviors that a stable
distribution can display. When |β| < 1, there are two long
(“heavy”) power-law tails, at y → ±∞,

℘α,β (|y| → ∞) ∝ {1 + βsign(y)}|y|−1−α. (5)

The presence of power-law tails implies that the stable PDF
has a finite mean (equal to zero), but a diverging variance for
1 < α < 2, while both mean and variance diverge for α � 1.
For β = ±1, the asymptotics given in Eq. (5) break down
on one side. In this case, there is a short exponential tail
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FIG. 1. Illustration of long power-law tails and short exponential
tails in the stable distributions discussed in the text.

on the side where the power law breaks down and only a
single long power-law tail remains. For 1 � α < 2,℘α,β=±1(y)
is supported on R. By contrast, for α < 1 and β = ±1, the
probability density is one-sided, with the exponential tail
vanishing at the origin, such that ℘α,β=1(y) = 0 at y � 0 and
℘α,β=−1(y) = 0 at y � 0, which is consistent with the symme-
try Eq. (4). Both for 1 < α < 2, β = −1 as y → +∞, and for
α < 1, β = 1 as y → 0+, the leading-order asymptotic form
of the short tail of the stable PDF can be obtained by Laplace’s
method and is given by

℘α,β (y) ∼ c0y
1−α/2
α−1 exp

(−c1y
α

α−1
)
, (6)

where c0, c1 are positive, α-dependent constants, cf. Theorem
4.7.1 in Ref. [33]. Note that this reduces to a Gaussian when
α = 2. By the symmetry of Eq. (4), the same result holds,
with y replaced by −y, for 1 < α < 2, β = +1 as y → −∞
and at α < 1, β = −1 as y → 0−. The different behaviors
are illustrated for three cases in Fig. 1. Unfortunately, useful
explicit expressions for the stable PDF only exist in a small
number of special cases.

B. Lévy flights and the space-fractional Fokker-Planck equation

Consider the Langevin Eq. (1) with f (t ) being white
“Lévy” noise. More precisely, for a given time step dt , we
let f (t )dt = dt1/αF (t ), where F (t ) obeys the α-stable PDF
℘α,β (F ), defined by Eq. (2), and is drawn independently for
any time t [39]. Since the Langevin Eq. (1) involves a multi-
plicative noise term, one needs to decide on an interpretation
thereof. As has been discussed in the literature [70,73], like
in the Gaussian case, the two standard interpretations are the
Stratonovich [22] interpretation, which preserves the rules of
standard calculus, and the nonanticipating Itô [101] interpreta-
tion. According to the choice of interpretation, the probability
density will be governed by a different form of the (space-
)fractional Fokker-Planck equation (FFPE), so called since
it involves fractional derivatives in the state variable. First
consider the Stratonovich interpretation, such that Y = log(X )
obeys the following equation with additive noise:

dY

dt
= μ − γ e2Y + f (t ), (7)

which says that Y (t ) performs a Lévy flight in the potential
V (Y ) = −μY + γ

2 e2Y . The density associated with Y (t ), de-
noted by py(y, t ), then obeys the FFPE

∂t py(y, t ) = −∂y[(μ − γ e2y)py(y, t )] + Dα,β
y py(y, t ) (8)

[102], where the fractional derivative operator

Dα,β
y g(y) = − (1 + β )Dα

+g(y) + (1 − β )Dα
−g(y)

2 cos
(

απ
2

) , (9)

for an arbitrary function g(y), is known as the Riesz-Feller
fractional derivative of order α and skewness β [103]. It can
be expressed in terms of the left and right Riemann-Liouville
fractional derivatives, which for 1 < α < 2 are given by
[64,104]

(Dα
+g)(y) = 1

�(2 − α)

d2

dy2

∫ y

−∞

g(z)dz

(y − z)α−1
(10)

and

(Dα
−g)(y) = 1

�(2 − α)

d2

dy2

∫ ∞

y

g(z)dz

(z − y)α−1
. (11)

For 0 < α < 1, the definitions are similar [104],

(Dα
+g)(y) = + 1

�(1 − α)

d

dy

∫ y

−∞

g(z)dz

(y − z)α
, (12)

and

(Dα
−g)(y) = − 1

�(1 − α)

d

dy

∫ ∞

y

g(z)dz

(z − y)α
. (13)

For α = 2, one has Dα,β
y = ∂2

y . The Riemann-Liouville
fractional derivatives have a simple Fourier transform,
F[Dα

± f ](k) = (±ik)αF[ f ](k), see Chap. 7 of Ref. [104],
which is often invoked. However, our analysis will be per-
formed mostly in physical space. Once the solution to Eq. (8)
is known, then the probability density px(x, t ) associated with
the original variable X (t ) is given by

px(x, t ) = 1

x
py[log(x), t]. (14)

If, instead of the Stratonovich interpretation, one adopts the
Itô interpretation, then the FFPE is given by

∂t px(x, t ) = −∂x[(μx − γ x3)px(x, t )] + Dα,β
x [xα px(x, t )],

(15)

as derived in Ref. [102].
We continue in the Stratonovich interpretation. In the ab-

sence of nonlinearity, when γ = 0, one can solve in Fourier
space for a delta-peaked initial condition, e.g., X (0) = 1,
which leads to the fundamental solution given in Ref. [103],

px(x, t ) = ℘α,β

( log(x)−μt
t1/α

)
t1/αx

, (16)

where ℘α,β (·) is the α-stable PDF whose Fourier transform
is given in Eq. (2). The corresponding cumulative probability
distribution (CDF) is

P(x < χ ) = Pα,β

(
log(χ ) − μt

t1/α

)
, (17)
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in terms of the α-stable CDF Pα,β (z) = ∫ z
−∞℘α,β (z′)dz′.

Clearly, Eq. (16) holds for the Gaussian case of α = 2, the
familiar log-normal distribution. By analogy with the latter,
for 0 < α < 2 the PDF in Eq. (16) is known as the log-stable
PDF and the associated process as the log-stable process. For
0 < t < ∞, the moments of the log-stable PDF are only finite
for β = −1. This is because it is the only case where the
α-stable PDF does not have a heavy tail of the form Eq. (5) at
+∞. When a heavy tail is present (β > −1), then averaging
over eny = xn for any n > 0 does not give a finite result. For
this reason the associated stochastic process with β = −1 is
also known as the finite-moment log-stable process. It is well
known, in particular in finance, see Ref. [105] (there, only
1 < α < 2 is considered).

III. LINEAR THEORY

Here we study the late-time limit of solution Eq. (16)
corresponding to Eq. (1) with γ = 0, starting from a localized
initial condition at x > 0, to determine the stability of the
origin x = 0. This will be helpful later for interpreting the
nonlinear (γ > 0) results.

A. The Gaussian case

First, for illustration, consider the Gaussian case α = 2 in
Eq. (16), which gives the log-normal PDF for X

px(x, t ) = 1

x
√

2πt
exp

(−[log(x) − μt]2

2t

)
. (18)

The probability P(x < χ ) to find the system at x < χ after
time t is given by the CDF in Eq. (17), which here equals

P(x < χ ) = 1

2

[
1 + erf

(
log(χ ) − μt√

2t

)]
, (19)

where erf (x) is the error function. Considering the limit of late
times t → ∞ for fixed χ , using that erf (x → ±∞) = ±1,
one deduces that P(x < χ ) → 1 if μ < 0, while P(x < χ ) →
0 if μ > 0. This indicates that at μ = 0 the origin x = 0 goes
from asymptotically stable to unstable.

Alternatively, one might attempt to determine the stability
of the origin by studying the moments of X as a function of
time. For α = 2, the FFPE in Eq. (8) reduces to the ordinary
Fokker-Planck equation,

∂t py(y, t ) = −μ∂y py(y, t ) + ∂2
y py(y, t ). (20)

Multiplying by exp(ny) = xn and integrating over y, one ar-
rives, upon integrating by parts, at the relation

∂t 〈X n〉 = (μn + n2)〈X n〉, (21)

which implies that

〈X n(t )〉 = X n
0 eλn(μ)t , (22)

for an initial condition X (0) = X0, with the growth rate
λn(μ) = (nμ + n2). Importantly, the value of μ where the
growth rate of 〈X n〉 vanishes, denoted μc(n), depends on n
and is given by μc(n) = −n. We have shown based on the
CDF that the system is stable for μ < 0. However, Eq. (22)
indicates that for n large enough, 〈X n〉 grows exponentially in
time even for μ < 0. This is due to rare transient excursions

to large y, which give a nonnegligible contribution since eny

is large. Thus, the moments are not the correct indicator for
stability in the system Eq. (1) with γ = 0 and one needs to be
careful when concluding stability based on them. However,
as discussed in Ref. [106], the limit of μc(n) as n → 0 does
indicate the correct threshold, namely, μ = 0. This is because
that limit is related to the growth of 〈log[X (t )]〉, which weighs
large-X contributions less strongly.

B. The general α-stable case: Moments

In the general α-stable case the solution is the log-stable
distribution given in Eq. (16). When β > −1, moments 〈X n〉
diverge for any n > 0, as described above. Thus, no stability
criterion can be derived based on the moments.

For the special case β = −1, the moments 〈X n〉 exist and
can be calculated. While the moments have been given in the
literature before in the Itô interpretation, see Ref. [105], we
give a novel (to our knowledge) derivation in the Stratonovich
interpretation. For β = −1 the FFPE reads

Dα,β=−1
y f (y) = − sec(απ/2)Dα

− f (y), (23)

with Dα
− given by Eq. (10). Following the steps made in the

Gaussian case, we multiply Eq. (8) by eny and integrate over
y. Fractional integration by parts obeys∫ ∞

−∞
f (y)(Dα

+g)(y)dy =
∫ ∞

−∞
(Dα

− f )(y)g(y)dy, (24)

for sufficiently well-behaved functions f and g such that the
fractional derivatives and integrals exist [104]. Here, this re-
quires β = −1. Furthermore, note that

Dα
+(eny) = nαeny, (25)

which for 0 < α < 1 and 1 < α < 2 follows directly from
the definition of Dα

+ in Eqs. (10) and (12) upon changing
integration variables to u = y − z. One obtains

∂t 〈X n〉 = [nμ − sec(πα/2)nα]〈X n〉, (26)

such that

〈(X (t ))n〉 = X n
0 eλS

nt , (27)

with

λS
n = [nμ − sec(απ/2)nα]. (28)

Hence, the value of μ where the growth rate vanishes depends
on n,

μc(n) = sec(απ/2)nα−1. (29)

For α = 2, this reduces to the Gaussian result. For com-
pleteness, we note that the growth rate in the Itô interpretation
given in Ref. [105] is similar [see their Eq. (8)],

λI
n = λS

n + n sec(απ/2). (30)

We have verified Eq. (27) for both α > 1 and α < 1 by
computing the moments of the exact solution Eq. (16) numer-
ically (not shown).

However, the moments which we just computed for
β= − 1 are ill-suited for studying the linear stability problem.
This is because, as in the Gaussian case, the moments are
dominated by rare large-amplitude events. However, taking

052115-4



LÉVY ON-OFF INTERMITTENCY PHYSICAL REVIEW E 103, 052115 (2021)

FIG. 2. CDF of log-stable law Eq. (16) for β = 0, α = 1.5 (top
panel) and α = 0.5 (bottom panel) with μ = 1 and time t increasing
in the order red, orange, green, blue, cyan, gray. Clearly, the CDF
shifts to the right as time increases in the top panel, indicating that
probability is leaking to +∞, but takes the constant value 0.5 in
the bottom panel, indicating that the probability leaking to both +∞
and −∞.

the limit n → 0 in μc(n) following Ref. [106], where large
amplitudes are weighted less strongly, one predicts the thresh-
old to be at μ = 0 for α > 1 and at μ = ∞ for α < 1. In
the following section, we consider the CDF of the log-stable
process to deduce the asymptotic stability of the origin and
show in particular that the n → 0 predictions are correct.

C. The general α-stable case: The CDF

Consider the log-stable CDF given in Eq. (17). Figure 2
shows the time evolution of the CDF for β = 0 and α = 1.5
(top panel), α = 0.5 (bottom panel), both for μ = 1. One
observes that for α > 1, probability shifts to the right due to
the drift, indicating leakage to positive infinity. Conversely,
for α < 1, the CDF approaches a constant value, strictly larger
than zero and strictly smaller than one, indicating that proba-
bility is leaking to both positive and negative infinity.

More precisely, for 1 < α < 2 and β < 1, μ > 0 one may
use Eqs. (5) and (17) to show that at late times (t → ∞), for
any given χ , the probability for x < χ , is given by

P(x < χ ) ∝ (1 − β )t

|μt − log(χ )|α ∝ (1 − β )t1−α. (31)

Thus, P(x < χ ) decreases as time progresses, in agreement
with our conclusion based the top panel of Fig. 2. A similar
argument for μ < 0 and the same range of α shows that in this
case P(x > χ ) decreases in time.

For β = 1 and the same range of α, taking the same limit,
for μ > 0, t → ∞ and χ fixed, one finds using Eqs. (6) and
(17) that

P(x < χ ) ∝ t
1−α
2α e−c1μ

α
α−1 t , (32)

which also decays, this time exponentially fast, as t increases.
Similarly for μ < 0 and the same range of α, one can show
that P(x > χ ) decreases in time. In short, we find that for any
α in the range 1 < α < 2, the probability leaks to log(x) →
sign(μ)∞ as t → ∞ for the linear (γ = 0) problem.

If 0 < α < 1, then for any μ and fixed χ as t → ∞, the
argument of the CDF in Eq. (17), (log(χ ) − μt )t−1/α → 0,
such that

P(x < χ ) → Pα,β (0), (33)

where the right-hand side is the α-stable CDF evaluated at
zero, which is a μ-independent constant. For β = 0, the con-
stant is 0.5 by symmetry, as illustrated in Fig. 2, but in general,
it will depend on β in a continuous way. In particular, for
β = 1, Pα,β=1(0) = 0, since the stable PDF is only supported
at positive values in this case. However, for β = −1, the
constant is Pα,β=−1(0) = 1, since the PDF is only supported
at negative values. In short, we find that for any α in the
range 0 < α < 1 the probability leaks to both log(x) → −∞
and log(x) → +∞, with the exceptions of β = ±1, where
probability leaks to log(x) → β∞.

In the marginal case α = 1, the fact that (log(χ ) − μt )/
t → −μ for any fixed χ implies

P(x < χ ) → Pα=1,β (−μ), (34)

where the right-hand side is the α-stable CDF evaluated at
−μ, which is a positive constant for any finite μ and any β ∈
[−1, 1]. Hence, at α = 1, probability leaks to both log(x) →
−∞ and log(x) → ∞ for all μ. Only the fraction of the
weight escaping in each direction depends on μ.

We note that all of the results obtained above from the
exact linear (γ = 0) solution can be understood in terms of
a competition between the drift μt and the widening of the
PDF, which goes as t1/α . For α > 1, the drift is dominant over
the widening and probability leaks to log(x) → sign(μ)∞.
However, for 0 < α � 1, the drift no longer dominates and
probability spreads out to both log(x) → ±∞, except for
one-sided noise.

In summary, translating the results back to the original
variable x, we have shown that in the log-stable process,
for 1 < α < 2, for any β ∈ [−1, 1], all the probability leaks
to x → +∞ for μ > 0, while for μ < 0 all the probability
accumulates at the origin x = 0. However, for 0 < α < 1, the
probability leaks both x → 0 and to x → ∞ independently
of μ, except for one-sided noise at β = ±1. There, all the
probability leaks to x = 0 for β = −1 and to x → ∞ for
β = 1. At α = 1, the probability leaks to both x = 0 and
x = ∞, independently of β and μ. Table I summarizes the
late-time behavior of the linear solution.
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TABLE I. Summary of the late-time behavior of the (linear) log-
stable process Eq. (16). For a given combination of α and β, it is
indicated where the weight of the probability will leak to in terms of
the variable Y = log(X ).

�
��α

β −1 (−1, 1) 1

(1,2] sign(μ)∞ sign(μ)∞ sign(μ)∞
1 +∞ & − ∞ +∞ & − ∞ +∞ & − ∞
(0,1) −∞ +∞ & − ∞ +∞

Finally, we point out that in the only case where the mo-
ments exist, at β = −1, they do not straightforwardly indicate
asymptotic stability. For 1 < α < 2, and μ < 0, the origin is
stable. Yet, moments of sufficiently high order will grow. For
0 < α � 1, the origin is stable independently of μ, but there
also, high-order moments grow. However, taking the moment
order n → 0 predicts the correct thresholds μ = 0 for α > 1
and μ = ∞ (no instability at any finite μ) for α < 1.

IV. NONLINEAR THEORY

In this section, we study the effect of the nonlinear term in
Eq. (1) with γ > 0 in the development of the instability. The
nonlinearity will prevent the leakage of probability to x → ∞
that was observed for many cases in the linear regime, thus
leading to a stationary distribution that we try to estimate here.

For illustration, typical solutions of the nonlinear Langevin
Eq. (1) are shown in Fig. 3. The realizations are generated
efficiently by integrating Eq. (1) using its exact solution given
in Appendix A. Three different cases are shown: in Fig. 3(a)
α = 1.5, β = 0, in Fig. 3(b) α = 0.5, β = 1, in Fig. 3(c) α =
0.5, β = −1. For each case, two typical time series are shown,
one for positive μ and one for negative μ at fixed γ = 1.
In Fig. 3(a), at negative μ, X decays to zero. At positive μ,
there is on-off intermittency: X fluctuates over many orders of
magnitude, but does not decay. There is a qualitative change
of behavior between μ > 0 and μ < 0. Typical trajectories at
β �= 0, 1 < α < 2 resemble those in Fig. 3(a). In Fig. 3(b),
the origin is unstable for both positive and and negative μ. In
Fig. 3(c) the origin is stable for both positive and negative μ.

A. Exact relation for the second moment

One important property of Eq. (1) is that if 〈 f (t )〉 exists
(i.e., for 1 < α � 2), then for X > 0 it implies that

d

dt
〈log(X )〉 = μ − γ 〈X 2〉 + 〈 f (t )〉. (35)

Assuming 〈 f (t )〉 = 0, then for γ > 0, μ < 0 the right-hand
side is negative, resulting in

〈log(X )〉 � μt, (36)

which tends to −∞ as t → ∞. However, if μ > 0, then a
stationary state is reached for which d〈log(X )〉/dt = 0 and
the second moment satisfies

〈X 2〉 = μ/γ . (37)

(a)

(b)

(c)

FIG. 3. Semilogarithmic plots of time series X (t ) [see Eq. (1)].
(a) α = 1.5, β = 0, γ = 1. Orange (top): μ = 0.2–X (t ) varies over
20 orders of magnitude, displaying on-off intermittency. Blue (bot-
tom): μ = −0.2–X decays to zero. A critical transition occurs
between the two, at μ = 0. (b) α = 0.5, β = 1, γ = 1. Orange (top):
μ = 1. Blue (bottom): μ = −1. The origin is unstable for all μ.
(c) Same as described for panel (b) but with β = −1. Here, the origin
is stable for all μ.

By contrast with the linear regime, for which it was shown
above that moments are not a reliable indicator of stability,
moments in the nonlinear regime are pertinent to the stability
of the origin. This is due to the fact that the nonlinearity
in Eq. (1) impedes excursions to large amplitudes, which
are the reason why high moments may grow exponentially
in the linear case (γ = 0), even when the origin is stable.
Equation (37) thus already indicates that for 1 < α � 2 the
system is unstable when μ > 0 in agreement with the predic-
tions of Sec. III C. Note, however, that stability or instability
cannot be concluded from Eq. (37) for 0 < α � 1, since
Eq. (37) is not valid there.

From Eq. (35) and the above discussion following from it,
it follows that μ + 〈 f (t )〉 = μ controls the growth/decay of
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moments in the nonlinear regime, if 〈 f (t )〉 exists. This is true
even if f (t ) is asymmetric.

B. Asymptotics of the PDF at large x

In this section, we study the fractional Fokker-Planck
equation under the assumption of stationarity to derive the
asymptotics of the stationary density for x → ∞. Here, we
need to consider β > −1 and β = −1 separately.

1. The case β > −1

Let β > −1, and consider the FFPE in the Stratonovich
interpretation, i.e., Eq. (8). For y → ∞, we neglect D−

α � D+
α

and μ � γ exp(2y) to find the following equation for the sta-
tionary distribution associated with the process Y = log(X ),
denoted by py,st (y),

γ e2y py,st (y) ≈
(1 + β ) d

dy

∫ y
−∞

py,st (z)
(y−z)α−1 dz

2 cos(πα/2)�(2 − α)
. (38)

Asymptotically, the integral is dominated by z � y. Hence,
(y − z)α−1 ≈ yα−1. The remaining integral can be approxi-
mated as

∫ y
−∞ py,st (z)dz ≈ ∫ ∞

−∞ py,st (z)dz = 1. The resulting
equation implies the following asymptotic behavior for the
stationary density at large y,

py,st (y) ∼ C(1 + β )

γ
y−α exp(−2y). (39)

The prefactor is given by

C = sin(πα/2)�(α)/π, (40)

which has been simplified using Euler’s reflection formula
�(α)�(1 − α) = π/ sin(πα). In terms of the stationary dis-
tribution px,st (x) associated with the original process X , this
gives

px,st (x) ∼ C(1 + β )

γ
log(x)−αx−3, (41)

for x → ∞. While the above derivation is valid for 1 < α <

2, one may repeat the same steps for 0 < α < 1 with the cor-
responding fractional derivative from Eq. (12), and finds the
same result. For α > 1, there is both a finite mean and a finite
variance. For α < 1, the variance in infinite, but the mean is
finite. We note that the derivation given here is inspired by a
similar argument from Ref. [64].

Further, if one chooses the Itô interpretation, then one may
derive the large-x asymptotics in a similar way. One begins by
considering the stationary solutions of the associated Itô FFPE
for px(x, t ), i.e., Eq. (15). Then one takes the limit x → ∞,
assuming Dα

+ � Dα
−, and using μx � γ x3 to find

γ x3 px,st (x) ≈
(1 + β ) d

dx

∫ x
−∞

zα px,st (z)dz
(x−z)α−1

2 cos(πα/2)�(2 − α)
. (42)

Now,
∫ x
−∞

zα px,st (z)dz
(x−z)α−1 ≈ 1

xα−1

∫ ∞
−∞ zα px,st (z)dz by a similar rea-

soning as for the Stratonovich case. The remaining integral
cannot be performed explicitly, but it is an x-independent
constant. Hence, one finds the asymptotic proportionality

pItô
x,st (x) ∝ (1 + β )x−3−α, (43)

for large x. This result is remarkable, since the power law
matches exactly the one found for additive noise in a quar-
tic potential [64]. In particular, the third moment is finite in
the Itô interpretation for 1 < α < 2 (where it diverges in the
Stratonovich case), and the variance is finite for 0 < α < 1
(where it diverges in the Stratonovich case). The observation
that the asymptotic form of the tails of the stationary PDF
are altered by a state-dependent Lévy noise amplitude in the
Stratonovich interpretation, but not in the Itô interpretation,
has been made in previous studies with different functional
forms of multiplicative noise [69,70]. For the remainder of
this paper, we will adopt the Stratonovich interpretation.

2. The case β = −1

The asymptotics in Eqs. (41) and (43) break down for
β = −1, which is the nonlinear version of the finite-moment
log-stable process. For Gaussian noise, α = 2, the stationary
PDF in y is known to be py,st (y) = Neμye− γ

2 e2y
, which decays

faster than eny at large y for any n > 0. For 1 < α < 2 and
β = −1, the stable PDF has a short tail +∞, decaying faster
than a Gaussian [since α/(α − 1) > 2 in Eq. (6)]. This implies
that the stationary PDF under such Lévy noise will decay
faster than in the Gaussian case. Hence, the moments of x
for any order n > 0 exist there also. In terms of py,st (y),
one expects a double-exponential function as in the Gaussian
case. However, unfortunately, we cannot derive these large-
x asymptotics explicitly as we did for β > −1, since the
Riemann-Liouville derivative of such functions is not known
in simple terms. Rather, we will rely on numerical solutions to
confirm that the PDF of y indeed decays faster than exponen-
tially at y → +∞. At 0 < α < 1, β = −1, since the origin is
stable for all μ in the linear regime, it will continue to be stable
in the nonlinear regime [the nonlinearity in Eq. (1) is strictly
negative]. Thus, the stationary PDF is δ(x) in this case, i.e.,
the CDF converges to 1 for all x > 0 in the long-time limit.

C. Asymptotics of the PDF at x → 0

We now investigate the asymptotic behavior of the station-
ary density for x → 0. Here we need to distinguish between
the cases β = 1 and β < 1.

1. The case β = 1

Consider β = 1 and μ > 0. The FFPE (8) in steady state,
taking y → −∞ and neglecting γ e2y � μ, reads

0 = −μ∂y py,st (y) − 1

cos(απ/2)
(Dα

+ f )(y). (44)

Making an exponential ansatz py,st (y) ∝ eAy and using the
fractional derivative of the exponential given in Eq. (25)
leads to

0 = −μAeAy − 1

cos(απ/2)
μAαeAy, (45)

implying

A ≡ Aα (μ) = [−μ cos(απ/2)]1/(α−1). (46)

In terms of the original variable x, this corresponds to

px,st (x) ∝ x−1+Aα (μ), (47)
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which for α > 1 is integrable when μ > 0. The term inte-
grable is used here to mean that the integral of a given function
over its domain converges. When α > 1 and μ � 0, however,
the solution is nonintegrable, which is associated with the
absence of a steady-state solution in the space x > 0. In that
case, the stationary density is given by δ(x), with the CDF
converging to 1 for all x in the long-time limit. For α < 1
and −∞ < μ < 0, the same result Eq. (47) holds with A > 0,
such that the solution is integrable. For α < 1, μ > 0, the
solution again ceases to be integrable. From the Langevin
Eq. (7) one deduces that this is due to the fact that in this case
Ẏ > 0 for Y < 1

2 ln (μ/γ ), since the noise is strictly positive,
and thus the probability to be at Y � 1

2 ln(μ/γ ) vanishes at
late times. The stationary PDF is thus only supported at values
of y above the deterministic saturation point 1

2 ln(μ/γ ) and
vanishes for all smaller y. Hence, the exponential ansatz is
inappropriate and breaks down. This indicates that for α < 1,
μ > 0, we cannot neglect the nonlinear term in Eq. (1), since
it is the only one that decreases Y .

The above discussion confirms the intuition based on the
linear solution [including an arrest of the leakage of proba-
bility to +∞ by the nonlinear term in Eq. (1)]. For β = 1,
α > 1 a critical transition occurs at μ = 0, from all weight of
the stationary PDF being at x = 0 (origin stable) to nonzero
weight at x > 0 (origin unstable). However, for 0 < α < 1,
β = 1, the origin is always unstable.

2. The case β < 1

Let β < 1 and μ > 0. We follow once again the arguments
of Ref. [64], starting from Eq. (8). Consider y → −∞, such
that μ � γ e2y, and neglect Dα

+ � Dα
− to find

−μpy,st (y) =
(1 − β ) d

dy

∫ ∞
y

py,st (z)dz
(z−y)α−1

2 cos(πα/2)�(2 − α)
. (48)

Using normalization of the PDF, as for the large-x limit at β >

−1, we find that the stationary PDF is asymptotically given by

py,st (y) ∼ (1 − β )C

μ
(−y)−α, (49)

for y → −∞, where C is given by Eq. (40). In terms of the
original variable, this corresponds to

px,st (x) ∼ C(1 − β )

μ
x−1[log(1/x)]−α (50)

for x → 0. While the above derivation is for 1 < α < 2, the
case 0 < α < 1 leads to the same result. Clearly, this solution
breaks down at negative μ, since the predicted PDF ceases
to be positive. In this case, the stationary distribution is δ(x).
For α < 1, the fact that the solution Eq. (49) is not integrable
at y = −∞ implies that there is no stationary state at x > 0.
Instead, the stationary density in that case is δ(x), for all μ. For
1 < α < 2 and μ > 0, however, Eq. (49) gives a consistent,
integrable stationary PDF.

Table II summarizes the different asymptotic behaviors
obtained above. The closest resemblance with the α = 2 case
is seen in the large-x exponential decay at β = −1 (which
is Gaussian for α = 2), and the small-x μ-dependent power
law at β = 1 (where A2(μ) = μ). The asymptotics in the
remaining cases are qualitatively different from the Gaussian

TABLE II. Summary of the different asymptotic behaviors of
px,st (x) obtained in the previous sections for α < 2. The domain of
validity of the formulas is discussed in the text. The constants C and
Aα (μ) are given in Eqs. (40) and (46).

β px,st (x → 0) px,st (x → ∞)

−1 C(μx)−1 log−α (1/x) Exponential decay
(−1, 1) C(μx)−1 log−α (1/x) Cγ −1x−3 log−α (x)
1 ∝ x−1+Aα (μ) Cγ −1x−3 log−α (x)

case. A criterion for a system to be on-off intermittent is
whether the stationary density px,st (x) diverges at x = 0. In
previous studies of on-off intermittency with various types of
noise, there is generally a critical value μc > 0 above which
the intermittent behavior disappears [95,96]. The asymptotic
results presented above imply that for 1 < α � 2, on-off in-
termittency will cease when −1 + Aα (μ) = 0 at β = 1, since
the singularity at x = 0 disappears at this point. However, at
β < 1, the x−1 log−α (1/x) behavior at small x remains present
for all μ > 0. This implies that there is no value of μ where
on-off intermittency ceases to be present in that case, by con-
trast with all previously known cases of on-off intermittency.

Summarizing, a transition occurs at μ = 0 for 1 < α < 2,
from a stable origin at μ < 0 to an unstable origin at μ > 0.
This is as predicted in the linear theory. When α < 1, β < 1,
the origin is stable for all μ, and for α < 1, β = 1, the
origin is always unstable. These results are also consistent
with the linear theory, taking into account saturation by the
nonlinearity.

D. PDFs and moments

Here we attempt to deduce the moments based on the
asymptotic behavior of the PDFs discussed in the previous
sections complemented by numerical solutions of the sta-
tionary FFPE, using a heuristic approach. The numerical
solutions are computed using the finite-difference formulation
described in Appendix B.

1. The case 1 < α < 2, β = 1

We begin by showing the results from the numerical so-
lution of the FFPE. Figure 4 indicates an agreement with
the theoretical results of the previous section, for x � 1 (i.e.,
y → −∞) and x � 1 (i.e., y → ∞). To calculate the scaling
with μ of the different moments we can model the PDF as

px,st (x) ≈ 1

N

{
x−1+Aα (μ) : x < x∗
Bx−3 log−α (x) : x � x∗

, (51)

where x∗ and N are model parameters, Aα (μ) is as given in
Eq. (46), and B = x2+Aα (μ)

∗ logα (x∗) for continuity. To deter-
mine the two unknowns N and x∗, we impose normalization
of the PDF and the second moment identity Eq. (37). At small
μ, the dominant part of the weight is at negative y, i.e., at small
x, as visible in Fig. 4. This implies

N ∼ xAα (μ)
∗

Aα (μ)
, (52)
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FIG. 4. Semilog plot of numerically obtained stationary PDF for
α = 1.5, β = 1.0, varying μ = 0.1, 0.33, 0.55, 0.78, 1.0, at γ = 1
fixed. The dashed line on the right is the theoretical prediction
Eq. (41) for the cutoff by nonlinearity. The dashed lines on the left
show shows the prediction py,st (y) ∝ exp(A(μ)y) from Eq. (47).

as μ → 0+. In addition,

〈X 2〉 =
(

1
2+Aα (μ) + 1

α−1 log1−α (x∗)
)
x2+Aα (μ)
∗

N
, (53)

and moments of order higher than two diverge. By Eq. (37)
we have 〈X 2〉 = μ/γ . For 0 < μ � 1, this implies

x∗ ≈
√

2μ/[Aα (μ)γ ], (54)

such that

〈X 〉 ≈ Aα (μ)x∗ ∝ μ
α

2(α−1) , (55)

where Aα (μ) was inserted from Eq. (46). Figure 5 shows
that this agrees with the numerical solution of the stationary
FFPE for the examplary case α = 1.5, β = 1. We note that
Eq. (55) can simply be extended to 〈X n〉 ∝ μcn with 0 <

n � 2, with cn = 2−n(2−α)
2(α−1) which varies continuously with

n. In particular cn ≈ 1
α−1 for small n, c1 = α

2(α−1) and, by
construction, c2 = 1.

FIG. 5. First and second moment of X for α = 1.5, β = 1 versus
μ at γ = 1. The first moment scales as predicted in Eq. (55), shown
by the curved dashd line, and the second moment is linear, in agree-
ment with Eq. (37).

FIG. 6. Log-log plot of the numerically obtained stationary PDF
py,st (y) versus |y| for α = 1.5, β = −1. Five different values of μ

are shown (0.01, 0.025, 0.085, 0.3, 1.0) for γ = 1. The tail at y →
−∞ fits the prediction Eq. (49) (dashed lines on the right). Before
that limiting scaling is observed at y → −∞, an intermediate, flatter
power-law range occurs at y < 0, whose exponent is independent of
μ, but whose amplitude decreases and whose range increases as μ

decreases. At large positive y, there is a faster-than-exponential decay
as predicted (compare with Fig. 8 at y > 0).

2. The case 1 < α < 2, β = −1

Figure 6 shows the numerically obtained PDF. It matches
the theoretically predicted asymptotics in the y → ±∞ limits.
In addition, an intermediate, shallower range is observed at
intermediate negative y before the predicted asymptotic be-
havior at y → −∞ is realized. Figure 6 suggests that this
intermediate range is a power law. A close inspection shows
that it is only approximately a power law since it has a finite
curvature in the log-log diagram. Notwithstanding this caveat,
we propose a simplistic model approximately describing the
numerical result

py,st (y) ≈
⎧⎨
⎩

0 : y � 0
D(−y)−λ : 0 > y � y∗
2C/μ (−y)−α : y∗ > y

, (56)

where C = �(π ) sin(πα/2)/π . The portion of the PDF at
y > 0 makes a negligible contribution to its normalization and
any moments of X , due to the faster-than-exponential decay at
y > 0. The value of λ can only be determined numerically,
with relatively large error bars. Thus, fixing λ numerically
(e.g., λ ≈ 0.6 for α = 1.5, β = −1 in Fig. 6), there are two
unknowns D and y∗ which we determine by imposing normal-
ization of the PDF and the second moment identity Eq. (37).

Formally,

1 = D

1 − λ
(−y∗)1−λ + 2C

μ(α − 1)
(−y∗)1−α, (57)

μ

γ
= D

∫ 0

y∗
(−y)−λe2ydy + 2C

μ

∫ y∗

−∞
(−y)−αe2ydy. (58)

Figure 6 suggests that y∗ → −∞ as μ → 0+. In Eq. (58), this
implies that the second integral, from −∞ to y∗, is exponen-
tially suppressed for small μ. For large |y∗|, the lower limit of
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FIG. 7. Moments for α = 1.5, β = −1 versus μ at γ = 1 from
the numerically computed steady-state PDF. Symbols represent
n = 1 (diamond), n = 2 (hexagon), n = 3 (circles), n = 4 (triangles).
The dashed lines show linear scaling.

the first integral may be replaced by −∞. This leads to

D ≈ 21−λ

γ�(1 − λ)
μ, (59)

y∗ ≈ −
(

2C

(α − 1)

)1/(α−1)

μ−1/(α−1). (60)

Note that, as expected, y∗ → −∞ as μ → 0+. The two results
Eqs. (59) and (60) imply that the moments of X of arbitrary
order n > 0 scale linearly, since large negative y are exponen-
tially suppressed:

〈X n〉 = 〈eny〉 ≈ D
∫ 0

−∞
(−y)−λenydy

∝ μ. (61)

Note that the critical exponent in the final result is independent
of the value of λ. The result of Eq. (61) is confirmed in Fig. 7,
where the integer moments up to order four, determined from
the numerical solution of the stationary FFPE, are all shown
to scale linearly with μ.

3. The case 1 < α < 2, |β| < 1

Figure 8 shows that the PDF, which matches the predicted
asymptotics at y → ±∞, strongly resembles the case of
β = −1 in that in addition to the asymptotic power-law range,
an intermediate, approximately power-law range is seen at
negative y. Again, close inspection shows that the intermedi-
ate range shows small deviations from a power law. However,
the most marked difference from the case β = −1 is that
the decay for |β| < 1 is only exponential in y at positive y,
not faster than exponential as for β = −1. In particular, the
asymptotics at positive y imply a slow, power-law conver-
gence of the second moment since pst (y)e2y ∝ y−α at y � 1.
Bearing this in mind, we nonetheless employ the same ap-
proximate form for the PDF as for β = −1,

py,st (y) ≈
⎧⎨
⎩

0 : y � 0
E (−y)−ν : 0 > y � y∗∗
(1 − β )C/μ|y|−α : y < y∗∗

, (62)

where once more C = �(α) sin(απ/2)/π . We may again
determine ν numerically, albeit with significant uncertainty.

FIG. 8. Log-log plot of the numerically obtained stationary PDF
py,st (y) versus |y| for α = 1.5, β = 0. Five different values of μ are
shown (0.01, 0.025, 0.085, 0.3, 1.0) for γ = 1. The tail at y → −∞
fits the prediction of Eq. (49) shown in dashed straight lines on the
right. At intermediate y < 0, a flatter power-law range is seen, with
exponent independent ν of μ (ν ≈ 0.25 here), but with amplitude
decreasing and width increasing as μ decreases. The tail at y � 1
matches the prediction Eq. (41), shown by the curved dashed line.

In Fig. 8, where α = 1.5, β = 0, we observe ν ≈ 0.25. As for
β = −1, the portion of the PDF at y > 0 makes a subdominant
contribution to the normalization and the moments of order
n < 2. To determine E , ν, we need two conditions.

By contrast with the case β = −1, we impose continuity at
y∗∗ instead of Eq. (37), normalization of the PDF. Formally,

E (−y∗∗)−ν = (1 − β )C

μ
(−y∗∗)−α, (63)

1 = E

1 − ν
(−y∗∗)1−ν + (1 − β )C

μ(α − 1)
(−y∗∗)1−α. (64)

Solving these two equations gives

y∗∗ =
{[

1

1 − ν
+ 1

α − 1

]
(1 − β )Cμ

}−1/(α−1)

, (65)

E = yν−α
∗∗

(1 − β )C

μ
= {(1 − β )C} 2α−ν−1

α−1[
1

1−ν
+ 1

α−1

] 1
α−1

μ
1−ν
α−1 . (66)

This implies that the first moment exhibits the anomalous
scaling

〈X 〉 = 〈ey〉 ≈ E
∫ 0

−∞
ey(−y)−νdy ∝ μ

1−ν
α−1 . (67)

Note that, by contrast with the case β = −1, the critical expo-
nent in Eq. (67) depends on the exponent ν of the intermediate
power-law range at negative y, which we have not determined
theoretically as a function of α, β, but only measured nu-
merically. The critical scaling of the first moment predicted
in Eq. (67) is shown to be consistent with the numerically
obtained moments in Fig. 9 for the case α = 1.5, β = 0. The
prediction Eq. (67) for the critical exponent at n = 1 was also
verified for different values of α at β = 0 (not shown).

4. The case 0 < α < 1, β = 1

In this case the origin is unstable for all μ, and a nontrivial
stationary state exists due to the nonlinearity in Eq. (1). The
point-vortex model presented in the companion paper [59],
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FIG. 9. First and second moment of X for α = 1.5, β = 0 versus
μ at γ = 1. The scaling of the first moment is compatible with
the prediction of Eq. (67), shown by the curved dashed line, with
ν ≈ 0.25 from Fig. 8. The second moment is linear in μ, satisfying
the identity Eq. (37).

where α = 2/3, β = 1, falls into this parameter range. The
asymptotic theoretical results suggest that for μ < 0, the PDF
can be modeled as

py,st (y) =
{

BeAα (μ)y : y < y∗
2C
γ

e−2yy−α : y � y∗
, (68)

where C = sin(απ/2)�(α)/π , Aα (μ) given by Eq. (46), and
the two unknowns B and y∗ are in principle determined by
continuity at y∗ and normalization. We note that the second
moment does not exist because y−α is not integrable at infinity
for α < 1. Moments of order higher than two also diverge.
However, 〈X n〉 does exist for all 0 < n < 2.

For illustration, we consider the special case α = 1/2, γ =
1 and take the limit μ → 0−, where Aα (μ) → ∞. Clearly,
then py,st (y) → 0 at y < 0. Further, since

2C
∫ ∞

0
e−2yy−1/2dy = 1, (69)

taking y∗ ≈ 0 as μ → 0− gives a consistently normalized
model of the PDF. For this special case, α = 1/2, γ = 1, the
nth moment of the PDF for 0 < n < 2 may be computed to be

〈X n〉 = 2C
∫ ∞

0
e(n−2)yy−αdy =

√
2

2 − n
, (70)

for μ small and negative. Note that the result is independent of
μ. For n = 1, Eq. (70) was found to be satisfied to within a few
percent relative error by averaging over sample trajectories
(not shown) using the method in Appendix A.

V. CONCLUSIONS

We have studied the stochastic process obeying the
Langevin Eq. (1) with Lévy white noise. The theory of on-
off intermittency was generalized, from the known case of
Gaussian noise, to Lévy noise by studying the FFPE (8) an-
alytically and numerically. First the linear (γ = 0) solution
was analysed, which showed leakage of the probability to
x = 0, x = ∞ or both, depending on the noise parameters α

and β. Then we computed the nonlinear (γ > 0) stationary
solutions of the stationary FFPE, for which the leakage of

FIG. 10. The parameter space of Eq. (1) with white Lévy noise,
α ∈ (0, 2], β ∈ [−1, 1]. A critical transition occurs at μ = 0 for 1 <

α < 2, and for the Gaussian case α = 2. For 0 < α � 1, the origin is
either always stable or always unstable, independently of μ.

probability to large x is arrested by the nonlinearity in Eq. (1).
We showed that for 1 < α � 2 the origin is stable at μ < 0
and unstable at μ > 0. For 0 < α < 1, the origin is always sta-
ble, or always unstable, for any μ, due to the divergent mean
of the noise. In addition to the Gaussian case α = 2, where the
stationary PDF for μ > 0 is given by px,st (x) = Nx−1+μe− γ

2 x2

and all critical exponents are equal to 1, we identify a total
of five qualitatively distinct regimes in the parameter space
α ∈ (0, 2], β ∈ [−1, 1], illustrated in Fig. 10.

(i) “Critical 1” with 1 < α < 2, β = 1. For μ > 0 and
small x, the PDF is px,st (x) ∝ x−1+Aα (μ), with Aα (μ) ∝ μ

1
α−1 .

This matches the Gaussian small-x result for α = 2. At x � 1,
the PDF is px,st (x) ∝ x−3[log(x)]−α , i.e., 〈X n〉 < ∞ for n � 2
but 〈X n〉 = ∞ for n > 2. As μ → 0+, one has 〈X n〉 ∝ μcn ,

with c1 = α
2(α−1) and c2 = 1.

(ii) “Critical 2” with 1 < α < 2, |β| < 1. The PDF is
px,st (x) ∝ μ−1x−1[log(1/x)]−α at small x > 0. This is in stark
contrast with the Gaussian result; the logarithmic term here
is crucial for integrability at x = 0. At x � 1, the PDF
is px,st (x) = Cx−3[log(x)]−α as in case (i), s.t. only mo-
ments of order n � 2 are finite. At x < 1, but not too small,
there is an intermediate range where approximately px,st (x) ∝
x−1[log(x)]−ν , where the exponent ν was determined numer-
ically. It remains an open problem to compute it theoretically
as a function of α, β. For small μ > 0, we found 〈X n〉 ∝ μcn ,

with c1 ≈ 1−ν
α−1 and c2 = 1.

(iii) “Critical 3” with 1 < α < 2, β = −1. At small x
and μ > 0, the PDF is px,st (x) ∝ μ−1x−1[log(1/x)]−α as for
case (ii). For large x, the PDF px,st (x) decays faster than any
power of x. At x < 1, but not too small, there is an interme-
diate range similar to that in case (ii) where approximately
px,st (x) ∝ x−1[log(x)]−λ, with a different exponent λ which
was determined numerically. It remains an open problem to
compute λ theoretically as a function of α, β. However, the
critical exponents are independent of λ: for small μ > 0, one
finds 〈X n〉 ∝ μcn , with cn = 1 for all n > 0.

(iv) “Unstable” with 0 < α < 1, β = 1. Since the noise
is strictly positive and has infinite mean, the origin x = 0
is always unstable, independently of μ. At small x and for
all μ < 0, the PDF is px,st (x) ∝ x−1+Aα (μ). For μ > 0, the
PDF vanishes at x <

√
μ/γ . For μ < 0 small, in the spe-

cial case α = 1/2, γ = 1, the nth moment is shown to be
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〈X n〉 = √
2/(2 − n) for 0 < n < 2. For n � 2, all moments

〈X n〉 diverge.
(v) “Stable” with 0 < α < 1, β < 1 or α = 1 for any β.

The origin is always stable in this case, the stationary PDF is
δ(x) for all μ as long as γ > 0.

In summary, we have shown that instabilities under the
influence of multiplicative heavy-tailed noise, modeled as
Lévy white noise, can display anomalous critical exponents
differing from those for Gaussian noise, where cn = 1 for all
n. Anomalous critical exponents different from the Gaussian
results have been found previously, for instance for instabili-
ties subject to colored noise [98]. Here, we add the scenario
of Lévy white noise, which leads to several new possibilities
of anomalous scaling, as discussed above.

Our work serves as a first step in the study of instabili-
ties in the presence of multiplicative Lévy noise. There are
many directions that can be further pursued. First of all the
values of the power-law exponents λ, ν in Eqs. (62) and (56)
remain unknown leading to only a nonrigorous estimate of the
scaling exponents of the different moments with μ. Further-
more, the behavior of the system under truncated Lévy noise
[42,63,64,107,108], combined Lévy-Gaussian noise [109],
a finite-velocity Lévy walk [110], different nonlinearities
[111], higher dimensions [99,112,113], and its time statis-
tics [4–10,23,114] would also be interesting to understand.
Finally, since Lévy statistics are found in many physical
systems, we permit ourselves speculate that the anomalous
critical exponents predicted here for instabilities in the pres-
ence of power-law noise may be observable experimentally.

We stress that Lévy noise is a theoretical idealization. From
an experimental point of view, one can always compute all
the moments of a random signal, firstly since it will be of
finite duration T , and secondly because on physical grounds,
infinite fluctuation amplitudes are unrealistic, such that a large
cutoff is required. In a hypothetical experimental observation
of Lévy on-off intermittency, one could repeatedly increase
the duration T of the runs and measure the moments from the
finite samples of increasing length. As the observation time is
increased, the moments which are finite for ideal Lévy noise
will converge as T increases. Those moments that diverge for
ideal Lévy noise will keep growing as T increases. The effect
of the noise truncation is to render all moments of the noise
increments finite. This implies that the nongeneralized central
limit theorem applies, implying a convergence to Gaussian
statistics at late times. However, it is well known that for
large cutoff values, this convergence is “ultraslow” [42,107].
Hence, our predictions for ideal Lévy noise can be expected
to be correct at intermediate observation times, large enough
for the tails of the distribution to have been sampled, but
short enough to avoid the eventual convergence to Gaussian
statistics.
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APPENDIX A: SOLUTION OF THE LANGEVIN EQUATION

Equation (1) is of the form of a Bernoulli differential equa-
tion. Hence, it admits an exact solution, which can be derived
by dividing Eq. (1) by X 3 and letting Z (t ) = 1/X 2(t ), such
that

dZ (t )

dt
+ 2r(t )Z (t ) = 2γ . (A1)

This gives

X (t ) = sign(x0)(
e−2μt−2L(t )

x2
0

+ 2γ
∫ t

0 e2μ(t ′−t )+2(L(t ′ )−L(t ))dt ′) 1
2

, (A2)

which is nonnegative if x0 � 0. We denote dL/dt = f (t ) with
f (t ) white Levy noise, i.e., L(t ) is a free Levy flight. This
solution is also given in Ref. [23], where it is stressed that it
holds for any type of noise with L(t ) being the integral of the
noise. By contrast with other nonlinear equations involving
multiplicative Lévy noise, such as [86], where the analytical
solution of the nonlinear Langevin equation gives access to
the exact time-dependent PDF, this is impossible here since
the result depends the integral of L(t ), in addition to L(t ).
However, the expression is useful for numerical evaluation to
generate realizations of the random process. It is advantageous
over a direct iterative numerical integration since it does not
require smaller time steps at large nonlinearity. Nonetheless,
for large values of L(t ′) − L(t ), the exponential in the inte-
grand may produce an overflow error. This can be avoided by
choosing integration step dt and the total integration time t
not too large.

APPENDIX B: FINITE-DIFFERENCE
NUMERICAL SOLUTION

We recall the stationary space-fractional Fokker-Planck
equation in the Stratonovich interpretation in terms of Y =
log(X ), which reads

0 = −∂y[(μ − γ e2y)pst(y)] + Dα,β
y pst(y), (B1)

where the fractional derivative is given by

Dα,β
y pst(y) = − [(1 + β )Dα

+ pst + (1 − β )Dα
− pst]

2 cos(πα/2)
(B2)

= − [Dα
+ + Dα

− + β(Dα
+ − Dα

−)]pst

2 cos(πα/2)
. (B3)

We consider 1 < α < 2, for which Riemann-Liouville deriva-
tives are given by Eqs. (10) and (11). Integrating once in y
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gives

0 = − (μ − γ e2y)pst(y)

+ Kα

d

dy

∫ ∞

−∞

pst(z)[1 + βsign(y − z)]

|y − z|α−1
dz, (B4)

where Kα = −[2 cos(πα/2)�(2 − α)]−1. To simplify dis-
cretization further, it is advantageous to rewrite the term
stemming from the fractional derivative in the the Grünwald-
Letnikov form, cf. [115], thereby transferring the y derivative
into the integral. This gives

0 = −(μ − γ e2y)pst (y)

+ Kα

∫ ∞

−∞

p′
st (z)[1 + βsign(y − z)]

|y − z|α−1
dz. (B5)

For discretization we consider a large domain [ymin, ymax],
meshed by intervals [yn−1, yn], whose N + 1 endpoints are
yn, where pst (yn) = pn, with n = 0, . . . , N . We prescribe an
arbitrary initial condition p−1 > 0. Then, using a backward
difference scheme for f ′(z) and regularizing |y − z|α−1 →

|y − z|α−1 + ε (0 < ε � 1), we find a matrix equation

bn =
N∑

m=0

Ln,m pm, (B6)

where n = 1, . . . , N ,

bn = −Kα

p−1{[1 + βsign(yn − y0)]}
|yn − y0|α−1 + ε

(B7)

and

Ln,m = −μ + γ e2y0 + Kα

{[1 + βsign(y0 − ym)]}
|yn − ym|α−1 + ε

+ Kαθ (N − 1 − m)
[1 + βsign(yn − ym+1)]

|yn − ym+1|α−1 + ε
, (B8)

where θ (x) designates the Heaviside function. Finally, the
steady density pm, m = 1, . . . , N is obtained by inverting the
matrix Ln,m and normalizing the result. For β < 1 we chose a
nonuniform grid, composed of a logarithmically spaced grid
at y < −O(100), combined with a uniform grid in the region
O(100) > y > −O(100). The total grid size was N = 24 000.
For β = 1, a uniform grid was used with N = 16 000 (the PDF
does not extend to y < 0 as far). Choosing ε on the order of
the smallest grid resolution to the appropriate power α − 1
gives results consistent with exact theoretical predictions, as
described in the text.
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