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We develop a theoretical framework that allows us to explore the coupled motion of neutron-superfluid
vortices and proton-superconductor flux tubes in a gravitationally collapsed condensate, which describe
neutron stars that form pulsars. Our framework uses the 3D Gross-Pitaevskii-Poisson-equation for neutron
Cooper pairs, the real-time-Ginzburg-Landau equation for proton Cooper pairs, the Maxwell equations for
the vector potential A, and Newtonian gravity and interactions, both direct and induced by the Poisson
equation, between the neutron and proton subsystems. For a pulsar we include a crust potential,
characterized by an angle θ, and frictional drag. By carrying out extensive direct numerical simulations of
this model, we obtain a variety of interesting results. We show that a rotating proton superconductor
generates a uniform London magnetic field and the field distribution around flux tubes changes. In the
absence of any direct interaction between the two species, they interact through the gravitational Poisson
equation. The inclusion of the current-current interaction and the complete Maxwell equations allows us to
quantify the entrainment effect that leads to induced magnetization of neutron vortices. We demonstrate
that, with a strong external magnetic fieldBext, proton flux tubes are anchored to the crust, whereas neutron
vortices leave the condensate and lead to abrupt changes of the crust angular momentum Jc. The frictional
term in the dynamical equation for θ yields stick-slip dynamics that leads, in turn, to glitches in the time
series of Jc. By calculating various statistical properties of this time series, we demonstrate that they display
self-organized criticality that has been found in observations for several pulsars. We compare our results
with those of earlier explorations of pulsar-glitch statistics in Gross-Pitaevskii equation-based minimal
models for pulsars.
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I. INTRODUCTION

Recent advances in the Gross-Pitaevskii-Poisson (GPP)
modeling of bosonic [1] and axionic [2] stars have led to an
elegant, minimal model for pulsars [3], which includes a
crust potential, and leads naturally to pulsar glitches [4–6].
These GPP models have, so far, accounted only for bosons,
e.g., the neutron superfluid in a neutron star [7]. Within the
outer core of a neutron star, characterized by a density
ranging from ρ ≃ 5 × 1013 g cm−3 to 1015 g cm−3 [7], lies a
region consisting predominantly of neutrons (95% of the
total mass) and some protons (5% of the total mass), and
sufficient electrons to maintain charge neutrality; this region
exhibits extraordinary properties; the neutron Cooper pairs
form a superfluid [8] and the proton Cooper pairs a super-
conductor [7,9]. Pulsars are rapidly rotating and highly
magnetized neutron stars [10,11] with magnetic fields

≃1012 G. Our goal is to generalize the GPP modeling
framework for pulsars [3] to include protons, which are in
a superconducting state that is affected strongly by the
magnetic field.
Neutrons in a neutron-star interiors are in a superfluid

state, so when the star rotates with a sufficiently large
angular velocity, quantized vortices are formed; each vortex
has an angular momentum that is an integer multiple of the
quantum of circulation K ¼ h

m�
n
, where m�

n, the mass of a
neutron Cooper pair, is twice the mass of a neutron. By
contrast, the protons in a neutron star form an Abrikosov
phase of a type II superconductor [12,13], in which the
external magnetic field leads to an array of flux tubes, each
carrying a magnetic flux quantum Φ0 ¼ hc

q , with q ¼ 2e
being the charge of a proton Cooper pair. Early studies by
Ginzburg and Kirzhnits [14], Wolf [15], and Baym et al. [7]
laid the foundations for our understanding of neutron
superfluidity and proton superconductivity in neutron stars.
Also, see the recent review on superfluidity and super-
conductivity in neutron stars [16] and references therein.
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Pulsars exhibit sudden increases, known as glitches, in
their rotational frequencies [4,5]. The interaction of the
pulsar crust with the neutron superfluid may provide an
explanation for these glitches, as first suggested by Baym
et al. [7], and as explored recently by our group in Ref. [3].
Pulsar-glitch observations [4–6] suggest that there is a
connection of glitches with the transfer of angular momen-
tum, stored in the quantized vortices of the neutron
superfluid, to the solid crust of a pulsar. Various models,
such as those based on vortex avalanches [17,18] or
superfluid vortex-crust interaction [3,19,20], have been
proposed to study the glitching phenomenon.
As we have noted above, a neutron superfluid dominates

the outer core of a pulsars. Therefore, Refs. [21,22] have
utilized a simple model for a pulsar in which the Gross-
Pitaevskii equation (GPE) is used for the neutron superfluid
together with a pinning potential for the crust and a rotating
container that is defined by a quadratic confining potential.
In Ref. [3], our group has removed the confining potential
but introduced Newtonian gravity, which leads to a
gravitationally collapsed bosonic condensate that displays
glitches whose statistical properties are akin to those seen in
several pulsars.
Even though protons constitute only about ≃5% of the

mass of a pulsar, they play a crucial role in its rich dynamics
because the strong magnetic field leads to the formation of
an array of flux tubes. The flux tubes in this lattice can
interact with the vortices in the neutron superfluid [23].
References [24,25] have examined such interactions, both
in equilibrium and out-of-equilibrium conditions, in the 2D
and 3D GPE systems, but with (a) a static ansatz for the
proton flux tubes and (b) harmonic confinement. We go
beyond approximation (a) and replace the harmonic potential
in (b) by Newtonian gravity that leads to a gravitationally
collapsed condensate. In particular, we develop a theoretical
framework by combining the Maxwell equations for the
electromagnetic fields with the 3D Gross-Pitaevskii-
Poisson-equation (GPPE) for the neutron superfluid and
the real-time-Ginzburg-Landau equation (RTGLE) for the
proton-superconductor system.Moreover,we include (i)den-
sity-density and (ii) current-current direct interaction
between neutron and proton Cooper pairs.
Before going into the details of our calculations, we

present the principal results of our study of the coupled
GPPE, RTGLE, and Maxwell systems:

(i) We show that the rotation of the proton super-
conductor leads to a London moment [26], i.e.,
inside the superconductor there is a uniform mag-
netic field, whose magnitude depends on the rotation
frequency.

(ii) We evolve the magnetic field of the proton flux tubes
by using the Maxwell equations; this leads to a
precise characterization of the entrainment of pro-
tons around neutron vortices, by virtue of which
these vortices also become magnetized. This is the

first demonstration of such entrainment in the GPPE
context.

(iii) If Θ > 0 is the initial angle between the rotation axis
and the external magnetic field, then, eventually, the
proton-superconductor flux tubes tend to align
themselves along the rotation axis. We demonstrate
this alignment by calculating the magnetic moment
of the proton Cooper pairs.

(iv) We follow the real-time dynamics of the GPPE and
RTGLE together with the crust potential, for the
illustrative case Θ ¼ 0 and with the neutron and
proton Cooper pairs interacting only via the gravi-
tational potential. This gives rise to a collapsed
condensate, with a crust angular momentum that
displays glitches with signatures of self-organized
criticality (SOC) [3,27–30].

The remainder of this paper is organized as follows. In
Sec. II, we provide a comprehensive description of the
GPPE and RTGLE models. Section III A outlines the units
and dimensionless forms of GPPE and RTGLE, accom-
panied by an elucidation of the pseudospectral method
employed for our study. Our results are presented in
Sec. IV, followed by a discussion of conclusions in Sec. V.

II. THE MODEL

The total Lagrangian L governing the dynamics of
neutron and proton Cooper pairs within the system is
composed of distinct Lagrangians. Section II A delves into
Ln, which encapsulates the dynamics of neutron Cooper
pairs. Similarly, Sec. II B focuses on Lp describing the
proton Cooper pairs, while the electromagnetic field is
described by LEM (Sec. II B). The interactions between
neutron and proton Cooper pairs are addressed through Lnp

in Sec. II C. Finally, we present the governing equations of
motion in Sec. II D by using the total Lagrangian L.

A. Neutron superfluid

In a pulsar, neutrons form Cooper pairs that lead to a
superfluid [8,31]. At temperatures below the transition
temperature Tλ, these Cooper pairs lead to a Bose-Einstein
condensate (BEC), characterized by a macroscopic com-
plex wavefunction ψn. The Lagrangian of a weakly
interacting rotating BEC in a self-gravitating potential Φ
is given by [3]

Ln ¼
iℏ
2

�
ψ�
n
∂ψn

∂t
− ψn

∂ψ�
n

∂t

�
−

ℏ2

2mn
j∇ψnj2

−
g
2

�
jψnj2 −

μn
g

�
2

−mnΦjψnj2 −
1

8πG
ð∇ΦÞ2

− Vθjψnj2 þ
iℏ
2
ðΩ × rÞ · ðψn∇ψ�

n − ψ�
n∇ψnÞ; ð1Þ

where g ¼ 4πaℏ2=mn is the interaction strength between
neutron Cooper pairs, a is the s-wave scattering length, mn
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and μn are, respectively, the mass and chemical potential of
neutron Cooper pairs, G is Newton’s gravitational constant,
andΩ is the rotational velocity. Here Vθ represents the crust
potential, which is located just above the outer core [see
Fig. 1]. This crust potential contains a lattice of atomic nuclei,
with each lattice point acting as a pinning center where
neutronvortices can be pinned, so they corotatewith the crust
[details about the crust potential are given in Sec. II E].

B. Proton superconductor

Proton Cooper pairs, which also form in a pulsar, yield a
type II superconductor with an Abrikosov flux lattice [7].
This superconducting system can be described by the
complex wave function ψp, coupled to a vector potential
A and self-gravitating potentialΦ, resulting in the following
Lagrangian, in which we include the rotational velocity Ω:

Lp ¼
iℏ
2

�
ψ�
p
∂ψp

∂t
−ψp

∂ψ�
p

∂t

�
−

1

2mp
jDAψpj2

−
αs
2

�
jψpj2 −

μp
αs

�
2

−qϕjψpj2−mpΦjψpj2−Vθjψpj2

þ 1

2
ðΩ× rÞ · ðψpDAψ

�
pþψ�

pDAψpÞ; ð2Þ

where DA ≡ ½ℏi ∇ − qA� is the magnetic gradient operator,
mp is the mass of a proton Cooper pair, αs is the interaction
strength between the proton Cooper pairs, μp is the proton
chemical potential, q ¼ 2e is the charge of a proton Cooper
pair, and ϕ is the electric scalar potential.
The evolution of the vector potential A follows the

Maxwell equations, which can be obtained from the
electromagnetic Lagrangian [34]:

LEM ¼ ϵ0

�
−
1

2
½E2 − c2ðB −BextÞ2�

þE ·

�
−∇ϕ −

∂A
∂t

�
− c2ðB − BextÞ · ð∇ ×AÞ

�
;

ð3Þ

where E and B are the electric and magnetic fields,
respectively, Bext is the external magnetic field, and c is
the speed of light. In the context of neutron stars, Bext is the
mean internal magnetic field, which reorganizes into flux
tubes when the proton subsystem condenses into a super-
conducting state. This mean magnetic field is subtracted in
Eq. (3) so that it only appears in terms of the curl of a uniform
field in theMaxwell equation [seeEq. (10)]. If hAi is periodic
then hBi ¼ h∇ ×Ai ¼ 0, where h:i denotes the spatial
average. So, in our calculations using periodic boundary
conditions, we useA that is solid-rotationlike at the position
of the star and thus controls the mean magnetic field of the
star B, which we call Bext [see Eq. (28)].

C. Interaction between neutron
and proton Cooper pairs

We consider (i) the density-density and (ii) the current-
current interactions between the neutron and proton sub-
systems [24,35] and use the Lagrangian,

Lnp ¼ γ

�
gnpjψnj2jψpj2 −

ℏ
4i
ðψn∇ψ�

n − ψ�
n∇ψnÞ

· ½ψpDAψ
�
p þ ψ�

pDAψp�
�
; ð4Þ

where γ is the overall interaction strength, gnp is the
density-density coupling constant [36]. The current-current
interaction, given in the second row, causes neutron-super-
fluid vortices to drag proton-superconductor flux tubes.

D. Total Lagrangian: Equations of motion

By combining the Lagrangians (1)–(4) we obtain the
total Lagrangian,

L ¼ Ln þ Lp þ LEM þ Lnp: ð5Þ

The Euler-Lagrange equations for L yield the following:

FIG. 1. A schematic diagram (cf. Refs. [32,33]) of the interior
of a pulsar (magnetized neutron star). The light-blue luminous
central region represents the inner core, characterized by ultra-
dense matter where neutrons and protons break down into quarks
and gluons. Surrounding this core lies the outer core (shaded
blue-white), composed of a neutron superfluid and proton
superconductor, with neutron-superfluid vortices and proton-
superconductor flux tubes, respectively (magnified view in the
bottom-left inset). The dark-blue crust has a crystalline lattice
structure (not shown) and consists of heavy atomic nuclei and
free neutrons and free electrons. The neutrons in the crust exist in
the form of a superfluid that is threaded by vortices. The glowing
white region, often called the outer crust, comprises atomic nuclei
and free electrons. The white conical regions show radiation
beams emerging from the poles of the pulsar.
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(i) The GPPE for neutron Cooper pairs (variation with
respect to ψ�

n):

iℏ
∂ψn

∂t
¼ −

ℏ2

2mn
∇2ψn − μnψn þ gjψnj2ψn þmnΦψn

þ iℏðΩ× rÞ ·∇ψn þVθψn þ γgnpjψpj2ψn

−
γℏ
2i

½∇ψn · Jp þ∇ · ðψnJpÞ�; ð6Þ

here, Jp is the proton current density:

Jp ¼ ℏ
2i
ðψ�

p∇ψp − ψp∇ψ�
pÞ − qAeff jψpj2. ð7Þ

(ii) The real-time Ginzburg-Landau-Poisson equation
(RTGLPE) for proton Cooper pairs (variation with
respect to ψ�

p):

iℏ

�
∂

∂t
þ i
ℏ
qϕeff

�
ψp

¼ 1

2mp

�
ℏ
i
∇ − qAeff

�
2

ψp − μpψp

þ αsjψpj2ψp þmpΦψp þ Vθψp

þ γgnpjψnj2ψp þ γqðJn ·AÞψp

−
γℏ
2i

½Jn:∇ψp þ∇ · ðJnψpÞ�; ð8Þ

here,

ϕeff ¼ ϕ −
mp

2q
Ω2r2;

Aeff ¼ Aþmp

q
ðΩ × rÞ;

Jn ¼
ℏ
2i
ðψ�

n∇ψn − ψn∇ψ�
nÞ. ð9Þ

(iii) The Maxwell equation for the vector potentialA and
Poisson equations for the gravitational potential Φ
and the electric scalar potential ϕ:

1

c2
∂
2A
∂t2

−∇2A −∇ ×Bext ¼ P

�
q

mpc2ϵ0
Jp

−
γq
c2ϵ0

Jnjψpj2
�
; ð10Þ

∇2Φ ¼ 4πGðmnjψnj2 þmpjψpj2 − ρbgÞ; ð11Þ

ρbg ¼ mnhjψnj2i þmphjψpj2i; ð12Þ

∇2ϕ ¼ −
1

ϵ0
ðqjψpj2 − qnpÞ: ð13Þ

With γ ¼ 0 and without crust potential (Vθ ¼ 0), Eq. (6)
has been used extensively in Refs. [37–39] to study self-
gravitating BECs at temperature T ¼ 0 (by using a
Gaussian ansatz for jψnj2). References [40,41] have per-
formed numerical simulations without rotation (Ω ¼ 0).
Furthermore, Ref. [42] has included rotation in the GPPE to
study the dynamical properties of BEC dark matter (but still
with γ ¼ 0 and Vθ ¼ 0). In our previous studies, we have
used the GPPE to study the formation of compact bosonic
objects at finite temperatures [1] and their axionic counter-
parts, by including a quintic nonlinearity [2]. The imagi-
nary time (t → −it) version of Eq. (8) with γ ¼ 0, Vθ ¼ 0,
and Φ ¼ 0 is the well-known time-dependent Ginzburg-
Landau equation [43] whose solutions give type I and type
II superconductors. In conventional calculations for super-
conductors, the term ∇ ×Bext in Eq. (10) vanishes because
of the uniformity of Bext, and it appears only as a boundary
condition. In our calculations, which use periodic boundary
conditions, we consider Bext such that it is periodic in the
domain; and it reorganizes itself in the form of flux tubes as
time progresses. In the context of neutron stars, this
corresponds to the mean internal magnetic field.
In writing Eq. (10), we have used the Coulomb gauge

∇ ·A ¼ 0. The Helmholtz projector, which has compo-

nents Pij ≔ δij − F−1 kikj
k2 F , with F the Fourier transform

operator, projects a field onto its divergence-free part; its
application in Eq. (10) maintains the Coulomb gauge. In
Eq. (11) forΦ, the gravitational potential, the subtraction of
the background mean density ρbg [often called the Jeans
Swindle [44] ] can be justified either by defining a
Newtonian cosmological constant [45] or by accounting
for cosmological expansion [44,46]. Furthermore, in
Eq. (13) for the scalar potential ϕ, we subtract the mean
charge density, qnp, to maintain charge neutrality in the
system. In the context of a neutron star, qnp corresponds to
the background charge coming from electrons.
The important term considering the interaction between

neutron and proton Cooper pairs is the last term in Eq. (10),
which is of the form γq

c2ϵ0
Jnjψpj2. This term, not considered

hitherto in the GPPE and RTGLPE, causes neutron-super-
fluid vortices to drag proton-superconductor flux tubes,
generate an entrained-proton current, because of which the
neutron-superfluid vortices become magnetized, as we
show below.

E. Crust potential (Vθ)

The region just above the outer core of a neutron star,
known as the crust, contains heavy nuclei arranged in a
lattice structure. This crust plays a crucial role in models of
pulsar glitches. Neutron vortices become pinned to the
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lattice sites and corotate with the crust. As the crust spins
down, the superfluid within remains unaffected because of
its zero viscosity. This differential rotation causes vortices
to unpin from their pinning sites, thus transferring momen-
tum to the crust and resulting in glitches. Flux tubes are also
anchored to the crust by the strong magnetic field, and there
is a depletion of the proton cooper pairs. In our model,
spherically collapsed neutron and proton condensates
contain vortices and flux tubes that are located away from
the cubic domain boundary. The crust potential lies just
above the condensate, with the magnetic field inside the
flux tubes passing through the crust anchoring them. In this
section, we model the crust using a Gaussian potential Vθ

modulated by equally spaced pinning centers. In the
absence of the crust potential Vθ, Eqs. (6)–(13) govern
the interplay between neutron-superfluid vortices and
proton-superconductor flux tubes in the outer-core region
shown in the schematic diagram of Fig. 1. At the level of a
minimal model for pulsars [3] the dynamics of this crust is
characterized by a single polar angle θ [3] that evolves as
follows:

Ic
d2θ
dt2

¼ 1

Nn

�Z
d3x∂θVθjψnj2 þ

nn
np

Z
d3x∂θVθjψpj2

�

− δ
dθ
dt

;

VθðrpÞ ¼ V0 exp

�
−
ðjrpj − rcrustÞ2
ðΔrcrustÞ2

�
Ṽðxθ; yθÞ; ð14Þ

here, Ic is the moment of inertia of the crust, the angle θ
represents the angular rotation of the neutron star’s crust
about the rotation axis,Nn ¼

R jψnj2d3x is the total number
of neutron Cooper pairs, nn=np is the ratio of the number
densities of neutrons and protons, and the slowing down of
the crust is controlled by the friction coefficient δ. The first
two terms on the right-hand side of upper Eq. (14) couple
the crust to the superfluid and superconductor, respectively.
These terms ensure that the superfluid and superconductor
act on the crust. The last term on the right-hand side of
upper Eq. (14) represents the friction, which slows down
the crust and creates a differential rotation between it and
the superfluid. The evolution Eq. (14) for the crust potential
can be written in the compact form Icθ̈ ¼ Fs − δθ̇, where
Fs, the force of the superfluid on the crust, is given by the
term in parentheses in the first line of Eq. (14).
We choose Ṽðxθ;yθÞ¼ 3þ cosðncrustxθÞþ cosðncrustyθÞ,

with xθ ¼ cosðθÞxp þ sinðθÞyp and yθ ¼ − sinðθÞxp þ
cosðθÞyp as in Ref. [3]; here, ncrust determines the number
of pinning sites in the crust, rcrust is the radius at which Vθ

assumes its maximum value, and Δrcrust is the thickness of
the crust. We use a 2π-periodic version of the coordinates,
namely, rp ¼ ðxp; yp; zpÞ, which is π-centered, with
zp ¼ π,

xp ¼ −
X10
n¼1

exp

�
−

16

100
n2
�
ð−1Þn sinðnðx − πÞÞ

n
;

and yp ¼ −
X10
n¼1

exp

�
−

16

100
n2
�
ð−1Þn sinðnðy − πÞÞ

n
:

ð15Þ

For the proton superconductor, in the absence of rotation,
we haveAeff → A andϕeff → ϕ [Eq. (9)]. A superconductor
that is subjected to rotation (Ω ≠ 0) andwhich is in a uniform
external magnetic field displays a captivating interplay of
quantum phenomena. Consider first a nonrotating type-II
superconductor in an external magnetic field; it can display a
vortex-lattice phase in which flux tubes are arranged in the
form of an Abrikosov lattice [47]; the quantized magnetic
fluxΦB ¼ R

A · dl passes through each vortex. Each of these
magnetized vortices contributes a discrete quantum of
magnetic flux to the net magnetic field inside the super-
conductor, which is zero outside thevortices. Next consider a
rotating superconductor without an external magnetic field;
this displays a uniformmagnetic field, known as the London
moment [26,48]. (This field is uniform away from the
boundary, for distances larger than λp, the London penetra-
tion depth.) The London moment follows fromAeff [Eq. (9)]
because the RTGLPE [Eq. (8)] has an additional term with a
vector potential (the subscript L stands for London)

AL ¼ −
mp

q
ðΩ × rÞ; ð16Þ

so that, in the absence of flux tubes, Aeff ¼ 0 inside the
superconductor. For a rotating type II superconductor [49], in
a uniform magnetic field, there is a critical rotational speed
Ωp

c beyond which vortices (here, proton-superconductor
flux tubes) enter the system. The critical Ωp

c , which follows
by minimizing the energy in the rotating frame E0≡
E −Ω ·Lz, with Lz the angular momentum along the
rotation axis, is

Ωp
c ¼ ℏ

mpλ
2
p
ln

�
λp
ξp

�
; ð17Þ

where ξp, and λp are, respectively, the superconducting
coherence length and the London penetration depth. In the
Abrikosov-lattice phase, a London moment (∝ Ω) is present
inside the superconducting together with flux-tube lattice.

III. UNITS AND NUMERICAL METHOD

A. Nondimensionalization

We use the dimensionless forms of Eqs. (6)–(13), which
we obtain by using the general reference length Lref and
speed Vref . The scaled position x, time t, vector potentialA,
and scalar potential ϕ are
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x ¼ Lrefx0;

t ¼ Lref

Vref
t0;

Ω ¼ Lref

Vref
Ω0;

A ¼ Hc2Lref

κ
A0;

and ϕ ¼ L2
ref

τ

Hc2

κ
ϕ0; ð18Þ

whereHc2 is the (zero-temperature) upper critical magnetic
field of the superconductor, κ ¼ λ

ξp
is the London ratio, and

τ ¼ Lref
Vref

. In Table I, we provide all the parameters and
dimensionless ratios that follow from our nondimension-
alization. The wave functions are normalized as ψn ¼ffiffiffiffiffi
nn

p
ψ 0
n and ψp ¼ ffiffiffiffiffinp

p
ψ 0
p, so the nondimensionalized

neutron GPPE, proton RTGLPE, and vector, gravitational,
and scalar potential equations are, respectively, (for nota-
tional simplicity we now drop the primes that come from
nondimensionalization):

i
∂ψn

∂t
¼ −α∇2ψn þ βðjψnj2 − 1Þψn þGΦψn

þ iðΩ × rÞ ·∇ψn þ Vθψn þ γpgjψpj2ψn

−
γpα

i
½∇ψn · Jp þ∇ · ðψnJpÞ�; ð19Þ

i

�
∂

∂t
þ i

L2
ref

κξ2p
ϕeff

�
ψp

¼ α

�∇
i
−
L2
ref

ξ2pκ
Aeff

�
2

ψp þGΦψp

þ β
ξ2n
ξ2p

ðjψpj2 − 1Þψp þ Vθψp þ γngjψnj2ψp

− γnαð2Jn ·DA þ iψp∇ · JnÞ; ð20Þ

V2
ref

c2
∂
2A
∂t2

−∇2A−∇×Bext ¼ P

�
1

κ
Jp −

γn
κ
Jnjψpj2

�
; ð21Þ

∇2Φ ¼ jψnj2 þ
np
nn

jψpj2 − nbg; ð22Þ

∇2ϕ ¼ −
β

κ

�
c
cs

�
2

ðjψpj2 − 1Þ: ð23Þ

The dimensionless current densities and effective vector
and scalar potentials are, respectively:

Jn ¼
1

2i
ðψ�

n∇ψn − ψn∇ψ�
nÞ;

Jp ¼ 1

2i
ðψ�

p∇ψp − ψp∇ψ�
pÞ −

L2
ref

ξ2pκ
Aeff jψpj2;

Aeff ¼ Aþ ξ2p
L2
ref

κ

2α
ðΩ × rÞ;

ϕeff ¼ ϕ −
ξ2p
L2
ref

κ

4α
ðΩ2r2Þ: ð24Þ

For the convenience of the reader, we define all the
parameters and dimensionless ratios in Table I.
We use pseudospectral direct numerical simulations

(DNSs) to solve Eqs. (14) and (19)–(23) in a cubic domain,
with side L ¼ 2π and N3 collocation points, and periodic
boundary conditions in all three directions. We employ the
Fourier expansion for the function Ψ≡ ðψn;ψp; Ax;
Ay; Az;Φ;ϕÞ as follows:

ΨðxÞ ¼
X
k

Ψ̂k expðik · xÞ; ð25Þ

and the 2=3-rule for dealiasing, i.e., we truncate the Fourier
modes by setting Ψ̂k ≡ 0 for jkj > kmax [50,51], with
kmax ¼ ½N=3�. Given current computational resources, it is
well-nigh impossible to use such aDNSwith astrophysically
realistic values (say for a pulsar) for the parameters and ratios
in Table I. Nevertheless, as we show below, it is possible to
obtain a largebodyof results that are qualitatively relevant for
(a) interactions between proton-superconductor flux tubes

TABLE I. Definitions of all the dimensionless parameters and
ratios appearing in Eqs. (19)–(23).

Parameters in
Eqs. (19)–(23) Description

α ¼ csξnffiffi
2

p
LrefVref

Coefficient of the kinetic term in
Eqs. (19) and (20)

β ¼ csLrefffiffi
2

p
ξnVref

Coefficient of the nonlinear term in
Eqs. (19) and (20)

G ¼ L3
ref2

ffiffi
2

p
πGmnnn

Vrefcsξn
Gravitational strength

g ¼ Lrefgnpffiffi
2

p
ξnVrefcsmnmp

Density-density coupling strength

np
nn

Number-density ratio (protons to neutrons)

γ Dimensional interaction strength
γn ¼ γmnnn Interaction coefficient for protons
γp ¼ γmpnp Interaction coefficient for neutrons
ξn ¼ ℏffiffiffiffiffiffiffiffiffiffiffi

2mngnn
p Coherence length for neutron Cooper pairs

ξp ¼ ℏffiffiffiffiffiffiffiffiffiffiffiffiffi
2mpαsnp

p Coherence length for proton Cooper pairs

λp London penetration depth
c
cs

Ratio of speed of light to speed of sound

κ ¼ λp
ξp

London ratio

Ω Dimensionless rotational speed
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and neutron-superfluid vortices and (b) a minimal model for
pulsars and their glitches [3].
We will use the imaginary time versions of equations in

the initial parts of the results, which can be obtained by
using the substitution t → −it in Eqs. (19)–(20). The
imaginary-time version of the Maxwell equation (21) is
the following first-order partial differential equation (sim-
ilar to the vector-potential equation used in the formulation
of the time dependent Ginzburg-Landau model of super-
conductivity [52]):

V2
ref

c2
∂A
∂t

−∇2A −∇ ×Bext ¼ P

�
1

κ
Jp −

γn
κ
Jnjψpj2

�
: ð26Þ

B. Initial conditions

To solve imaginary-time (t → −it) versions of the GPPE
(19), the RTGLE (20), and the Maxwell equation (26), we
use the following initial conditions:

(i) ICI1: The imaginary-time (t → −it) version of
GPPEwithΩ ¼ 0 is first evolved by using a uniform
density distribution and with small superimposed
perturbations. This gives a spherically collapsed
condensate. We now use this collapsed state as an
initial condition in the same equation but with a
small value of Ω. We keep increasing Ω in small
steps until we get a collapsed object threaded by
vortices.

(ii) ICI2: For the RTGLE, we follow the procedure used
in ICI1, but we insert vortices initially by choosing

ψpi ¼ ψuni × ½cosðkxÞ þ i cosðkyÞ�n; ð27Þ

where ψuni is a uniform density distribution with
small superimposed perturbations. Here, the integer
n denotes the multiplicity of a vortex; and k is the
number of vortices in the interval [−π=n; π=n].

(iii) ICI3: For the imaginary-time version of the Maxwell
equations (26), we use the following initial con-
dition:

Ax ¼ −
1

2
× yp × Bext;

Ay ¼
1

2
× xp × Bext; ð28Þ

where xp and yp are the periodic versions of the
coordinates [Eq. (15)] and Bext is the uniform
external magnetic field in the z-direction.

IV. RESULTS

Our results are presented in the following subsections:
(i) Section IVA: we solve the imaginary-time versions

of Eqs. (19)–(23) without any interactions (γ ¼ 0),

no crust potential (Vθ ¼ 0), andΘ ¼ 0, whereΘ is the
angle between the rotation axis and external magnetic
field. Note that, even if there is no direct interaction
between the neutron-superfluid and the proton-super-
conductor (i.e., γ ¼ 0), they interact indirectly
through the gravitational Poisson equation (22).

(ii) Section IV B:we solve the imaginary-timeversions of
Eqs. (19)–(23), but with γ ≠ 0, Vθ ¼ 0, and Θ ¼ 0.

(iii) Section IV C: we solve the imaginary-time versions
of Eqs. (19)–(23), but with Vθ ¼ 0 and Θ ¼ 30° and
(i) γ ¼ 0 [Sec. IV C 1] and (ii) γ ≠ 0 [Sec. IV C 2].

(iv) Section IV D: we solve the real-time equations (19)–
(23) with nonzero crust potential (Vθ ≠ 0), no direct
interactions (γ ¼ 0), and Θ ¼ 0. Note that the
imaginary-time evolution in Secs. IVA–IV C has
no dynamical significance; this evolution just pro-
vides us with a convenient way of obtaining the
equilibrium configuration at very large imaginary
time.

A. Imaginary-time study: γ = 0, Vθ = 0, Θ= 0

We solve imaginary-time (t → −it) versions of
Eqs. (19)–(21) together with Eqs. (22) and (23) with
γ ¼ 0, Vθ ¼ 0, and Θ ¼ 0. The imaginary-time version
of the Maxwell equation (21) is given in Eq. (26). For all
the imaginary-time studies, we start with the initial con-
ditions ICI1, ICI2, and ICI3 given in Sec. III B. The neutron
star in our model rotates with an angular velocity Ω ¼ Ωẑ;
for specificity, we choose Ω ¼ 2.5. Both the neutron-
superfluid and proton-superconductor subsystems also
rotate with this frequency; if we include an external
magnetic field Bext, the proton-superconductor responds
directly to it. However, to isolate the effects of the rotation
and the external magnetic field, it is useful to study the
following three cases: (i) the neutron-superfluid rotates, but
not the proton-superconductor, which is in an external
magnetic field; (ii) both the neutron-superfluid and the
proton-superconductor rotate, but there is no external
magnetic field; and (iii) both the neutron-superfluid and
the proton-superconductor rotate, and there is an external
magnetic field. Clearly, only case (iii) is directly relevant to
neutron stars.
Case(i): The neutron condensate rotates [Ω ¼ Ωẑ] and

the nonrotating proton condensate is in an external mag-
netic field Bext ¼ Bẑ. In Figs. 2(a)–2(d) we show via
contour plots of jψnj2 and jψpj2, respectively, that the
neutron condensate is threaded by vortices and the proton-
superconductor displays an Abrikosov flux lattice. Each
vortex in this lattice carries the quantum of magnetic flux
ΦB ¼ H

A · dl. Initially, the magnetic field is confined near
the boundary [Fig. 2(e)]. Eventually these vortices pen-
etrate the condensate [Fig. 2(f)] and each one of them
contributes the unit magnetic flux ΦB ¼ H

A · dl to the
overall magnetic field, which is confined within quantized
flux tubes, solely inside the proton superconductor. Initially
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we insert flux tubes inside the proton condensate [Fig. 2(c)
and ICI2 in Appendix III B] because, in the absence of
rotation, the system cannot generate flux tubes at T ¼ 0.
Case(ii): both the neutron-superfluid and the proton-

superconductor rotate [withΩ ¼ Ωẑ], but there is no external
magnetic field [Bext ¼ 0]. The neutron condensate is
threaded by vortices [Figs. 2(a) and 2(b)], beyond a critical
angular velocity, as in Case (i). The behavior of the proton
superconductor presents a compelling contrast. For slow
rotation, less than a critical Ωp

c (we use Ω ¼ 2.5 here), the
proton superconductor assumes a spherical shape devoid of
vortices, as illustrated in Fig. 3(a). Furthermore, within the
superconductor, a uniform London field emerges [Fig. 3(c)],
first from the superconductor’s boundary at the characteristic
length scale λp, which is the London penetration depth [see
Sec. II E]. Any macroscopic rotation of a neutron superfluid
results in the formation of quantized vortices; and the

formation of flux tubes in a proton superconductor is driven
by themagnetic field, not bymacroscopic rotation. However,
the rotation of a superconductor generates an additional
magnetic field known as the London field. It is important to
note that, considering realistic parameter values, the magni-
tude of the London magnetic field is very small for neutron
stars (Ref. [13]). However, given the constrained parameter
values in our simulations, the London field attains a
reasonable finite value. In our simulation with Eq. (16),
the magnitude of the dimensionless London field BL ¼
∇ ×AL is

BL ¼ ξ2p
L2
ref

κ

α
Ω ≃ 1.12Ω: ð29Þ

The effect of rotation on the magnetic field distribution
around flux tubes can be understood by comparing Figs. 2(f)
and 3(d). For a nonrotating proton superconductor in a
magnetic field, the field is solely confined inside flux tubes
[Fig. 2(f)]. For a rotating proton superconductor, flux tubes
enter the system above a critical angular speed Ωc [compare
Figs. 3(c) and3(d)], and themagnetic field passes through the
center of the flux tubes with a finite region around the center
devoid of the magnetic field [Fig. 3(d)]. Beyond this finite
region, we observe a uniform distribution of the London
field. The London magnetic field, a fundamental property of
rotating superconductors, has been studied in a hydrody-
namical model of a neutron-star interior in Ref. [13]. The
generation of this uniformmagnetic field is facilitated by the
macroscopic London current JL, which is concentrated near

(a) (b)

(c)

(e) (f )

(d)

FIG. 2. One-level contour plots of (a),(b) the neutron Cooper-
pair density jψnj2 and (c),(d) proton Cooper-pair density jψpj2,
obtained by using the imaginary time (t → −it) versions of the
GPPE (19) and RTGLPE (20). Pseudocolor plots (e),(f) of the
magnetic field B ¼ ∇ ×A at the mid-plane z ¼ L=2. Here, the
neutron condensate rotates with and angular velocity Ω ¼ Ωẑ,
with Ω ¼ 2.5; the nonrotating proton condensate is placed in an
external magnetic field Bext ¼ Bẑ, with B ¼ 0.8; neutron and
proton Cooper pairs interact only through the gravitational
potential (i.e., γ ¼ 0).

(a) (b)

(c) (d)

FIG. 3. Pseudocolor plots of (a),(b) the proton Cooper-pair
density jψpj2 and (c),(d) the magnetic fieldB ¼ ∇ ×A at the mid
plane z ¼ L=2. In columns 1 and 2, Ω ¼ 2.5 and Ω > Ωc ¼ 4.5,
respectively. In these plots, we have Bext ¼ 0. Neutron and
proton Cooper pairs interact only indirectly through the gravi-
tational potential (i.e., γ ¼ 0).

SHUKLA, BRACHET, and PANDIT PHYS. REV. D 110, 083002 (2024)

083002-8



the superconductor’s boundary, as we show via 2D vector
plots of Jx and Jy in Fig. 4(a).
If Bext ¼ 0, the rotation is so slow that there are no flux

tubes [Ω < Ωp
c ], and γ ¼ 0, then we can write Eq. (10) in

the steady state as

∇ ×B ¼ q
mpc2ϵ0

Js −
qnp
c2ϵ0

ðΩ × rÞ; ð30Þ

where np ¼ jψpj2. We now use the London equation

∇ × Js ¼ −
npq

mp
B; ð31Þ

with Js ¼ mpnpv, to obtain

∇ ×∇ × v ¼ −
1

λ2p
ðv −Ω × rÞ; ð32Þ

where λp ¼
ffiffiffiffiffiffiffiffiffiffiffi
mpc2ϵ0
qn2p

r
is the London penetration depth. [A

similar relation has been used in Ref. [53] but for a
multicomponent superconductor.] If we assume that the
density distribution is spherically symmetric, then the

proton superconductor has only the azimuthal component
v ¼ veϕ, so, by solving Eq. (32), we get

v ¼
�
Ωrþ C

r2

�
sinh

�
r
λp

�
−

r
λp

cosh

�
r
λp

���
eϕ; ð33Þ

whence we obtain the radial component Br of the magnetic
field by using Eqs. (33) and (31):

Br ¼
mp

q

�
2Ωþ 2C

r3

�
sinh

�
r
λp

�
−

r
λp

cosh

�
r
λp

���
: ð34Þ

We determine the constant C by demanding Br¼R ¼ 0,
where R is the radius of the spherical condensate, because
Bext ¼ 0. Finally, we get

Br

BL
¼ 1 −

1

ðr=RÞ3
sinh

�
r
R χ

�
− r

R χ cosh

�
r
R χ

�

sinhðχÞ − χ coshðχÞ ; ð35Þ

where χ ¼ R
λp
, whichwe showvia dashed lines in Fig. 4(c) for

two representativevaluesof χ. The solid lines inFig. 4(c) give
the results of our DNS, which agree well with the results of
our analytical approximation [Eq. (35)].We observe that, for
large value of χ (small λp), the internal magnetic field is
comparable to the London field BL; and it decreases as we
decrease χ.
Upon increasing the angular velocity Ω beyond Ωp

c ≃ 4.5
[see Eq. (17)], vortices begin to penetrate the proton super-
conductor, as we show in Fig. 3(b). Each of these vortices
carries a quantum of magnetic flux ΦΩ ¼ H ðΩ × rÞ · dl,
which is the flux because of the uniform London field BL
within the superconductor [Fig. 3(d)]. Our DNS provides
valuable insights into the dynamic interplay between rota-
tion, vortices, and the London field in the proton super-
conductor. As vortices penetrate the condensate [49], they
reduce the uniform magnetic field through the system [54].
The distribution of currents, crucial for generating and
sustaining this magnetic field, is revealed by the 2D vector
plots of Jx and Jy in Fig. 4(b). Note that these currents are
concentrated near the superconductor’s boundary and around
the vortices.
Case(iii): Both the neutron and proton condensates rotate

with Ω ¼ Ωẑ; and the proton condensate is subjected to an
external magnetic field Bext ¼ Bẑ. The equilibrium state of
the neutron condensate resembles that of Case (ii), with
vortices penetrating the system beyond the neutron critical
angular velocity Ωn

c. The proton condensate manifests a
London field BL as in Case (ii). In Figs. 5(a) and 5(b) we
present blue-scale plots of the magnetic fieldB ¼ ∇ ×A, in
the plane z ¼ L=2 and at initial ti and final tf representative
(imaginary) times; these plots show neutron vortices and
proton flux tubes in red and yellow contours, respectively.
We visualize these vortices and flux tubes via plots of the

(a)

(c)

(b)

FIG. 4. Two-dimensional (2D) vector plots of the proton
Cooper-pair current densities Jx and Jy for (a) Ω ¼ 2.5 and
(b) Ω > Ωc ¼ 4.5. (c) The magnitude of the radial component of
the magnetic field B ¼ ∇ ×A, normalized by the London
magnetic field BL, plotted as a function of the distance r=R
from the center of the superconductor, where R is the radius of the
spherical proton condensate. The solid curve is from the
imaginary-time DNS of Eqs. (19)–(23) and the dashed curve
is the analytical relation (35) for two values of χ ¼ R

λp
, with λp the

London penetration depth of the superconductor.
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pseudovorticity ωp ¼ j∇ × ðρvÞj, where ρ is the density and
v is the velocity field of the superfluid neutrons or super-
conducting protons. The velocity field is calculated using the
following:

vn;p ¼
ℏ
ρn;p

ψ�
n;p∇ψn;p − ψn;p∇ψ�

n;p

2i
; ð36Þ

where (n,p) refers to neutron and proton Cooper pairs,
respectively.
At the initial (imaginary) time ti we include proton flux

tubes (yellow) in the initial condition [Fig. 5(a)]; the
magnetic field is concentrated near the boundary of the
simulation box. In the equilibrium state, neutron vortices
(in red) enter the condensate and organize themselves in the
manner depicted in Fig. 5(b). Even though γ ¼ 0, i.e., there
is no direct interaction between the two components, the
neutron-superfluid vortices and proton-superconductor flux
tubes come close together, as we show in Fig. 5(b). This
effective attraction follows from the coupling induced by
the Poisson equation for gravitational potential [Eq. (11)].
It is also important to note that the sizes of vortices in

Fig. 5 are different. This can be explained using the pseudo-
vorticity ωp ¼ ∇ × ðρvÞ, which can be rewritten as

ωp ¼ ρ∇ × v þ ð∇ρÞ × v: ð37Þ

For a uniform density distribution, such as in harmonic
confinement, the second term in Eq. (37) is very small
because ∇ρ is negligible, resulting in vortices of similar
sizes throughout the condensate. However, for the self-
gravitating case, the density decreases as we move away
from the center. This creates a negative density gradient

towards the edge, causing ωp to become small and resulting
in smaller vortex sizes at the boundary.

B. Imaginary-time study: γ ≠ 0, Vθ = 0, Θ= 0

We examine the interacting case of γ ≠ 0 [in addition to
the gravitational-potential-induced coupling in Case (iii)].
Consider first neutron-proton density-density interactions;
their effective strength follows from the first term in the
interaction Lagrangian (4):

g0 ¼ gnpjψnj2jψpj2: ð38Þ
For attractive (repulsive) couplings g0 < 0 (g0 > 0), the
density minima of neutron-superfluid vortices and proton-
superconductor flux tubes align (the maximum of the
neutron-superfluid density aligns with the proton flux tubes).
(A similar analysis has been conducted in Ref. [24] without a
gravitational interaction.) Given that the gravitational inter-
action is inherently attractive, the attractive case (g0 < 0) only
promotes this alignment; if we start with the same initial
condition as in Fig. 5(a), we obtain the final equilibriumstate,
shown in Fig. 6(a), with overlapping density minima of the
neutron-superfluid vortices in red and of proton-supercon-
ductor flux tubes in yellow [as in Fig. 5(b), with only
gravitation-induced interactions]. In contrast, if g0 > 0, the
interplay between the repulsive density-density interaction
and the attractive gravitational interaction is such that cores
do not overlap, as evident in Fig. 6(b).
We now incorporate the current-current interaction in the

Lagrangian (4). This leads to the entrainment of the proton-
superconductor current because of the term γq

c2ϵ0
Jnjψpj2 in the

vector potential (10). This introduces a combination of
gravitational, negative density-density (g0 < 0), and positive
current-current interactions, whose effects we investigate by
starting with the same initial condition as in Fig. 5(a). As
imaginary time progresses, neutron-superfluid vortices (in
red) and proton-superconductor flux tubes (in yellow) tend to
merge and the minima of neutron and proton densities
overlap because of the gravitational and negative density-
density interaction [see Fig. 6(c)]. This entrainment causes
neutron-superfluid vortices to drag proton-superconductor
flux tubes and induces a magnetic field inside these vortices.
This is clearly visible as intense blue spots in Fig. 6(c), inside
vortices that do not overlap with proton-superconductor flux
tubes. To illustrate the generation of this entrainment-
induced magnetic field, we plot the magnetic-field energy
EBðtÞ ¼ jBext − ∇ ×Aj2 versus imaginary time t in Fig. 6(d)
both with (blue curve) and without (cyan curve) current-
current interaction. In the latter case EBðtÞ is higher than in
the former at large t.

C. Angle between Bext and Ω

So far we have examined cases with aligned Bext and Ω,
i.e., Θ ¼ 0. We turn now to Θ > 0, which is the case in
most pulsars.

(a) (b)

FIG. 5. Pseudocolor plots, at the plane z ¼ L=2, illustrating the
magnetic field B ¼ ∇ ×A in blue at (a) initial ti and (b) final tf
(imaginary) times, with neutron vortices and proton flux tubes
indicated by red and yellow contours, respectively. The vortices
and flux tubes are the contour plots of the pseudovorticity
ωp ¼ j∇ × ðρvÞj, where ρ is the density and v is the velocity
of the superfluid or superconductor. Both neutron and proton
subsystems rotate with Ω ¼ 2.5; and the external magnetic field
is Bext ¼ 0.8.
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1. No interactions: γ = 0, Vθ = 0, and Θ = 30°

As in Case (i) Sec. IVA we study a neutron condensate
that rotates [Ω ¼ Ωẑ] and a nonrotating proton condensate
in an external magnetic field Bext ¼ Bðẑ cosΘþ ŷ sinΘÞ.
We examine the case with no direct interactions, i.e., γ ¼ 0,
no crust potential, i.e., Vθ ¼ 0, and the representative
values Θ ¼ 30° and Ω ¼ 2.5 > Ωn

c , so vortices enter the
neutron condensate, and the proton condensate is stabilized
with an Abrikosov lattice.
In Fig. 7(a), we show a one-level red contour plot of the

neutron-superfluid vortices at the final imaginary time;
these are aligned along the z-axis. By contrast, the proton-
superconductor flux tubes, illustrated by cyan contour plots
in Fig. 7(b), form an Abrikosov lattice, have their axes tilted
at a fixed angle of Θ ¼ 30° relative to the z-axis; the
magnetic field manifests itself solely within these flux tubes
[Fig. 7(c)].
We now consider the counterpart of Case (ii) Sec. IVA;

both neutron and proton condensates rotate with an angular
velocity Ω ¼ Ωẑ and there is no external magnetic field

[Bext ¼ 0]. Vortices, oriented along the z-axis, thread the
neutron condensate. At small values of the imaginary time
t, the proton-superconductor flux tubes are oriented at an
angle Θ ¼ 30° [Fig. 8(a)]. As t increases, these flux tubes
try to align themselves along the rotation axis z [Fig. 8(b)],
and they do so ultimately [Fig. 8(c)]. This alignment is
facilitated by the absence of an external magnetic field,
which tends to counteract this reorientation. We also

(a) (b) (c)

FIG. 7. One-level contour plots of ð∇ × ðρvÞÞ2 for (a) neutron-
superfluid vortices, and (b) proton-superconductors flux tubes at
the final imaginary time. (c) Volume plot (final imaginary time) of
the magnetic field B ¼ ∇ ×A. In these plots, the neutron
condensate rotates with angular velocity Ω ¼ Ωẑ, with
Ω ¼ 4.0, and a nonrotating proton condensate; there is an
external magnetic field Bext ¼ 0.8 that makes an angle Θ ¼
30° with the z-axis. Both species interact only through the
gravitational potential.

(a) (b) (c) (d)

FIG. 6. Pseudocolor plots, at plane z ¼ L=2, illustrating the magnetic fieldB ¼ ∇ ×A in blue [at equilibrium, i.e., the final imaginary
time in our DNS], with neutron vortices and proton flux tubes shown via red and yellow contours, respectively, for (a) gravitational and
attractive (g0 < 0) density-density interactions, (b) gravitational and repulsive (g0 > 0) density-density interactions, (c) gravitational,
attractive density-density, and also current-current interactions. (d) Imaginary-time series plots of the magnetic-field energy EB ¼
jBext − ∇ ×Aj2 for zero current-current interaction (γ ¼ 0) in cyan and nonzero current-current interaction (γ ≠ 0) in blue. Both
neutron and proton subsystems rotate with Ω ¼ 2.5; and the external magnetic field is Bext ¼ 0.8. The vortices and flux tubes are the
contour plots of the pseudovorticity ωp ¼ ∇ × ðρvÞ, where ρ is the density and v is the velocity of the superfluid or superconductor.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. (a)–(c) One-level contour plots of ð∇ × ðρvÞÞ2 for
proton flux tubes and (d)–(f) pseudocolor plots of the magnetic
field B at the midplane (z ¼ L=2) at three representative
imaginary times. Both neutron and proton subsystems rotate
with the angular velocity Ω ¼ 4.0ẑ; and Bext ¼ 0. (g)–(i) One-
level contour plots of ð∇ × ðρvÞÞ2 for proton flux tubes with
Ω ¼ 4.0ẑ; and Bext ¼ 0.8. At the initial imaginary time in (a), the
proton flux tubes make an angle Θ ¼ 30° with the z-axis. Both
species interact only through the gravitational potential.
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observe the generation of a London magnetic field BL
inside the proton condensate [Figs. 8(d)–8(f)].
Finally we consider the counterpart of Case

(iii) Sec. IVA; both neutron and proton condensates rotate
[Ω ¼ Ωẑ] and there is an external uniform magnetic field
Bext, as in a pulsar, but with interactions solely through the
gravitational potential. At small values of the imaginary
time t [Fig. 8(g)], the proton-supercondcutor flux tubes
are aligned at an angle Θ ¼ 30° with the z-axis, and the
magnetic field is concentrated primarily outside the
condensate. As t increases, the proton flux tubes try to
orient themselves along the rotation axis [Fig. 8(h)], but
Bext resists this alignment. Ultimately, these proton-
superconductor flux tubes exhibit frustration [Fig. 8(i)]
as they try both to align globally with the rotation axis and
to adhere to Bext, which makes an angle Θ ¼ 30° with the
z-axis. This frustration is akin to the glassy behavior of
flux tubes, studied in Ref. [24], without gravity but with a
quadratic confining potential. In the next subsection we go
beyond the study of Ref. [24] by incorporating the full
Maxwell equations that lead to entrainment.

2. Nonzero interactions: γ ≠ 0, Vθ = 0, and Θ= 30°

Consider now the counterpart of Sec. IV B, i.e., direct
interaction (γ ≠ 0) between neutron and proton conden-
sates. We first examine attractive density-density inter-
actions [Eq. (38)], so g0 < 0. We show the evolution (in
imaginary-time t) of the proton-superconductor flux tubes
and the magnetic field in Figs. 9(a)–9(c). At the initial time
t ¼ 0, the proton flux tubes are oriented at an angle Θ ¼
30° with respect to the z-axis [Fig. 9(a)]. As t increases,
these flux tubes exhibit a rapid realignment with the
rotation axis because of the combined gravitational and
attractive density-density interactions [Figs. 9(b)–9(c)].
To obtain entrainment, we must introduce the current-

current interactions [the second term in Eq. (4)]. The proton
flux tubes evolve in imaginary time t as in the previous case
with attractive density-density interactions. However, the
current-current interaction, γq

c2ϵ0
Jnjψpj2 in the vector poten-

tial (10), leads to an entrained proton-superconductor

current. This entrainment results in an induced magnetic
field inside the neutron-superfluid vortices [gray and red
isosurfaces, respectively, in Fig. 10].

D. Real-time evolution

We now delve into the real-time equations (19)–(23). We
first follow the dynamics of the alignment of proton-
superconductor flux tubes with the rotation axis [Fig. 9].
We begin with the configuration of vortices (cyan) and flux
tubes (red) shown in Fig. 11(a), which we obtain as the
equilibrium state of the imaginary-time versions of
Eqs. (19)–(21). The axes of rotation and the magnetic
moment m make an angle χ [see the schematic diagram in
Fig. 11(b)]; we define them as follows:

m ¼ 1

2

Z
r × JpdV; ð39Þ

cosðχÞ ¼ Ω ·m
jΩjjmj : ð40Þ

The angle χ depends on time t; for considerable lengths of
time it showsminor fluctuations, but, occasionally, it changes
dramatically, as we show in Fig. 11(c) via a plot of cosðχÞ
versus t. The sudden change in cosðχÞ, from positive to
negative values, indicates that the magnetic moment under-
goes reversals, which are familiar in many other hydrody-
namical [55,56], dynamo [57–59], geomagnetic [60–62],
and astrophysical [63–65] settings.Measurements for several
pulsars [66] indicate that 0° ≤ χ ≤ 90°; e.g., the pulsar (PSR

(a) (b) (c)

FIG. 9. One-level contour plots of ð∇ × ðρvÞÞ2 for proton flux
tubes at three representative imaginary times in (a)–(c). Both
neutron and proton subsystems rotate with the angular velocity
Ω ¼ Ωẑ, where Ω ¼ 4.0; and Bext ¼ 0.8, which makes an angle
Θ ¼ 30° with the z-axis. Furthermore, we have gravitational and
attractive density-density (g0 < 0) interactions [first term in
Eq. (4)] between neutron and proton Cooper pairs.

FIG. 10. One-level contour plots of ð∇ × ðρvÞÞ2 for neutron-
superfluid vortices, at the final imaginary time with a super-
imposed volume plot of the magnetic field B at the final time.
Both neutron and proton subsystems rotate with the angular
velocity Ω ¼ Ωẑ, where Ω ¼ 4.0; and Bext ¼ 0.8, which makes
an angle Θ ¼ 30° with the z-axis. Gravitational and other
interaction terms are included [Eq. (4)].
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B1055-52) is an aligned rotator, whereas another (PSR
B1702-19) is an orthogonal rotator; the time scales of these
observations are such that, for any given pulsar, χ has a
steady, time-independent value.
In our minimal model the crust potential Vθ is a function

of a single polar angle θ whose dynamics is given by
Eq. (14). To study the interplay of crust, neutron-superfluid,
and proton-superconductors, we use Eqs. (19)–(23) along
with Eq. (14) and initial conditions that we obtain from the
equilibrium states of imaginary-time studies of the previous
sections, with the same angular velocity Ω ¼ dθ

dt for the
crust, the neutron condensate, and the proton condensate.
For purposes of illustration, we consider Θ ¼ 0, i.e., the
angle between the rotation axis and the magnetic field is
zero. The neutrons and protons interact only through the
gravitational potential via the Poisson equation (γ ¼ 0).
In Figs. 12(a)–12(c), we show isosurface plots of the

crust potential in blue, isosurfaces of neutron-superfluid

vortices in red, and proton-superconductor flux tubes in
cyan at three representative times. At the initial time step
[Fig. 12(a)], the system features 12 neutron vortices and 6
proton flux tubes. Given the parameters of our simulation,
the proton-superconductor flux tubes are more effectively
pinned by the crust potential than neutron-superfluid
vortices, in part because of the anchoring of the flux tubes
to the strong external magnetic fieldBext. Over the duration
of the simulation presented in Figs. 12(a)–12(c), the
number of neutron-superfluid vortices reduces by a factor
of 2 but the number of proton flux tubes remains
unchanged. Both superfluid vortices and proton-super-
conductor flux tubes undergo differential rotation because
of the friction coefficient α in Eq. (14) for the polar angle.
The angular momentum of the crust is given as

Jc ¼ Icdθ=dt, with Ic is the moment of inertia of the crust
[see the Appendix for details]. The temporal evolution of Jc
is complicated because of the subtle interplay between the

FIG. 11. Real-time evolution: (a) One-level contour plot of ð∇ × ðρvÞÞ2 for neutron vortices (in red) and proton flux tubes (in cyan) at
the initial time. (b) Schematic diagram showing the angle χ between the rotation axis and the magnetic moment [Eq. (39)]. (c) The
evolution of the angle χ with time. Both neutron and proton subsystems rotate with angular velocity Ω ¼ Ωẑ, where Ω ¼ 4.0; and
Bext ¼ 0.8, which makes an angleΘ ¼ 30° with the z-axis. Insets (d) and (e) show illustrative proton flux-tube configurations before and
after the reversal.

FIG. 12. One-level contour plots of the crust potential together with the neutron vortices (in red) and proton flux tubes (in cyan) at
three different times in (a), (b), and (c) obtained by using the real-time GPPE [Eq. (19)] and RTGLE [Eq. (20)]. Both neutron and proton
subsystems rotate with an angular velocity Ω ¼ Ωẑ, where Ω ¼ 4.0; and Bext ¼ 4.0, which is along the z-axis.
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friction, which slows down the crust, and the angular
momentum in the neutron-superfluid vortices. When such a
vortex is ejected from the pulsar, its angular momentum is
transferred to the crust. Some neutron vortices linger close
to proton-superconductor flux tubes because of the
Poisson-equation-induced gravitational attraction between
them. This also affects the time-dependence of Jc. Finally,
we have an effective stick-slip dynamics for Jc that displays
glitches whose statistics has properties that are akin to those
seen in several pulsars and which yield pulsar glitches
[3,4,6,67]. We observe small quasioscillatory structures in
the time series of Jc. This occurs because we use the
periodic version of coordinates (xp,yp) defined in Eq. (15).
It is also important to note that, in our model, the crust
potential rotates with the superfluid when vortices are
pinned; however, when a vortex becomes unpinned, the
crust experiences a sudden decrease in its angular momen-
tum, followed by an increase in the angular momentum as
the unpinned vortex moves from the condensate to the
crust, thus transferring its angular momentum.
We now examine the analogs of pulsar glitches in our

model, by following the methods developed in Ref. [3]. In
particular, we present the time series of the angular
momentum ðJc − Jc0Þ=Jc0 of the crust in Fig. 13(a). This
time series of ðJc − Jc0Þ=Jc0 exhibits characteristic features
that are associated with SOC [27–30], which we have
explored, in the context of gravitationally collapsed boson
stars, in our earlier work [3]. Figures 13(b)–13(d) present
expanded views of specific segments [indicated by black

boxes] of the time series in Fig. 13(a). From the time
dependence of Jc, we observe that the crust can either lose
angular momentum to the superfluid or can gain angular
momentum from it, because of the stick-slip dynamics
mentioned above.
To characterize SOC, we quantify the statistics Jc as

follows. We measure (a) the event size ΔJc, which is the
difference between successive minima and maxima in Jc,
(b) the event-duration time ted, which is the time difference
between successive minima andmaxima of JcðtÞ, and (c) the
waiting time tw, which is the time between successive
maxima in JcðtÞ. We then obtain cumulative probability
distribution functions (CPDFs) of ΔJc, ted, and tw; as in
Ref. [3], the former two CPDFs exhibit power-law tails,
whereas the last has an exponential tail. In Fig. 13(e), we plot
theCPDFQðΔJc=Jc0Þ; it scales asQðΔJc=Jc0Þ ∼ ðΔJc=Jc0Þβ,
within the gray-shaded region. Therefore, the corresponding
probability distribution function (PDF) scales as
PðΔJc=Jc0Þ ∼ ðΔJc=Jc0Þβ−1; for our representative run, we
obtain the scaling exponent β ¼ 0.86� 0.15, by using local-
slope analysis. The CPDF of ted shows the power law
QðtedΩÞ∼ ðtedΩÞγt in the gray-shaded region of Fig. 13(f),
with an exponent γt ¼ 2.5� 0.2 for our run. TheCPDFof tw
shows the exponential form QðtwΩÞ ∼ expð−6.5twΩÞ
[Fig. 13(f)]. The qualitative forms of these CPDFs is similar
to those seen in experiments, as has been noted in Ref. [3],
which uses the GPPE system without the proton super-
conductor and the Maxwell equations that we include. The
values of the exponents β and γ lie close to those that have

(a)

(e) (f ) (g)

(b) (c) (d)

FIG. 13. (a) Time series of the crust angular momentum ðJc − Jc0Þ=Jc0 . (b)–(d) are the zoomed versions of the rectangular regions
shown in the preceding plots. Log-Log plots of (e) the CPDF QðΔJc=Jc0Þ of the event size and (f) the CPDF QðtedΩÞ of the event
duration. (g) Semilog plot of the CPDF QðtwΩÞ of the waiting time. Jc0 and Ω are the initial angular momentum and initial angular
velocity of the crust, respectively.
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been observed for certain pulsars [e.g., PSR J 1825-0935 has
glitch-size-PDFexponent≃0.36] [30]. InRef. [3], it has been
noted that range of glitching sizes depends onΩ. In addition,
we find that these sizes also depend on Bext.
We have noted above that Poisson-equation-induced

interaction between the neutron superfluid and the proton
superconductor makes superfluid vortices approach super-
conductor flux tubes. As the crust decelerates, the neutron
vortices leave the condensate abruptly. The associated
jumps in JcðtÞ are somewhat sharper in time but smaller
in amplitude than those in the GPPE model of Ref. [3].
Consequently, our values of the exponents β and γ are about
10% larger than those in Ref. [3], but still comfortably in
the observational range [30] −0.13≲ −ðβ − 1Þ≲ 2.4. The
inclusion of current-current and density-density inter-
actions [Eq. (4)] may reduce the sizes of glitches, by
slowing down the ejection of vortices from the condensate.
Furthermore, we expect that the current-entrainment term
in Eq. (21), which induces a magnetic field inside neutron
vortices, could reduce glitch sizes.

V. CONCLUSIONS

We have developed a theoretical framework for studying
the coupled motion of neutron-superfluid vortices and
proton-flux tubes in a gravitationally collapsed condensate.
In this framework we have employed (a) a 3D GPPE for
neutron Cooper pairs, (b) the RTGLE for proton Cooper
pairs, (c) the Maxwell equation for the vector potential A,
and (d) Newtonian gravity and interactions, both direct and
induced by the Poisson equation, between the neutron and
proton subsystems. For a pulsar we have included, in
addition, a crust potential as in Ref. [3]. The recent studies
in Refs. [24,25,68] use the Gross-Pitaevskii-Equation and
Ginzburg-Landau equation (imaginary time) together with a
static ansatz for A in a harmonic trap. We have gone well
beyond these earlier studies by including Newtonian gravity
in theGPPEandRTGLE togetherwith the completeMaxwell
equations for A. To the best of our knowledge, this has not
been attempted hitherto in the context of pulsars.
Our imaginary-time studies of the GPPE (19) and the

RTGLE (20) reveals that, even in the absence of any direct
interaction (γ ¼ 0), the neutron-superfluid vortices and
proton-superconductor flux tubes interact gravitationally
through the Poisson equation (21). By including the
Maxwell equations, we demonstrate, for the first time, that
neutron-superfluid vortices display an induced magnetiza-
tion whose magnitude is proportional to γq

c2ϵ0
Jnjψpj2. This

magnetization plays a crucial role in the expulsion of
vortices from the pulsar. The angle Θ is an important
control parameter in our model. For example, if Θ ¼ 30°,
proton flux tubes gradually endeavor to align themselves
with the rotation axis over time [Figs. 8(a)–8(c)], but
they also exhibit a tendency to adhere to the external
magnetic field; this competition leads to frustration in the

proton-superconductor flux tubes, which are no longer
straight but become distorted [Figs. 8(b) and 8(h)].
The real-time dynamics of the GPPE (19), RTGLE (20),

and the Maxwell equations (21) can be applied qualitatively
to pulsars. We must, of course, incorporate a pulsar-crust
potential Vθ, described, at the simplest level, by the polar
angle θ in Eq. (14). This provides a minimal model for
studying pulsar glitches. Our investigation reveals that the
proton-superconductor flux tubes remain anchored to the
crust by the external magnetic field Bext, while neutron-
superfluid vortices leave the condensate and give rise to the
glitching phenomenon, the complicated time evolution of
the crust angular momentum JcðtÞ, which displays signa-
tures of SOC. Although pulsar glitches have been obtained
recently in the GPPE model [3], they have not been studied
in the presence of proton-superconductor flux tubes, whose
dynamics affects pulsar glitches and the time series of JcðtÞ
significantly [as we can see by comparing Fig. 13 with
Fig. 4(b) in Ref. [3]].
The SOC that we obtain in our model for pulsars, which

generalizes the earlier work from our group [3], is akin to
what has been obtained in some pulsars; e.g., in the pulsar
PSR J 1825-0935, the glitch-size exponent β ≃ 0.36. Given
the simplicity of our model, this is indeed gratifying. It is
important to note that neutrons in the outer core of a
neutron star are strongly interacting and are sometimes
argued to scatter through p-wave interactions [16].
However, the Gross-Pitaevskii (GP) model of neutron
Cooper pairs is applicable for weakly interacting neutrons
and considers only s-wave interactions. Our interest lies in
the dynamics of neutron vortices, which can be modeled
using the s-wave interacting GP equation. This approach
has previously been applied in modeling the outer core of
neutron stars [24,25,68]. In our simulations, some ratios
match closely the values found in typical pulsars; in the
outer core of a neutron star, the proton to neutron number
density ratio is np

nn
≃ 0.05; we consider the range

0.5 ≤ np
nn
≤ 1. Furthermore, we choose the ratio of the

neutron and proton coherence lengths ξn
ξp
¼ 2, which agrees

with the value found in neutron stars [69]. The London
parameter κ for type II superconducting proton Copper
pairs is chosen to be greater than 1ffiffi

2
p , so that we have an

Abrikosov phase. However, it is important to note that
numerical studies cannot achieve spatial and temporal
scales and resolutions that are in the ranges of direct
relevance to pulsars. In particular, the radius of a typical
neutron star is ≃10 km; by contrast, the core sizes of
neutron-superfluid vortices are ≃10−15 m; the ratio of the
speed of light to that of sound c

cs
≃ 106, which is a challenge

for any simulation. The number of neutron-superfluid
vortices that thread a pulsar is estimated to be
Nv ¼ 1016; this is far in excess of what can be simulated
on even the world’s biggest computers. The number of

vortices in our model is given asNv ¼ L
2

ffiffi
β
α

q
, where L ¼ 2π
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is the length of the simulation box and α and β are given in
Table I. For the values we use in our simulations, namely,
α ¼ 0.2 and β ¼ 5, we have Nv ∼ 15–20 vortices. We can
increase Nv by increasing either the size of our simulation
or the ratio β=α (or both); but these are limited severely by
computational facilities.
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APPENDIX

The total angular momentum of the system is
J ¼ Jz þ Jc, with Jc, the crust angular momentum, and

Jz, the angular momentum of the system without the crust,
which are, respectively,

Jc ¼ Ic
dθ
dt

and

Jz ¼
Z

d3xψ�
nðêz × rÞ · ð−iℏ∇Þψn

þ
Z

d3xψ�
pðêz × rÞ · ð−iℏ∇Þψp; ðA1Þ

where Ic is the moment of inertia of the crust. In the
absence of friction [α ¼ 0 in Eq. (14)], the total angular
momentum is conserved in an infinite system. In the
spatially periodic cubical domain that we consider, this
conservation is only approximate because this domain does
not have strict rotational invariance (see Ref. [3] for a
detailed discussion).
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