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Anomalous vortex-ring velocities induced by thermally excited Kelvin waves and counterflow
effects in superfluids
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Dynamical counterflow effects on vortex evolution under the truncated Gross-Pitaevskii equation are
investigated. Standard longitudinal mutual-friction effects are produced and a dilatation of vortex rings is obtained
at large counterflows. A strong temperature-dependent anomalous slowdown of vortex rings is observed and
attributed to the presence of thermally excited Kelvin waves. This generic effect of finite-temperature superfluids
is estimated using energy equipartition and orders of magnitude are given for weakly interacting Bose-Einstein
condensates and superfluid 4He. The relevance of thermally excited Kelvin waves is discussed in the context of
quantum turbulence.
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Quantum vortices present in superfluids interact with
the normal fluid producing mutual-friction effects that must
be phenomenologically introduced into Landau’s two-fluid
model.1,2 For superfluid 4He, there is no generally accepted
theory of mutual friction that is valid over the entire tem-
perature range.3 For Bose-Einstein condensates (BECs), the
Gross-Pitaevskii equation (GPE) is a dynamical description
that was thought to be valid only in the low-temperature limit.4

Davis et al.5 suggested that, when a truncation of Fourier
modes is performed, the resulting truncated GPE (TGPE) can
also describe the (classical) thermodynamic equilibrium of a
homogeneous BEC.5 The TGPE was found to relax toward
(microcanonical) equilibrium and a condensation transition
was obtained.5,6 Vortex dynamics was studied within the TGPE
by Berloff and Youd,7 who observed a dissipative contraction
of vortex rings.

The purpose of this Brief Report is to investigate mutual
friction and counterflow effects in the context of the TGPE.
We present a stochastic algorithm that allows the efficient
generation of grand canonical equilibrium states with nonzero
momentum at given (target) values of temperature, chemical
potential, and counterflow. These states are then combined
with lattices of straight vortices and vortex rings, and their
TGPE evolutions are monitored. Our main result is that,
besides the phenomenologically expected counterflow effects,
the TGPE also induces a (phenomenologically) unexpected
slowdown of vortex rings that is caused by thermally excited
Kelvin waves and should be considered in quantum turbulence.

The TGPE describing a homogeneous BEC of volume V
is obtained from the GPE by truncating the Fourier transform
of the wave function ψ : ψ̂k ≡ 0 for |k| > kmax.4,5 Introducing
the Galerkin projectorPG, which in Fourier space isPG[ψ̂k] =
θ (kmax − |k|)ψ̂k with θ (·) the Heaviside function, the TGPE
explicitly reads

ih̄
∂ψ

∂t
= PG

[
− h̄2

2m
∇2ψ + gPG[|ψ |2]ψ

]
, (1)

where |ψ |2 is the number of condensed particles per unit
volume, m is their mass, and g = 4π ãh̄2/m, with ã the
s-wave scattering length. The superfluid velocity reads vs =
(h̄/m)∇φ, where φ is the phase of the (complex) ψ and

h/m is the Onsager-Feynman quantum of velocity circulation
around vortex lines ψ = 0.4 When Eq. (1) is linearized
around a constant ψ = ψ̂0, the sound velocity is given
by c = (g|ψ̂0|2/m)

1/2
with dispersive effects taking place

for length scales smaller than the coherence length ξ =
(h̄2/2m|ψ̂0|2g)

1/2
, which also corresponds to the vortex core

size.
Equation (1) exactly conserves the energy H =∫

d3x( h̄2

2m
|∇ψ |2 + g

2 [PG|ψ |2]2) and the number of parti-
cles N =

∫
d3x|ψ |2. The momentum P = ih̄

2

∫
d3x(ψ∇ψ −

ψ∇ψ) is also conserved when standard Fourier pseudospectral
methods are used, provided that they are dealiased using the
2/3 rule (kmax = 2/3 × M/2, Ref. 8, at resolution M). [Global
momentum conservation is mandatory to correctly describe
vortex–normal-fluid interactions. When the nonlinear term in
Eq. (1) is written, as in Ref. 5, PG[|ψ |2ψ], dealiasing must be
performed at kmax = M/4.]

Microcanonical equilibrium states are known to result
from long-time integration of the TGPE.5–7 Grand canonical
states are given by the probability distribution Pst[ψ] =
Z−1 exp[−β(H − µN − vn · P)]. They allow the direct con-
trol of temperature (instead of energy in a microcanonical
framework). These states can be efficiently obtained by
constructing a stochastic process that converges to a realization
with probability Pst[ψ].9 This process is defined by a Langevin
equation consisting in a stochastic Ginbzurg-Landau equation
(SGLE):

h̄
∂ψ

∂t
= PG

[
h̄2

2m
∇2ψ − gPG[|ψ |2]ψ

]

+PG [µψ − ih̄vn · ∇ψ] +

√
2h̄
Vβ

PG [ζ (x,t)] , (2)

where the white noise ζ (x,t) satisfies 〈ζ (x,t)ζ ∗(x′,t ′)〉 =
δ(t − t ′)δ(x − x′), β is the inverse temperature, µ the chemical
potential, and vn the normal velocity. The term ih̄vn · ∇ψ
induces an asymmetry in the repartition of sound waves
and generates nonzero momentum states. These states do
not generally correspond to a condensate moving at velocity
vs = vn because vs is the gradient of a phase and takes

132506-11098-0121/2011/83(13)/132506(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.132506


BRIEF REPORTS PHYSICAL REVIEW B 83, 132506 (2011)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

T/T

n

0 0.5 1 1.5 2
0

0.02

0.04

v
n

p
z

FIG. 1. (Color online) Temperature dependence of the normal
density ρn (see text). Inset: Pz as a function of vn at fixed temperature
T = 0.08Tλ. Points, SGLE (2) equilibration at resolution 643; solid
lines, low-temperature exact results.

discrete values for finite-sized systems. Equilibrium states with
nonzero values of the counterflow w = vn − vs are generated
in this way.

Using this algorithm in Ref. 9 the microcanonical and grand
canonical ensembles were shown to be equivalent and the
condensation transition reported in Refs. 5 and 6 identified
with the standard second-order λ transition. All of the SGLE
equilibria used in this Brief Report have a condensate at rest
(vs = 0) and therefore vn = w.

At low temperatures the partition function Z can be exactly
computed by the steepest-descent method.9 In particular,
setting vn = (0,0,vn) the momentum of the equilibrium state
reads Pz = N

β
m
µ
f [ 4mµ

h̄2k2
max

]vn, where N = k3
maxV/6π2 is the

total number of modes and f [z] = z − z3/2 cot−1(
√

z). These
relations furnish an explicit expression for the normal density
ρn = 1

V
∂Pz

∂vn
|vn=0.

The direct control of the counterflow vn in the SGLE
algorithm allows the temperature dependence of ρn in the
TGPE context to be obtained. The low-temperature exact
results are in good agreement with SGLE data; see Fig. 1.

In all the numerical simulations presented in this Brief
Report µ is adjusted in order to fix the density ρ = mN/V to 1
and the physical constants in Eqs. (1) and (2) are determined by
the relations ξkmax = 1.48 and c = 2. The inverse temperature
is normalized as β = N /V T and V = (2π )3. With this choice
of parametrization the λ-transition temperature is independent
of N and its value is fixed to Tλ = 2.48; the quantum of
circulation h/m has the value c ξ/

√
2.

We now turn to counterflow effects. To wit, we use an array
of alternate-sign straight vortices ψlattice (see Ref. 10). This
exact stationary solution of the GPE is obtained by Newton’s
method. The vortices are separated by a distance π and can be
considered isolated when ξ → 0, as the resolution is increased.
An equilibrium state ψeq is prepared using the SGLE (2)
with counterflow vn perpendicular to the vortices. The initial
condition ψ = ψlattice × ψeq is then evolved with the TGPE.
Figure 2(a) displays three-dimensional (3D) visualizations of
the density at t = 0 and 100 where the displacement of the
lattice is apparent. The temporal evolutions of the (parallel
and perpendicular to vn) positions of a vortex (R‖,R⊥) are
presented in Fig. 2(c) for T = 0.2 Tλ, T = 0.4 Tλ, and vn = 0.4.
The counterflow-induced vortex velocity clearly depends on
temperature. A perpendicular motion is also induced at short
times. This motion has two phases: first an adaptation, making
the lattice slightly imperfect, followed by a much slower
perpendicular motion. Observe that the imperfection of the
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FIG. 2. (Color online) (a), (b) Density at t = 0, 100 of the lattice
configuration (red lines) with T = 0.4Tλ and vn = 0.4. Blue clouds
correspond to density fluctuations. (c) Positions (R‖,R⊥) of a single
vortex for T = 0.2Tλ, T = 0.4Tλ, and vn = 0.4. Resolution 643.

lattice at final configurations is almost equal for the two
temperatures presented in Fig. 2(c), but the parallel velocities
are considerably different. The self-induced parallel velocity
caused by the slight lattice imperfection is thus very small and
does not drive the longitudinal motion.

We now concentrate on the measurement of R‖ for which
the present configuration is best suited. R‖ has a linear behavior
that allows direct measurement of the parallel velocity v‖. The
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FIG. 3. (Color online) (a) Temporal evolution of the (squared)
length of a vortex ring at different values of counterflow vn

(temperature T = 0.4Tλ and initial radius R = 15ξ ). (b), (c) 3D
visualization of the vortex ring (R = 20ξ ) and density fluctuations
at t = 18, 19, with T = 0.4Tλ and resolution 643. As in Fig. 2, the
vortex rings are red loops and the blue clouds correspond to density
fluctuations. Thermally excited Kelvin waves are apparent.
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temperature dependence of v‖/vn is presented in Fig. 3 for
different values of vn and ξ . This behavior is consistent with the
standard phenomenological model for the vortex line velocity
vL:3

vL = vsl + αs′ × (vn − vsl) − α′s′ × [s′ × (vn − vsl)], (3)

where s′ is the tangent of the vortex line, and vsl = vs + ui is
the local superfluid velocity with ui the self-induced vortex
velocity and vn the normal velocity. The mutual-friction
coefficients in Eq. (3) are typically written as α = Bρn/2ρ,
α′ = B ′ρn/2ρ where B and B ′ are of order 1 and weakly
temperature dependent. Equation (3) applied to a straight
vortex with vn perpendicular to the vortex and vs = 0 yields
α′ = v‖/vn. The value of α′ = B ′ρn/2ρ with B ′ = 0.83 is
displayed in Fig. 3 (bottom dashed line) and is in good
agreement with the lattice data.

We now turn to the interaction of vortex rings and coun-
terflow. The Biot-Savart self-induced velocity of a perfectly
circular vortex ring of radius R is given by

ui = h̄

2m

C(R/ξ )
R

, C(z) = ln (8z) − a (4)

where a is a core model-dependent constant.3 We have
checked, with initial data ψring prepared using Newton’s
method, that the GPE (large-R/ξ ) ring translational velocity
is well reproduced by (4) with a = 0.615.

Equation (3) with vn perpendicular to the ring and vs = 0
yields the radial velocity Ṙ = −α(ui − vn). The case without
counterflow (vn = 0) was studied by Berloff and Youd7 and a
contraction of vortex rings compatible with (3) was reported.
To study the influence of counterflow we prepared an initial
condition ψ = ψring × ψeq in the same way as above for the
vortex lattice. The temporal evolution of the (squared) vortex
length of a ring of initial radius R = 15ξ at temperature
T = 0.4Tλ, and vn = 0, 0.2, and 0.4 is displayed in Fig. 4(a).
The Berloff-Youd contraction7 is apparent in the absence of
counterflow (bottom curve). The temperature dependence of
the contraction, related to the α coefficient in Eq. (3), also
quantitatively agrees with their published results (data not
shown).

A dilatation of vortex rings is obtained [top curve in
Fig. 4(a)] when the counterflow vn is large enough. Such a
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FIG. 4. (Color online) Temperature dependence of counterflow-
induced lattice velocity v‖/vn (bottom) and ring slowdown -vL/ui

(top) obtained with vn = 0. Dashed line, prediction of Eq. (3) with
α′ = 0.83ρn/2ρ; solid line, prediction of anomalous slowdown by
Eq. (6) with R = 20ξ at various resolutions.

dilatation—a hallmark of counterflow effects—is expected3

to correspond to a change of sign of vn − vsl in Eq. (3).
However, the predictions of Eq. (3) unexpectedly turn out
to be quantitatively wrong. Indeed, using Eq. (4) with the
conditions of Fig. 4(a) one finds vsl = ui = 0.39, which is
significantly larger than the normal velocity vn = 0.2 around
which dilatation starts to take place [see middle curve in
Fig. 4(a)]. The prediction using Eq. (3) for the longitudinal
velocity vL = (1 − α′)ui + α′vn is also unexpectedly wrong.
Using the value of α′ determined above for the vortex array,
one finds vL ∼ 0.98ui and from Eq. (4) one finds for vL

the value 0.38, which is larger than the measured value
vL = 0.23.

This anomaly of the ring velocity vL is also present in the
absence of counterflow (vn = 0) where Eq. (3) predicts that α′

should be given by -vL/ui ≡ (ui − vL)/ui. The temperature
dependence of -vL/ui is displayed in Fig. 3 (top curve).
Observe that -vL/ui is one order of magnitude above the
transverse mutual friction coefficient α′ measured on the
lattice.

We now relate the thermally induced anomaly to the
velocity va induced on a vortex ring by a single Kelvin wave
of (small) amplitude A and (large) wave number NK/2πR
obtained in the Local Induction Approximation (LIA) LIA11

and Biot-Savart12 frameworks. The velocity va reads [see
Eq. (26) of Ref. 11]

va = ui
(
1 − A2N2

K

/
R2 + 3A2/4R2) (5)

where ui is the (undisturbed) ring velocity (4).
The TGPE model naturally includes thermal fluctuations

that excite Kelvin waves as apparent in Figs. 4(b) and 4(c).
We assume that the slowing down effect of each individual
Kelvin wave is additive and that the waves populate all the
possible modes. Kelvin waves being bending oscillations of
the quantized vortex lines, their wave number must satisfy
k ! kξ = 2π/ξ . The total number of thermally excited Kelvin
waves is thus NKelvin ≈ Rkξ .

The amplitude term A2N2
K/R2 in (5) can be obtained by

simple equipartition arguments. The energy of a (perfect) ring
is E = 2π2ρsh̄

2

m2 R[C(R/ξ ) − 1], with ρs the superfluid density.3

A Kelvin wave produces a variation of the ring length -L =
πA2N2

K/R. Its energy can thus be estimated as -E = dE
dR

-L
2π .

Assuming -E = β−1, this yields, at low temperatures where
ρs ≈ ρ, A2N2

K/R2 = m2β−1/π2ρh̄2RC(R/ξ ). (This formula
predicts a UV-convergent rms amplitude that is in good
agreement with TGPE data, with values small enough to avoid
self-reconnections of the ring.) Replacing A2/R2 in Eq. (5),
the dominant effect is obtained by summing up to NKelvin and
it finally becomes

-vL

ui
≡ ui − va

ui
≈ β−1m2

π2ρh̄2C(R/ξ )
kξ . (6)

The thermally induced anomalous slowdown (6) is in good
agreement with the TGPE data displayed in Fig. 3.

Fluctuating Kelvin waves also cause the effective vortex
core to be larger than the “bare” core size ξ . However, it is not
possible to interpret (6) as produced by a renormalization of ξ
in Eq. (4). Indeed the (dominant) contribution to the slowdown
effect of a number of Kelvin waves is

∑
i A

2
i N

2
i /R2 [see
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Refs. 11 and 12, and Eq. (5)], whereas their contribution to the

(rms) core size is proportional to
√∑

i A
2
i . Thus, two Kelvin

waves of (very) different wave numbers and equal amplitudes
contribute equally to the rms core size but (very) differently to
the slowdown effect.

We now extend (6) in order to take into account quantum
effects and estimate orders of magnitude in the physical
case of a BEC and superfluid 4He. The dispersion rela-
tion of Kelvin waves ω(k) = h̄

2m
k2C(R/ξ ) (Ref. 11) im-

plies [using the relation h̄ω(keq) = β−1 = kBT ] that Kelvin
waves are not in equipartition for wave numbers k > keq =
[2mkBT/h̄2C(R/ξ )]1/2, as quantum effects are relevant in this
range (as in blackbody radiation).

For a weakly interacting BEC with mean interatomic
particle distance / ∼ |ψ̂0|−2/3 satisfying ã / / / ξ the con-
densation temperature is Tλ ∼ h̄2/kBm/2. For T > T ∗, where
T ∗/Tλ ∼ C(R/ξ ) /2/ξ 2 / 1, it is straightforward to show
that keq > kξ and therefore that (6) directly applies and
reads -vL/ui ∼ (//ξ )[T/TλC(R/ξ )]. For T < T ∗, kξ must
be replaced by keq in formula (6) and the slowdown becomes
-vL/ui ∼ [T/TλC(R/ξ )]3/2.

At zero temperature it is natural to suggest that the
quantum fluctuations of the amplitudes of Kelvin waves
produce an additional effect. This effect can be estimated by

using -E = h̄ω(k)/2. It is radius independent and of order
-vL/ui ∼ (//ξ )3 (see Ref. 9).

In a low-T physical BEC, with a quantum distribution
of sound waves, ρn/ρ ∼ (T/Tλ)4,1 the standard effects (3)
are of order (T/Tλ)4. Thus, the additional effect should
dominate in this limit. In the case of superfluid 4He the GPE
description is only expected to give qualitative predictions.3

Nevertheless, this additional effect should also be dominant at
low temperatures.

Kelvin waves, excited by vortex reconnection, are also
relevant in the context of quantum turbulence13 where Eqs. (3)
and (4) overestimate the speed of the perturbed rings. In a dilute
gas of vortex rings, (6) increases the time between collisions
and inhibits reconnection. Dense vortex tangles should be
studied using the full TGPE.

In summary we obtained and measured standard counter-
flow mutual-friction effects within the TGPE. Our main result
is that vortex rings are decelerated by thermal fluctuations
of Kelvin waves and that these fluctuations, generic in finite-
temperature superfluids, produce an experimentally testable
effect that dominates the standard effects at low temperatures.
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