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Quantitative estimation of effective viscosity in quantum turbulence
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We study freely decaying quantum turbulence by performing high-resolution numerical simulations of the
Gross-Pitaevskii equation (GPE) in the Taylor-Green geometry. We use resolutions ranging from 10243 to 40963

grid points. The energy spectrum confirms the presence of both a Kolmogorov scaling range for scales larger than
the intervortex scale �, and a second inertial range for scales smaller than �. Vortex line visualizations show the
existence of substructures formed by a myriad of small-scale knotted vortices. Next, we study finite-temperature
effects in decaying quantum turbulence by using the stochastic Ginzburg-Landau equation to generate thermal
states, and then by evolving a combination of these thermal states with the Taylor-Green initial conditions
under the GPE. We use finite-temperature GPE simulations to extract mean-free path by measuring the spectral
broadening in the Bogoliubov dispersion relation that we obtain from the spatiotemporal spectra, and use it
to quantify the effective viscosity as a function of the temperature. Finally, we perform low-Reynolds-number
simulations of the Navier-Stokes equations, in order to compare the decay of high-temperature quantum flows
with their classical counterparts, and to further calibrate the estimations of the effective viscosity (based on the
mean-free-path computations).
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I. INTRODUCTION

Turbulence in quantum fluids provides an exciting yet chal-
lenging scenario to explore multiscale and out-of-equilibrium
dynamics. A turbulent state in superfluid 4He was first envi-
sioned by Feynman as a random interacting tangle of quantum
vortex lines [1,2]. More recently, quantum turbulence has
been realized and studied in experiments on a wide variety of
superfluid systems [3], such as bosonic superfluid 4He [4], its
fermionic counterpart 3He [5], and Bose-Einstein condensates
(BECs) in traps [6]. It must be emphasized that the study of
quantum turbulence in laboratory experiments is a challenging
task, which requires measurements at very low temperatures
and usually in small system sizes; therefore, any experimental
progress relies heavily on technical advancements. This is
where numerical and theoretical studies become important:
first, by providing explanations for the experimental obser-
vations; and second, by probing regimes that are yet not
directly accessible in current experimental setups. However,
these approaches have limitations of their own.
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Turbulent quantum fluids are known to display hydrody-
namic behavior at the large scales, showcasing, for example,
a Kolmogorov energy cascade [7,8]. At smaller scales, the
dynamics is dominated instead by nonlinear interactions of
Kelvin waves [9]. The crossover scale between these two
regimes is determined by the mean intervortex length. Un-
derstanding how this picture is affected by finite-temperature
effects is a subject of ongoing research. Currently, there is no
single theory which covers all the systems and is capable of
predicting the known dynamical effects across all the length
scales and timescales. Therefore, much progress relies on
phenomenological models, which at times are better suited for
one type of problem than for others. There are three important
classes of these phenomenological models: (i) the two-fluid
models, (ii) the vortex filament model, and (iii) the Gross-
Pitaevskii equation (GPE), also referred to as the nonlinear
Schrödinger equation.

The phenomenological two-fluid model was proposed in-
dependently by Tisza and Landau to explain the superflu-
idity of 4He below the lambda transition temperature. In
this model, at subtransition temperatures 4He is regarded
as a physically inseparable mixture of the superfluid and
normal fluid components. Many of the flow properties of
superfluid helium at low velocities can be described within
the framework of this model [10]. Among one of its great
successes was the prediction of second sound in super-
fluid 4He. However, it does not account for the presence
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of quantum vortices, a very important feature of superfluid
flows.

An extension of the two-fluid model is the Hall-Vinen-
Bekharevich-Khalatnikov model [11,12]. This model incorpo-
rates the effect of interactions between the quantized vortices
and the normal fluid by including a mutual friction term.
In this model the distinction between individual vortices is
ignored, and only length scales larger than the mean separa-
tion between quantum vortices are considered. Therefore, it
is an effective, coarse-grained model, which provides a good
description of superfluid turbulence at low Mach numbers.
This model has been used to study large-scale flow properties
and intermittency in direct numerical simulations (DNSs)
of quantum turbulence [13–15] and in reduced dynamical
systems based on shell models [16–19].

The vortex filament model [20] overcomes some of the
limitations of the above two-fluid models by regarding the
quantized vortices as filaments in three dimensions (3D),
and evolving them under the Biot-Savart law plus a mutual
friction term mimicking the coupling between the normal and
superfluid components. However, vortex reconnection is taken
care of on an ad hoc basis. This model is relevant in situations
in which the core size is negligible in comparison to the
characteristic length scales in the hydrodynamic description of
the flow, e.g., the mean intervortex separation � or the radius
of curvature of the vortex filaments R; it has been used to study
quantum turbulence at finite temperatures [21,22].

Finally, at zero or near-zero temperatures, for weakly in-
teracting bosons the GPE provides a good hydrodynamical
description of the superfluid flow; it naturally includes quan-
tum vortices as exact solutions, which can reconnect without
the need for any extra ad hoc assumptions [23]. The first 3D
DNSs of decaying quantum turbulence, using the GPE as a
model of a zero-temperature superfluid fluid, were performed
some 20 years ago with linear resolutions up to N = 512
grid points in each spatial direction, in the geometry of the
Taylor-Green (TG) vortex flow [7,24]. We recall that a freely
decaying turbulence, starting with a suitable initial data, does
not involve any external driving force. Moreover, forcing a
superfluid by an external time-dependent field or by some
stirrer typically excites a huge number of phonons, which may
even overwhelm the vortex dynamics and the Kolmogorov
turbulent regime. Therefore, it is natural to study a decaying
superfluid turbulence starting from a suitable initial condition.
Moreover, in the case of classical fluids, described by the
Navier-Stokes equation, it is well known that when a Kol-
mogorov regime is present, the time evolution of the energy
dissipation rises to a peak value, which is quite insensitive to
the Reynolds number [25].

An important contribution of Refs. [7,24] was the intro-
duction of a preparation method to generate initial data for the
GPE that corresponds to the classical Taylor-Green initial data
and generates vortex dynamics with minimal sound emission;
also, for the diagnostics these studies proposed the decompo-
sition of the total conserved energy into the incompressible
kinetic energy and other energy components, each with their
corresponding spectra. Physically, the main achievement of
these works was to show that at the moment of maximum
incompressible kinetic energy dissipation, the incompressible
kinetic energy spectrum displays a power-law scaling which

is compatible with Kolmogorov’s k−5/3 scaling. This scaling
was later confirmed in both experimental [8] and numerical
[26] studies. The GPE has also been used to study the small-
scale Kelvin wave cascade [27,28], thereby, demonstrating
that it is capable of capturing both the cascades.

More recently, high-resolution simulations resolving si-
multaneously the two inertial ranges (one for scales larger
than the intervortex length and the other for smaller scales)
were performed [29]. This study also showed that at large
scales the GPE can reproduce the dual cascade of energy and
helicity observed in classical turbulence [30].

However, a problem with the GPE framework is that finite-
temperature effects are notoriously difficult to incorporate
[31–33]. One minimalistic approach is to use the so-called
classical field models [34], by spectrally truncating the GPE
[35]. It is well known that the long time integration of the
truncated system results in microcanonical equilibrium states
and this approach captures the condensation transition [36].
This transition was later reproduced in Ref. [37] using a
grand-canonical method, where it was shown to be a stan-
dard second-order λ transition. Moreover, dynamical coun-
terflow effects on vortex motion, such as mutual friction and
thermalization dynamics, were also shown to be correctly
captured by this approach, and investigated in Refs. [37,38].
This scheme was also used to study the different regimes
that appear during the relaxation dynamics of the turbulent
two-dimensional (2D) GPE; here, the completely thermalized
states exhibit Berezinskii-Kosterlitz-Thouless transition in the
microcanonical ensemble framework [39,40]. This method
was extended to compute the mutual friction coefficients in
2D [41].

Recently, this approach was used to study finite-
temperature effects in helical quantum turbulence [42]. It was
observed that close to the critical temperature, behavior of
the truncated system is akin to a viscous classical flow; the
incompressible kinetic energy decays exponentially in time.
It was proposed that a quantitative estimation of the effective
viscosity can be obtained by measuring the mean-free path of
the thermal excitations directly on the spatiotemporal spec-
trum of the flow as a function of temperature; note that the
spatiotemporal spectrum apparently also gives access to the
spectrum of phonons in the system [27]. However, calculation
of the spatiotemporal spectrum is computationally intensive;
therefore, it is reasonable to perform it on a flow that maxi-
mizes the scale separation for given computational resources,
for example, the TG vortex flow (because of its symmetries).

The purpose of this paper is thus twofold. First, we want
to extend the zero-temperature (T = 0) TG vortex results at
linear resolution N = 512, obtained 20 years ago, to the reso-
lutions achievable with current computing resources. Second,
we want to measure, at the highest possible spatial resolution,
the spatiotemporal spectrum of the flow, in order to estimate
the mean-free path and the associated effective viscosity.

The rest of the paper is organized as follows. In Sec. II
we present the details of the GPE model and its numerical
implementation. In particular, in Sec. II A we discuss the basic
zero-temperature GPE theory and our diagnostics in terms of
different energies and associated spectra. Section II B con-
tains the details of our zero-temperature initial data prepara-
tion method. Our methods of incorporating finite-temperature
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effects are reviewed in Sec. II C. We describe the numerical
implementation of the problem in Sec. II D, and in Sec. II E
we discuss the choice of units. Section III contains our results.
First, in Sec. III A we present our results for zero-temperature
GPE dynamics with linear spatial resolutions up to N = 4096.
In Sec. III B we present the characterization of the finite-
temperature GPE states, including the condensation transition.
We give our results on the finite-temperature decaying GPE
runs in Sec. III C. In Sec. III D we compute and discuss the
truncated GPE spatiotemporal correlation and spectra. We
evaluate the mean-free path in Sec. III E, and Sec. III F is
devoted to the comparison of the finite-temperature freely
decaying GPE runs with Navier-Stokes freely decaying runs.
Finally, we present our conclusions in Sec. IV.

II. MODEL, INITIAL CONDITIONS,
AND NUMERICAL METHODS

A. Gross-Pitaevskii theory

The GPE, a partial differential equation for a complex field
ψ , describes the dynamics of a weakly interacting Bose gas at
low temperatures. It reads as

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (1)

where |ψ |2 is the number of particles per unit volume, m is
the mass of the bosons, g = 4π ãh̄2/m, and ã is the s-wave
scattering length. This equation conserves the total energy
E , the total number of particles Np, and the momentum P,
defined in a volume V , respectively, as

E =
∫

V
d3x

(
h̄2

2m
|∇ψ |2 + g

2
|ψ |4

)
, (2)

Np =
∫

V
|ψ |2 d3x, (3)

P =
∫

V

ih̄

2
(ψ∇ψ − ψ∇ψ ) d3x, (4)

where the overline denotes the complex conjugate.
Equation (1) can be mapped onto hydrodynamic equations

of motion for a compressible irrotational fluid using the
Madelung transformation given by

ψ (x, t ) =
√

ρ(x, t )

m
exp

[
i
m

h̄
φ(x, t )

]
, (5)

where ρ(x, t ) is the fluid mass density and φ(x, t ) is the
velocity potential, which gives the fluid velocity v = ∇φ. The
Madelung transformation is singular on the zeros of ψ . As two
conditions are required in the singular points (both real and
imaginary parts of ψ must vanish), these singularities must
take place on points in two dimensions (2D) and on curves
in 3D. The Onsager-Feynman quantum of velocity circulation
around the vortex lines (ψ = 0) is given by h/m.

An important property of quantum vortices is that the
complex field ψ is regular at their positions. Their singularity
is only present in the hydrodynamic variables and stems from
the Madelung transformation (5). Indeed, when ψ = 0 the
phase is not defined leading to the possibility of topological

defects. The associated vorticity ω = ∇ × v then reads as

ω(r) = h

m

∫
ds

dr0

ds
δ[r − r0(s)], (6)

where r0(s) denotes the position of the vortex lines and s the
arclength. The vorticity is thus a distribution concentrated on
the quantum vortex lines and the velocity field v is ill behaved
on these lines and has an incompressible (divergenceless) part
that can be recovered from (6) by using a Biot-Savart integral.

When Eq. (1) is linearized around a constant state ψ = A0,
one obtains the Bogoliubov dispersion relation

ωB(k) =
√

gk2|A0|2
m

+ h̄2k4

4m2
. (7)

The sound velocity is thus given by c =
√

g|A0|2/m, with
dispersive effects taking place for length scales smaller than
the coherence length defined by

ξ =
√

h̄2/(2gm|A0|2); (8)

ξ is also proportional to the radius of the vortex cores [7,24].

1. Energy decomposition and associated spectra

Following Refs. [7,24], we define the total energy per
unit volume as etot = (E − μNp)/V − μ2/2g, where μ is the
chemical potential. We use the hydrodynamic fields to write
etot as the sum of three components: the kinetic energy ekin,
the internal energy eint , and the quantum energy eq (all per
unit volume), defined respectively as

ekin = 1

V

∫
d3x

1

2
(
√

ρv)2, (9)

eint = 1

V

∫
d3x

g

2m2
(ρ − ρ0)2, (10)

eq = 1

V

∫
d3x

h̄2

2m2
(∇√

ρ )2, (11)

where V is the volume of the system and ρ0 = m|A0|2 is the
mean mass density of the fluid. Furthermore, we decompose
the kinetic energy into a compressible (irrotational) compo-
nent ec

kin and an incompressible (rotational) component ei
kin,

by making use of the relation
√

ρv = (
√

ρv)c + (
√

ρv)i with
∇ · (

√
ρv)i = 0 (see [7,24] for details).

We then use Parseval’s theorem to construct corresponding
energy spectra for each of these energies: e.g., the kinetic
energy spectrum ekin(k) is defined as

ekin(k) = 1

2

∫ ∣∣∣∣ 1

V

∫
d3r eir·k√ρv

∣∣∣∣2

k2d�k, (12)

where d�k is the solid angle element on the sphere in Fourier
space.

This decomposition of the kinetic energy provides a prac-
tical way to separate in the spectrum, the incompressible
contributions (produced by the quantum vortices) from the
compressible ones (produced by the sound waves). Indeed, the
3D angle-averaged spectrum of a smooth isolated vortex line
is known to be proportional to that of the 2D axisymmetric
vortex, an exact solution of the GPE (1) given by ψvort (r) =
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√
ρ(r)/m exp(±iϕ) in polar coordinates (r, ϕ). The corre-

sponding velocity field v(r) = h̄
m r−1 is azimuthal and the den-

sity profile, of characteristic spatial extent ξ , verifies
√

ρ(r) ∼
r as r → 0 and

√
ρ(r) = 1 + O(r−2) for r → ∞. Thus,

√
ρv j

has a small r singular behavior of the type r0 and behaves as
r−1 at large r. In general, for a function scaling as h(r) ∼ rs

the (2D) Fourier transform is ĥ(k) ∼ k−s−2 and the associated
spectrum scales as k−2s−3. Thus, Ekin(k) scales as k−3 for
k � kξ ∼ ξ−1 and as k−1 for k 	 kξ . The k−1 behavior is
characteristic of isolated vortices [7,24].

2. Vortex line length estimation

Working in a similar fashion as with the energy, we can
define the incompressible momentum power spectrum

Pi(k) = 1

2

∫ ∣∣∣∣ 1

V

∫
d3r eir·k(ρv)i

∣∣∣∣2

k2d�k . (13)

As was checked empirically in Refs. [7,24], the high-wave-
number components of the incompressible part of this spec-
trum can be approximated, in two dimensions, as the sum of
the momentum of all the vortices present in the flow counted
individually. This fact provides an easy way to estimate the
total line length of the vortices in a three-dimensional flow.
One simply has to calculate the total incompressible momen-
tum omitting the first wave numbers, and compare it to the
momentum of a system where only one straight vortex line
spanning the whole box length is present. As a result, the total
vortex length LV is

LV

2π
=

∫ kmax

kmin
Pi(k)dk∫ kmax

3 Pi
single(k)dk

, (14)

where kmax is the maximum resolved wave number in the
simulation, kmin is the lowest wave number not affected by
the condensate (to be on the safe side it is usually taken to be
equal to 3), Pi

single(k) is the incompressible momentum power
spectrum of a single vortex core (which can be calculated
numerically by preparing the adequate initial conditions, or
semianalytically by using an axisymmetric solution of the
GPE, see [24]), and the factor 2π is the length of the computa-
tional domain. The average intervortex distance � can finally
be estimated from the total vortex length by looking at the
vortex line density LV /V in the following way:

�−2 = LV

V
. (15)

B. Zero-temperature initial data preparation

The TG initial condition ψTG that will be used to study
the free decay (no stirring force) of quantum turbulence in the
GPE (1) is such that its nodal lines correspond to vortex lines
of the so-called Taylor-Green flow. In dimensionless units, the
TG velocity flow uTG is defined as

uTG
x (x, y, z) = sin(x) cos(y) cos(z),

uTG
y (x, y, z) = − cos(x) sin(y) cos(z),

uTG
z (x, y, z) = 0. (16)

1. Taylor-Green symmetries

The symmetries of the TG velocity field are rotational
symmetries of angle π around the axes x = z = π/2, y = z =
π/2, and x = y = π/2, and mirror symmetries with respect
to the planes x = 0 and π , y = 0 and π , and z = 0 and π .
The TG velocity field is parallel to these planes, that form
the sides of an impermeable box which confines the flow. It
is demonstrated in Ref. [43] that when using uTG as initial
data for the Navier-Stokes equations, these symmetries are
preserved by the dynamics, and that its solutions admit the
following Fourier expansion:

ux =
∞∑

m=0

∞∑
n=0

∞∑
p=0

ûx(m, n, p) sin mx cos ny cos pz,

uy =
∞∑

m=0

∞∑
n=0

∞∑
p=0

ûy(m, n, p) cos mx sin ny cos pz,

uz =
∞∑

m=0

∞∑
n=0

∞∑
p=0

ûz(m, n, p) cos mx cos ny sin pz, (17)

where û(m, n, p) vanishes unless m, n, p are either all even or
all odd integers. The expansion coefficients should also satisfy

ûx(m, n, p) = (−1)r+1ûy(n, m, p),

ûz(m, n, p) = (−1)r+1ûz(n, m, p), (18)

where r = 1 when m, n, p are all even, and r = 2 when
m, n, p are all odd. These come from the fact that the TG
flow has a rotational symmetry of angle of π around the axis
x = y = π/2.

These symmetries can be extended to flows described by
the GPE in Eq. (1). It is easy to show that the expressions
in Eq. (17) applied to ρv j , with v j = ∂ jφ [see Eq. (5)],
correspond to the following decomposition for the complex
scalar ψ (x, y, z, t ) as a solution of the GPE:

ψ =
∞∑

m=0

∞∑
n=0

∞∑
p=0

ψ̂ (m, n, p) cos mx cos ny cos pz, (19)

with ψ̂ (m, n, p) = 0 unless m, n, p are either all even or all
odd integers. The additional conditions then become

ψ̂ (m, n, p) = (−1)r+1ψ̂ (n, m, p) (20)

with the same convention as above. Implementing these re-
lations in a numerical code yields savings of a factor 64 in
computational time and memory size when compared to the
general Fourier expansion.

2. Taylor-Green initial data

In order to create the initial condition ψTG with zeros along
vortex lines of uTG, we make use of the Clebsch representation
of the velocity field [7,24]. The Clebsch potentials

λ(x, y, z) = cos x
√

2 | cos z|,
μ(x, y, z) = cos y

√
2 | cos z| sgn(cos z) (21)

(where sgn is the sign function) generate the TG flow in
Eq. (16), in the sense that ∇ × uTG = ∇λ × ∇μ. Also, note
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that a zero in the (λ,μ) plane corresponds to a vortex line of
uTG (see [7,24] for details).

Defining the 2D complex field ψe with a simple zero at the
origin of the (λ,μ) plane,

ψe(λ,μ) = (λ + iμ)
tanh(

√
λ2 + μ2/

√
2ξ )√

λ2 + μ2
, (22)

we obtain a three-dimensional field (as a function of x, y, and
z) with one nodal line. We can further define

ψ4(λ,μ) = ψe

(
λ − 1√

2
, μ

)
ψe

(
λ,μ − 1√

2

)
,

×ψe

(
λ + 1√

2
, μ

)
ψe

(
λ,μ + 1√

2

)
, (23)

which contains four nodal lines. In order to match the circula-
tion of uTG, we finally define a field which will be used below
as initial condition for an equation for data preparation as

ψARGLE(x, y, z) = (ψ4(λ(x, y, z), μ(x, y, z)))[γd /4], (24)

where the ratio of the total circulation to the elementary
defect’s circulation is γd = (2/π ) h̄/(2m) with h̄/(2m) =
cξ/

√
2 and the square brackets denote the integer part. Thus,

initially each vortex line corresponds to a multiple zero line.
The final step in the initial data preparation method consists

in running to convergence the advective real Ginzburg-Landau
equation (ARGLE):

∂ψ

∂t
= h̄

2m
∇2ψ + μψ − g

h̄
|ψ |2ψ − iuTG · ∇ψ − |uTG|2

2h̄/m
ψ,

(25)
with the initial condition ψARGLE. The ARGLE evolution
corresponds to the imaginary-time propagation of the GPE
with a local Galilean transformation by the velocity field
uTG. Under ARGLE dynamics the multiple zero lines in
ψARGLE will spontaneously split into single zero lines, and
the system will finally converge to initial conditions for the
GPE, compatible with the TG flow, and with minimal sound
emission. We denote the resulting converged state as ψTG.

C. A finite-temperature model

One of the different possible ways to include finite-
temperature effects on the condensate dynamics is by im-
posing an ultraviolet cutoff on the GPE. This amounts to
performing a Galerkin truncation operation on the GPE in
Fourier space with a projection operator PG defined as

PG[ψ̂ (k)] = �(kmax − |k|)ψ̂ (k), (26)

where ψ̂ is the spatial Fourier transform of ψ , kmax is a
suitably chosen ultraviolet cutoff (which, in practice, will
be the same as the maximum resolved wave number in the
simulations), and � is the Heaviside function. The resulting
Galerkin truncated GPE (TGPE) is

ih̄
∂ψ

∂t
= PG

[
− h̄2

2m
∇2ψ + gPG[|ψ |2]ψ

]
. (27)

The TGPE in Eq. (27) exactly conserves energy and mass;
moreover, if we correctly dealias it by using the 2

3 dealiasing
rule [44], with kmax = 2

3 × N/2 (in dimensionless units), it

also conserves momentum. We refer to Ref. [37] for an
explicit demonstration of the latter. The Galerkin truncation
operation also preserves the Hamiltonian structure with the
truncated Hamiltonian of the system given by

H =
∫

d3x

[
h̄2

2m
|∇ψ |2 + g

2
(PG|ψ |2)2

]
. (28)

The grand-canonical equilibrium states are given by the
following stationary probability distribution:

Pst[ψ] = 1

Z e−β[H−μNp], (29)

where Z is the grand partition function, β = 1/(kBT ) is the
inverse temperature, and kB is the Boltzmann constant. How-
ever, these states are difficult to compute as the Hamiltonians
in Eqs. (2) or (28) are not quadratic, and the resulting statis-
tical distribution is non-Gaussian. Nevertheless, it is possible
to construct a stochastic process that converges to a stationary
solution with equilibrium distribution given by Eq. (29). This
process is defined by a Langevin equation consisting of a
stochastic Ginzburg-Landau equation (SGLE) that explicitly
reads as in physical space

h̄
∂ψ

∂t
= PG

[
h̄2

2m
∇2ψ + μψ − gPG[|ψ |2]ψ

]

+
√

2h̄

V β
PG[ζ (x, t )], (30)

where the Gaussian white noise ζ (x, t ) obeys

〈ζ (x, t )ζ (x′, t ′)〉 = δ(t − t ′)δ(x − x′). (31)

We refer to Ref. [37] for more details on the proof of the
equivalence of this stationary probability distribution to the
grand-canonical equilibrium state.

If one wants to control the number of particles Np instead
of the chemical potential μ, then one must supplement the
SGLE with an ad hoc equation for the chemical potential

dμ

dt
= −νN

V
(Np − N ∗

p ), (32)

where N ∗
p controls the mean number of particles and νN

governs the rate at which SGLE equilibrates.
We will call the thermal states generated by the SGLE

ψth. These states can be used in the TGPE to compute their
dynamical properties. Moreover, we can combine these ther-
mal states with an initial condition for a large-scale flow to
simulate quantum turbulence at finite temperature. For the TG
flow, the combined initial state in this case reads as

ψ = ψTG × ψth. (33)

In this study, we perform several DNSs of the SGLE in
Eq. (30) and of the TGPE in Eq. (27). For numerical purposes
we rewrite the SGLE (omitting the Galerkin projector PG) as

∂ψ

∂t
= α0∇2ψ + �0ψ − β0|ψ |2ψ +

√
kBT

α0
ζ ,

where α0, �0, and β0 are parameters. We can express physi-
cally relevant quantities, such as the coherence length ξ and
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the velocity of sound c, in terms of these new parameters.
These are related by

ξ =
√

α0/�0 , c =
√

2α0β0ρ0, (34)

with ρ0 = �0/β0. In all the DNS runs presented below we
set the density at T = 0 to ρ0 = 1 (in dimensionless units as
described below). In order to keep the value of intensive vari-
ables constant in the thermodynamic limit, at constant volume
V and for kmax → ∞, the inverse temperature is expressed as
β = 1/(kmodesT ), where kmodes = V/Nm with Nm the number
of Fourier modes in the system. With these definitions, the
temperature T has units of energy per volume, and 4πα0 is
the quantum of circulation.

D. Numerical implementation

The code TYGRS (TaYlor-GReen symmetric) is a pseu-
dospectral code that enforces the symmetries of the TG vortex
in 3D for the GPE, the Navier-Stokes equations, and the mag-
netohydrodynamic equations within periodic cubes of length
2π (in dimensionless units). As a result of the symmetries
discussed in Sec. II B 1, the Fourier-transformed fields are
nonzero only for wave vectors (kx, ky, kz ) = (m, n, p) with
jointly even or jointly odd components. Time integration of
only these Fourier modes is performed using a fourth-order
Runge-Kutta method with a fixed time step (see next subsec-
tion for details).

Pseudospectral codes are known to be optimal on periodic
domains [44]. However, they require global spectral trans-
forms, and thus are hard to implement in distributed memory
environments, a crucial limitation until domain decomposition
techniques (DDTs) arose [45,46] that allowed computation of
serial fast Fourier transforms (FFTs) in different directions
in space (local in memory) after performing transpositions.
However, distributed parallelization using the message pass-
ing interface (MPI) in pseudospectral codes is limited in the
number of processors that can be used, unless more trans-
positions are done per FFT (thus increasing communication
time). To overcome this limitation, the hybrid (MPI-OPENMP)
parallelization scheme that we have implemented in TYGRS

builds upon a general purpose one-dimensional (slab-based)
DDT that is effective for parallel scaling using MPI alone
[47], extended with OPENMP to obtain (in practice) 2D DDT
without the need of extra communication [48]. In this scheme,
each MPI task creates multiple threads using OPENMP which
operate over a fraction of the available data. This method
has been extended in TYGRS to the sine (cosine) with even
(odd) wave-number FFTs needed to implement the symme-
tries of TG flows, using loop-level OPENMP directives and
multithreaded FFTs. The method was shown to scale with
high parallel efficiency to over 100 000 CPU cores [48].

The runs were performed on the IDRIS BlueGene/P ma-
chine. At resolution N = 4096 we used 512 MPI processes,
each process spawning 4 OPENMP threads, needing a total of
2048 CPU cores per simulation.

E. Units

In the following, all quantities are expressed in terms of a
unit length L, a unit speed U , and a unit mass M. These are

related to the simulation length L′, the characteristic speed U ′,
and the actual mass M ′ in the following way:

L = L′

2π
, (35)

U = U ′

2
, (36)

M = M ′

(2π )3
. (37)

With these choices the simulation box is 2πL long (in each
spatial direction), the speed of sound c is 2U , and the mean
density ρ0 is equal to 1 M/L3. The factors in Eqs. (35) to (37)
result from the dimensionless scheme used in the simulations
(done in a periodic box of dimensionless side 2π ).

In this work we present simulations for ξkmax = 1.5, 2.5,
and 4, a parameter that determines the healing length ξ . There-
fore, in our simulation at the largest spatial resolution N =
4096 with ξkmax = 2.5, the healing length is ξ ≈ 0.0018L.
While the resolution in this simulation is state of the art,
the scale separation is not sufficient to be able to compare
with superfluid 4He experiments, where the characteristic
system size is L′ ≈ 10−2 m, the speed of sound is c′ ≈
230 m/s, the fluid density is ≈125 kg/m3 (thus, M ′ ≈ 1.25 ×
10−4 kg), and the healing length is ξ ≈ 10−10 m ≈ 10−8L′
[3]. On the other hand, scale separation in BEC experi-
ments of quantum turbulence, where L′ ≈ 10−4 m, c′ ≈ 2 ×
10−3 m/s, and ξ ≈ 5 × 10−7 m ≈ 0.005L′ [49,50], is within
our reach.

The time step that we use in our simulations is prescribed
by dt = 1.6/N [L/U ], where N is the linear resolution. This
allows us to conserve energy within a 2% error. We note
that this error for a fourth-order Runge-Kutta method goes
as the fourth power of dt ; any attempt to improve accuracy
by decreasing the time-step size increases the simulation cost,
which goes as the inverse of dt . We also remind that the
Galerkin truncated GPE and our spatial discretization scheme
both conserve total energy and the numerical errors arise from
the time discretization.

In this work, we express temperature in terms of the
transition temperature Tλ, unless otherwise stated. Finally,
we note that the intensity of nonlinear interactions is con-
trolled by the inverse of ξkmax [37]. Indeed, for ξkmax

very large, most of the excitations correspond to free
particles.

For more details on the units in the DNSs of the GPE and
SGLE, we refer to Refs. [24,37,38,42].

III. RESULTS

We start this section by discussing the temporal evolution
of the TG flow at zero temperature based on state-of-the-art
DNS at N3 = 40963 and those at smaller number of collo-
cation points. We then perform a series of temperature scans
to study the decay of the TG initial conditions at finite tem-
peratures. Finally, by computing the spatiotemporal spectra of
these flows, we provide an estimation of the effective viscosity
in flows evolved under the TGPE.
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FIG. 1. Time evolution of the different energy components at
zero temperature in (a) a 3D simulation with N = 2048 grid points
in each spatial direction, and (b) with N = 4096 grid points in
each direction. Both DNSs have ξkmax = 2.5. (c) Time evolution
of the total vortex line length LV in simulations at different spatial
resolutions. The energy densities are given in units of MU 2L−3, LV

is given in units of L, and t is in units of [L/U ].

A. High-resolution GPE runs at T = 0

We first prepare the TG initial data, following Eqs. (23)–
(25), for ξkmax = 2.5 at linear spatial resolutions of N =
1024, 2048, and 4096. We then evolve this using the TGPE.
In Figs. 1(a) and 1(b) we show the time evolution of the
different energy (kinetic, quantum, and internal) compo-
nents for the DNSs with N = 2048 and 4096 collocation
points, respectively. In these simulations, the total energy was

conserved within a 2% error. The incompressible kinetic
energy per unit volume ei

kin remains approximately constant
until t ≈ 4 L/U , and afterward it starts decaying as the other
energy components increase to keep the total energy fixed.
This indicates a transfer of energy from ei

kin to the other energy
components as turbulence develops (most conspicuously at
late times for the N = 2048 run, to the compressible compo-
nent ec

kin). The vortex line length LV , as defined in Eq. (14),
is shown in Fig. 1(c) for all the three simulations. At around
t ≈ 8 L/U , the simulations with N = 1024 and 2048 reach
their maximum LV , and thus the maximum of incompressible
kinetic energy dissipation. The simulation with N = 4096 was
stopped shortly before that point.

In Fig. 2(a) we show the incompressible kinetic energy
spectra from the N = 4096 simulation at different times,
while in Fig. 2(b) we present the same spectra at t = 8 L/U for
the N = 1024, 2046, and 4096 simulations. Round markers
indicate the mean intervortex wave number k� = 2π/�, and
the dashed lines indicate k−5/3 power laws for a reference.
On the one hand, at wave numbers smaller than k�, strong
hydrodynamic turbulence is known to be the principal mech-
anism of energy transfer toward smaller scales. Therefore,
a Kolmogorov-type spectrum is expected in this range of
scales. On the other hand, at wave numbers larger than k�,
energy is expected to be carried toward even smaller scales
by the Kelvin wave cascade [9]. This cascade, predicted with
weak-wave turbulence theory, also leads to a k−5/3 scaling
but with a different origin from the one of Kolmogorov. Note
that the Kelvin wave cascade has been studied before using
the GPE [51], and it has been observed in GPE turbulence
using spatiotemporal analysis [27] and by direct measurement
of vortex line excitations [28]. Also, it is known that the
Kolmogorov and Kelvin wave cascades transfer the energy
toward smaller scales at different rates. It is thus expected that
energy should accumulate near the wave number k�, resulting
in a bottleneck in the spectrum [52]. We indeed observe
the emergence of a bottleneck in the vicinity of this wave
number although not as pronounced as the thermalization
scaling ∼k2. This difference might be due to the fact that the
present simulations correspond to freely decaying turbulence
rather than one in a steady state with an external forcing.
The existence of two simultaneous inertial ranges separated
by a bottleneck was also observed before in high-resolution
simulations using different initial conditions [29], but was not
visible in the N = 512 DNS of a TG flow in [24] possibly
because of a limited spatial resolution in that study. To further
illustrate these ranges and the scale separation involved, in
Figs. 2(c) and 2(d) we show the incompressible kinetic energy
spectra compensated by Kolmogorov scaling ∼k−5/3.

Visualizations of the vortex lines in the N = 4096 run
close to the time of maximum energy dissipation are shown
in Fig. 3. The intricate vortex line tangle in the entire compu-
tational domain (for the TG impermeable box) is shown first.
The large-scale flow shows inhomogeneous regions with high
density of vortices and quiet regions with low density. Details
into the central regions with high density of vortices (and large
shear) are also shown. It should be noted that the tangle of
vortices results from many reconnections taking place after
t ≈ 4 L/U . Comparing these N = 4096 results with those
obtained 20 years ago at resolution N = 512 and presented in
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FIG. 2. (a) Incompressible kinetic energy spectra ei
kin(k) at

zero temperature, at different times for the N = 4096 simulation.
(b) Spectra at t = 8 for three DNSs at different spatial resolution.
In both panels, the circular marks indicate the mean intervortex wave
number at the corresponding time, or for the corresponding spatial
resolution. Power laws ∼k−5/3 are shown as a reference, for scales
larger and smaller than the intervortex scale. Note the emergence of
a second inertial range, after a bottleneck, for scales smaller than
the intervortex scale. (c), (d) Show the spectra from (a) and (b),
but compensated by Kolmogorov scaling. The energy spectra are
given in units of MU 2L−2, the compensated spectra are in units of
MU 2L−11/3, and k is in units of L−1.

FIG. 3. Three-dimensional renderings of vortex lines at the onset
of the decay in the 40964 GPE run. (a) The full impermeable box. The
(red) box indicates the region shown in (b), which shows a zoom into
a region of the domain with large shear of the vortex lines. Again,
the (red) box in this panel indicates the region zoomed into in (c).
Note in the latter panel the tangle of vortices, the many links between
vortices, and the helical deformations of individual vortices along
the vortex line. Visualizations were prepared using the software
VAPOR [53].
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TABLE I. Transition energy eλ = Eλ/V , and temperature Tλ in
the phase transition, for sets of runs at different spatial linear resolu-
tion N , and with different values of ξkmax. Values of the energies and
temperatures are in units of MU 2L−3.

Resolution

ξkmax N = 128 N = 256 N = 512

1.5 eλ = 4.17
Tλ = 3.25

2.5 eλ = 10.64 eλ = 10.13 eλ = 9.12
Tλ = 9.5 Tλ = 9.25 Tλ = 8.75

4 eλ = 24.12
Tλ = 23.5

Fig. 18 of Ref. [24], we can note the presence of substructures
made by a myriad of small-scale and knotted and linked
vortices that were not apparent at the lower resolution.

B. SGLE temperature scans

We now compute the thermal states, in order to determine
the condensation transition temperature Tλ for our system
with symmetries. To do so, we perform a series of SGLE
temperature scans for various values of the linear resolution
N and ξkmax (see Table I). Each row of the table displays the
transition energy and temperature that we obtain for a fixed N
and ξkmax by performing 12 to 24 simulations by varying the
temperature. Boxes without data correspond to cases that we
have not explored.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

FIG. 4. (a) Condensate fraction as a function of T/Tλ at linear
resolution N = 256 and for different values of ξkmax. (b) Condensate
fraction as a function of T/Tλ at ξkmax = 2.5 and for different linear
resolutions N . The condensate fraction is computed using Eq. (38)
with kc = 2 for simulations with N = 128, and with kc = 4 for all
the other numerical simulations.

It is well known that the TGPE can capture the condensa-
tion transition [34,36,37]. The order parameter of this phase
transition is the condensate fraction, which is usually defined
as the fraction of atoms that are in the ground state. In terms
of Fourier modes, it is given by |ψ̂ (k = 0)|2/Np. However,
for the TG flow the symmetries cancel exactly the energy
(and mass density) of some Fourier modes, decreasing the
availability of Fourier modes at low wave numbers, and thus
affect the dynamics of the condensate fraction. To take this
into account, we define the condensate fraction as

n0 = 1

Np

∫ kc

k=0
|ψ̂k|2k2d�k, (38)

where kc is a small wave number (either 2 or 4, in dimension-
less units, depending on the spatial resolution N).

In Figs. 4(a) and 4(b) we show the condensate fraction as
a function of temperature for three different values of ξkmax

(1.5, 2.5, and 4 at N = 256) and N (128, 256, and 512 for
ξkmax = 2.5), respectively. In each of these cases we identify
the transition temperature by T/Tλ = 1.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

FIG. 5. Energy components as a function of the temperature, for
different values of ξkmax, and for fixed linear spatial resolution (N =
256). (a) Temperature scan with ξkmax = 1.5, (b) same with ξkmax =
2.5, and (c) same with ξkmax = 4. The energy densities are given in
units of MU 2L−3, and the time is in units of L/U .
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TABLE II. Variation of the total energy etot and of the condensate
fraction n0 in the thermal runs with N = 1024 and ξkmax = 2.5 (for
these parameters Tλ = 8.58, in units of MU 2/L3).

T/Tλ etot (units of MU 2/L3) n0

0 0.129 1
0.11 0.95 0.92
0.22 1.94 0.86
0.33 2.96 0.75
0.44 4.02 0.65
0.55 5.14 0.55

Moreover, in Figs. 5(a)–5(c) we show the behavior of the
energy components as a function of temperature for ξkmax =
1.5, 2.5, and 4, respectively, at a fixed linear spatial resolution
N = 256. We find that for a fixed ξkmax, the energy compo-
nents eq, eint, and ei

kin increases with T up to Tλ, whereas
ec

kin displays a maximum at intermediate temperatures. Also,
as expected, increasing the value of ξkmax decreases the
nonlinear interaction strength, which can be quantified by the
relative value of eint (t ).

A comparison of these results (simulations with TG sym-
metric flow) with those obtained for a general periodic geome-
try (see Fig. 2 of Ref. [37]) suggests that the overall properties
of the condensation transition are not significantly affected
by the nature of the geometry imposed by the symmetries
at the largest scale. This motivates us to further investigate
the turbulent dynamics at finite temperatures produced by
combining the thermal states with the TG flow.

C. Thermal equilibria combined with the TG flow

To study finite-temperature effects, we first prepare a ther-
mal state and then combine it with the zero-temperature TG
(Taylor-Green) flow to finally generate a finite-temperature
initial data for the TGPE evolution. In this section we present
our results from the simulations with N = 1024 and ξkmax =
2.5 (see Table II for more details).

We begin with the discussion of how finite-temperature
effects influence the temporal evolution of the energy com-
ponents ei

kin, ec
kin, eq, and eint . For a comparative study,

we show the time evolution of these energy components in
Figs. 6(a)–6(d) for four different values of temperature T =
0, 0.11 Tλ, 0.33 Tλ, and 0.55 Tλ, respectively. We find that at
T = 0 [Fig. 6(a)] the incompressible kinetic energy stays
roughly constant until t ≈ 5 L/U , followed by a strong decay,
which is almost 30% of its initial value, in an equal interval
of time (up to t ≈ 10 L/U ); thereafter, its decay slows down.
This behavior is consistent with the T = 0 simulations at N =
2048 and 4096. The decrease in ei

kin during the initial phase
of the dynamical evolution is accompanied by an increase
in the other components of energy, with eint gaining the
maximum share until t ≈ 10 L/U , after which it saturates.
At later stages, the compressible kinetic energy is the most
dominant component.

The plots of the energy components ec
kin, eq, and eint in

Figs. 6(c) and 6(d) show that at finite temperatures these
start at higher values than their T = 0 counterparts; this is
in agreement with our discussion in Sec. III B (see Fig. 5).
We also observe that for the simulations at T = 0.33Tλ and
0.55Tλ, ei

kin has the lowest share of the total energy, while
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FIG. 6. Time evolution of the energy components in the TGPE runs with linear spatial resolution N = 1024 and ξkmax = 2.5 at four
different temperatures: (a) T = 0 Tλ, (b) 0.11 Tλ, (c) 0.33 Tλ, and (d) 0.55 Tλ.
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FIG. 7. Time evolution of (a) the incompressible kinetic energy
ei

kin, and of (b) the incompressible kinetic energy dissipation rate
−dei

kin/dt , at six different temperatures in TGPE runs with linear
spatial resolution N = 1024 and ξkmax = 2.5. The incompressible
kinetic energy is given in units of MU 2L−3, its time derivative in
units of MU 3L−4, and the time is in units of L/U .

ec
kin is generally the dominant component; however, at T =

0.55 Tλ, eq is comparable to the latter.
Irrespective of these differences during the initial stages,

we find that the temporal evolution of ei
kin is qualitatively

similar for all the cases presented in Fig. 6. For a better
comparison, we show in Fig. 7(a) the time evolution of ei

kin
at five different temperatures; these plots suggest that except
for the initial adaptation period that lasts up to t ≈ 1 L/U , the
incompressible kinetic energy decreases very slowly during
the time interval t ≈ 2 L/U to 4 L/U , in which it is roughly
constant for the T = 0 case, followed by a fast decay of ei

kin.
We quantify this behavior by computing the decay rate

−dei
kin/dt , a quantity that is frequently studied in freely

decaying classical fluid turbulence. In Fig. 7(b) we show the
temporal evolution of −dei

kin/dt for different temperatures.
If we discard the initial adaptation period, then we observe
that the low temperature (up to T = 0.44 Tλ) curves exhibit a
peak at t ≈ 8 L/U ; the peak value decreases as we increase

the temperature and locally the curves become flat. At higher
temperatures, −dei

kin/dt exhibits strong fluctuations, e.g., for
T = 0.55 Tλ it fluctuates about 5 × 10−3MU 3L−4 and we are
unable to make more precise estimates. Note that given these
fluctuations, we first perform a filtering operation to smooth
out the curves, before computing the quantity of interest. It is
also interesting to note that at about t ≈ 8 L/U the vortex line
length LV is maximum for the T = 0 runs [see Sec. III A and
Fig. 1(c)].

To understand how thermal fluctuations affect the dynam-
ics across the length scales during the evolution of the TG
flow toward a turbulent state, in Figs. 8(a)–8(d) we show
the incompressible and compressible kinetic energy spectra
for four different values of temperature T = 0, T = 0.11 Tλ,
0.33 Tλ, and 0.55 Tλ, respectively; we show these for the
instant of time at which observe a self-similar scaling range
on the incompressible kinetic energy spectra. We observe
that for the T = 0 case [Fig. 8(a)], ei

kin(k) ∼ k−5/3 scaling at
small wave numbers (roughly over a decade) is followed by
a bottleneck at about k ≈ 20 L−1 and an exponential decay
at high wave numbers. ec

kin(k) is almost negligible compared
to ei

kin(k) at this instant of time. We find ei
kin(k) ∼ k−5/3

scaling region at finite temperatures as well, but now at
high wave numbers we also see an accumulation of energy
and the development of a thermalized region; this indicates
that the small-scale fluctuations become more energetic as
we increase the temperature. Simultaneously, the amplitude
of ec

kin(k) increases with increasing T and we observe the
expected ec

kin(k) ∼ k2 scaling at high wave numbers. We also
find that at T = 0.55 Tλ [see Fig. 8(d)], ei

kin(k) no longer
exhibits a Kolmogorov scaling over a significant range. The
crossover wave number k ≈ 20L−1 in the T = 0 case, where
the inertial range ends, is strongly modified in this run by
the thermal bath at high wave numbers that now extends to
smaller wave numbers, thereby reducing the inertial range.

Finally, to illustrate the time evolution of the spectra, we
show in Fig. 9 the incompressible and compressible kinetic
energy spectra for the temperatures T = 0 and 0.33 Tλ at
different instants of time. We observe a development of the
the Kolmogorov scaling region at small wave numbers on the
incompressible kinetic energy spectra, whereas the compress-
ible component exhibits ec

kin ∼ k2 scaling at all times. We refer
to videos M1 (T = 0) and M2 (T > 0) in the Supplemental
Material [54] for the complete time evolution of these spectra.

D. TGPE spatiotemporal spectra in thermal equilibrium

To complete the quantification of thermal effects, in this
section we compute and describe the spatiotemporal spectra
(STS) of ψ for some of our SGLE equilibrium runs listed
in Table I. We need these to estimate the mean-free path and
effective viscosity.

STS provides the power spectrum of a given quantity as
a function of wave number and frequency [27,55,56]. To
compute this spectrum, we must store the quantity of interest
very frequently, i.e., at very small intervals of time, if we
want the Fourier transform in time to resolve the relevant high
frequencies involved in the problem. This is computationally
very challenging, if the linear resolution N is large. The
resulting spectrum describes the amplitude of excitations as
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FIG. 8. Kinetic energy spectra ei
kin(k) and ec

kin(k) for four different temperatures: (a) T = 0 Tλ, (b) 0.11 Tλ, (c) 0.33 Tλ, and (d) 0.55 Tλ,
from TGPE runs with linear spatial resolution N = 1024 and ξkmax = 2.5. Videos M1 (T = 0) and M2 (T > 0) (see Supplemental Material
[54]) show the time evolution of the compensated incompressible kinetic energy spectra at different temperatures. The energy spectra are in
units of MU 2L−2 and k in units of L−1.

a function of k and ω; this then can be used to extract infor-
mation about the waves in a disordered state. For example, the
STS of ψ gives information about the mass fluctuations.

In Fig. 10 we show the STS at different values of tem-
perature both below and above Tλ from our simulations with
N3 = 2563 and ξkmax = 1.5. At very low temperatures, e.g.,
T = 0.05Tλ (see Fig 10), nonlinear interaction is very weak
and leads to exact resonances in the periodic domain and
only those modes are excited that satisfy the Bogoliubov
dispersion relation given by Eq. (7); we show the latter by
green dashed lines on the plots. We remark that the modes
with ω = 0 correspond to the condensate. A comparative
study of different plots in Fig. 10 shows that as we increase the
temperature, the nonlinear interactions become important and
the dispersion curve broadens, e.g., at T = 0.31Tλ. We also
note that at higher temperatures the condensate, which appears
as horizontal straight line, shifts to higher frequencies, as it
now satisfies h̄ω = μ. The excitation of sound waves and the
associated broadening about the Bogoliubov dispersion curve
keeps increasing as we increase the temperature toward Tλ;
this is expected as the broadening should be strongest close to
the transition. For temperatures larger than Tλ, the dispersion
relation switches to that of free particles and we expect
to recover the standard four-wave interaction. Moreover, at
T = 1.08Tλ the horizontal straight line corresponding to the
condensate completely disappears.

In Fig. 11 we show the STS at different temperatures from
simulations with ξkmax = 2.5. As expected, the qualitative
behavior is similar to the case of ξkmax = 1.5. However, at

a fixed temperature now the spectral broadening is smaller;
this is consistent with the fact that at large ξkmax the nonlinear
interaction is expected to be weaker.

We define spectral broadening �ω(k) at each k as the width
over which the power (about the dispersion curve) drops to
half of its maximum amplitude. We recall that the inverse of
�ω(k) provides us with a measure of the nonlinear interaction
time. In Fig. 12 we show the plots of �ω(k) vs k at different
temperatures for three values of ξkmax. A summary of impor-
tant features that we observe from these plots is as follows:
(1) at fixed temperature �ω(k) increases with k and reaches
its maximum value at k ∼ 1/ξ , beyond which it either grows
slowly or remains approximately constant; (2) at fixed k,
�ω(k) increases with temperatures and attains its maximum
value close to Tλ; (3) the magnitude of �ω(k) significantly
decreases with increase in ξkmax, thereby confirming that the
latter controls the strength of nonlinear interactions.

E. Mean-free path and effective viscosity

In this section we provide our estimates of the mean-free
path and effective viscosity for the TGPE flow at finite temper-
atures. As mentioned above, the inverse of �ω is associated
with the nonlinear interaction time, during which the waves
present in the system propagate without being scattered by
other waves [57]. Therefore, we compute the mean-free path
as follows:

λ(k, T ) ∼ 1

�ω(k, T )

dωB

dk
. (39)
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FIG. 9. Temporal evolution of the kinetic energy spectra: (a) in-
compressible component ei

kin(k) at T = 0; (b) incompressible com-
ponent ei

kin(k); and (c) compressible component ec
kin(k), for the TGPE

run at T = 0.33 Tλ with linear spatial resolution N = 1024 and
ξkmax = 2.5. The energy spectra are in units of MU 2L−2 and k in
units of L−1.

In Figs. 13(a)–13(c) we show the plots of λ(k, T ) vs k
from our simulations for different values of temperatures
(below and above Tλ) for ξkmax = 1.5, 2.5, and 4, respectively.
The dispersion relation at different temperatures was directly

FIG. 10. Spatiotemporal spectra with ξkmax = 1.5 and N =
2563, for different temperatures as indicated in each panel. The
(green) dashed line indicates the theoretical Bogoliubov dispersion
relation. Bright (red to yellow) areas indicate modes with large
excitation. The frequency ω(k) is given in units of T −1, and k is in
units of L−1.

measured from the STS in Fig. 11. We find that λ(k, T ) in
many cases, for wave numbers larger than k ≈ 1/ξ , has a
tendency to either saturate or fluctuate around a mean value.
For simplicity, we approximate the mean-free path at each
temperature by taking λ(T ) = λ(k ≈ kmax, T ). In Fig. 14(a)
we show the plot of λ(T ) vs T for three different values of
ξkmax = 1.5, 2.5, and 4; we find that λ(T ) decreases as we
increase the temperature. Also, in general, it increases with
ξkmax, i.e., reduction in the nonlinear interaction strength.

From the mean-free path, we estimate the effective viscos-
ity by writing

νeff (T ) ∼ λ(T )
dωB

dk

∣∣∣∣
k≈kmax

=
( dωB

dk

∣∣
k≈kmax

)2

�ω(k ≈ kmax, T )
, (40)

wherein we evaluate �ω(T ) and dωB/dk at k = 80 ≈ kmax.
In Fig. 14(b) we show the temperature dependence of νeff (T ),
wherein we have normalized it by the quantum of circulation
4πα = 4πcξ

√
2. For temperatures above 0.5Tλ, both λ and
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FIG. 11. Spatiotemporal spectra with ξkmax = 2.5 and N =
2563, for different temperatures as indicated in each figure. The
(green) dashed line indicates the theoretical Bogoliubov dispersion
relation. Bright (red to yellow) areas indicate modes with large
excitation. The frequency ω(k) is given in units of T −1, and k is in
units of L−1.

νeff are roughly constant. For the runs with ξkmax = 2.5, we
have

λ(T ) ∼ 10ξ, (41)

νeff (T ) ∼ 50α = 50cξ/
√

2. (42)

We emphasize that Eq. (42) provides an estimate of the ef-
fective viscosity in terms of physical parameters: the speed of
sound c and the healing length. Therefore, for the simulations
with c = 2U and ξ = 2.5/kmax = 2.5 × 3L/N , we write the
effective viscosity as

νeff (T ) ∼ L U
500

N
, (43)

where U and L are the unit velocity and length, and N is
the linear spatial resolution. In dimensionless units, with U =
L = 1, we obtain an estimate of the Reynolds number as

Re(TG) = C

νeff
= CN

500
, (44)

where C is a prefactor of order unity. We remark that νeff is an
effective transport coefficient; we can ascertain its value from
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FIG. 12. Spectral broadening �ω(k) of the dispersion relation,
for different temperatures and values of ξkmax. The vertical dashed
lines indicate the value of 1/ξ in each case: (a) as a function of k for
different temperatures and for ξkmax = 1.5, (b) same for ξkmax = 2.5,
and (c) same for ξkmax = 4. The frequency �ω(k) is given in units
of T −1, and k is in units of L−1.

the mean-free path only up to a multiplicative constant. Also,
Re ∼ 1/νeff is the usual definition of the Reynolds number in
numerical studies of the Taylor-Green flow [43].

In Sec. III F we provide a comparison of the GPE runs
with DNSs of the Navier-Stokes equations at low Reynolds
numbers; therefore, for convenience we give yet another
definition of the Reynolds number based on the dynamic root
mean square (r.m.s.) flow velocity

U0 =
√

2E (45)

and the flow correlation length

L0 = 2π

∫
E (k)/k dk∫
E (k) dk

(46)

(i.e., the flow integral scale). Moreover, if we write U0 and L0

in units of U and L, the Reynolds number is

Re = C
U0L0

νeff
= C

U0L0N

500
. (47)
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FIG. 13. Mean-free path as a function of k for different tem-
peratures in simulations with ξkmax = 1.5 (a), ξkmax = 2.5 (b), and
ξkmax = 4 (c). The vertical dashed line indicates the value of 1/ξ .
The wave number k is given in units of L−1.

It is worth reiterating that νeff (T ) depends on the value
of ξkmax; the nonlinear interaction strength decreases, if we
increase ξkmax. Therefore, in simulations with ξkmax = 1.5 we
have a stronger turbulence than in the case of ξkmax = 2.5.
Moreover, the mean-free path (see Fig. 14) in the runs with
ξkmax = 1.5 is λ(T ) ∼ 5ξ , which gives a smaller νeff (T ) ∼
15α. Therefore, a larger Reynolds number

Re = C
U0L0

νeff
= C

U0L0N

90
. (48)

However, we cannot arbitrarily decrease ξkmax to obtain
higher values of Re. At a fixed spatial resolution, ξkmax must
be larger than unity if we want to properly resolve the vortices
in simulations.

In a two-fluid framework, the viscosity in Eq. (43) cor-
responds to a viscosity acting on the normal fluid (as it was
obtained from the thermalized component). This is consistent
with derivations of damping from stochastic equations for
quasiclassical fields (see, e.g., [31,32]), where modes below
an energy cutoff are considered as the condensate, and modes
above the cutoff are considered as thermalized noise. In

0.2 0.4 0.6 0.8 1 1.2

101

102

0.2 0.4 0.6 0.8 1 1.2
10-1

100

101

102

FIG. 14. (a) Mean free-path as a function of temperature T for
different values of ξkmax. (b) Effective viscosity (acting on the normal
fluid), normalized by the quantum of circulation 4πα = 4πcξ/

√
2,

as a function of temperature T for different values of ξkmax.

our case, the distinction is made using the STS, and from
an extraction of the excitations lying in the vicinity of the
dispersion relation of the waves. Therefore, at very high
temperatures we basically have one fluid with viscosity νeff .
At intermediate temperatures, if the mutual friction is large
enough, the two fluids are then locked together. Mutual fric-
tion in this case is estimated to be proportional to ρn/ρ0 (see
[37]). Thus, at intermediate temperatures we can assume that
the two fluids are locked with an effective mutual viscosity

ν ′
eff = ρn(T )

ρ0
νeff (T ). (49)

These results are consistent with the following interpre-
tation. At temperatures close to the transition temperature,
the TG flow is very viscous. In the next subsection, we
provide a verification of this by performing Navier-Stokes
simulations using νeff and comparing them with the TGPE
runs. This will also allow us to confirm that the effective
Reynolds number of the finite-temperature TGPE flows are
low, even for the high-resolution runs presented in this work.
At the same time, this will enable us to obtain an estimate
of the prefactor C in Eq. (47). Moreover, this assessment is
also consistent with previous estimations based on the free
decay of the incompressible kinetic energy in Ref. [42]. In
fact, estimates based on Eq. (47) suggest that to obtain a
turbulent normal fluid described by the TGPE near or above Tλ

would require resolutions that are not achievable even in the
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FIG. 15. Results from the DNS of low-Reynolds-number Navier-Stokes TG runs at different Reynolds numbers [Re = U0L0/ν, based on
the integral scale L0 and the flow r.m.s. velocity U0; see Eqs. (45) and (46)]. (a) Plots of energy dissipation rate ε vs time. The maximum of ε

for the run with Re = 1860 occurs at t ≈ 9 L/U . (b)–(f) Plots of the temporal evolution of the energy in different k shells in Fourier space [i.e.,
e(k, t ) for fixed k as a function of time] for k = 4 to 8 from the Navier-Stokes TG runs and the TGPE run at temperature T = 0.55 Tλ [linear
resolution N = 1024 and ξkmax = 2.5; for GPE e(k, t ) corresponds to ei

kin(k, t )]. In all panels, the GPE run at T = 0.55 Tλ is indicated by the
(brown) curve with crosses, while all Navier-Stokes runs at different Reynolds numbers are labeled as indicated in (a). To vary the Reynolds
numbers, the Navier-Stokes runs were performed with kinematic viscosities ν = 1/10 and 1/40 at linear spatial resolutions N = 64; ν = 1/80
and 1/160 (N = 128); ν = 1/320, 1/640, and 1/1280 (N = 256); ν = 1/2560 (N = 512). The energy spectra components are given in units
of MU 2L−2, and time is in units of L/U .

largest supercomputers available today. Therefore, performing
a classical turbulent Navier-Stokes simulation with the TGPE
is prohibitively expensive!

At small temperatures we have a system that can be
modeled either with the Euler and Boltzmann equations with
small coupling or, more formally, with a stochastic equation
for a quasiclassical field [32] (the system being close to GPE
dynamics). Finally, in the intermediate temperature range,
the system can be represented by coupled Euler and Navier-
Stokes fluids; we leave its modeling for future works.

F. Comparisons with low Reynolds runs

To verify that the evolution of a finite-temperature TG
flow is similar to a highly viscous classical flow, and to
estimate the value of the factor C in Eq. (47), we perform
a set of simulations of freely decaying “classical” TG flows
obeying the Navier-Stokes equations at different Reynolds
numbers Re = U0L0/ν = 7 (with a spatial resolution N3 =
643), 22 (N3 = 643), 53 (N3 = 1283), 110 (N3 = 1283), 240
(N3 = 2563), 480 (N3 = 2563), 950 (N3 = 2563), and 1860
(N3 = 5123). Here, ν is the kinematic viscosity; the r.m.s.
flow velocity U0 and the flow correlation length L0 are the
time-averaged values, between t = 4 and 10, in a developed
turbulence state. We compare these runs with the TGPE run
at T = 0.55 Tλ for ξkmax = 2.5 on N3 = 10243 collocation
points.

In Fig. 15(a) we show the time evolution of the energy
dissipation rate ε for these TG Navier-Stokes runs. We ob-
serve that as we increase Re, the time to achieve the maximum
energy dissipation rate also increases, after which turbulence
develops. To provide a detailed comparison between the runs,
in Figs. 15(b)–15(f) we show the temporal evolution of the
incompressible kinetic energy in Fourier shells k = 4 L−1 to
8 L−1, respectively, for the above-mentioned Navier-Stokes
runs and for the TGPE run. We find it remarkable that the
shell-by-shell evolution of these two systems shows a consid-
erable overlap for Reynolds numbers in the range Re = 22 to
53; in other words, the time evolution of the energy in each
shell in the TGPE run is in-between these two Navier-Stokes
runs. This is in reasonable agreement, at least in terms of
order of magnitude, with the predictions given by Eq. (47).
We compute L0 and U0 for the TGPE run averaged over the
time interval t = 4 to 10, as in the case if TG Navier-Stokes
runs, we obtain Re = 5C; this suggests that C ≈ 7.

IV. CONCLUSION

The results presented in this paper significantly ex-
tend our knowledge of quantum turbulence in the Taylor-
Green vortex flows. At zero temperature, runs with linear
spatial resolutions up to N = 4096 grid points allowed us
to characterize the presence of a Kolmogorov scaling range
at scales larger than the intervortex distance �, and to ob-
serve another scaling range at scales smaller than �. The
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presence of tangled substructures is apparent in vortex line
visualizations.

We use the thermal equilibria and spatiotemporal spectra
(i) to separate the condensed phase from the interacting waves,
(ii) to estimate the mean-free path and the effective viscosity
as a function of temperature from the nonlinear broadening.
The actual (large) values of our estimated effective viscosity
near the λ transition νeff ∼ 500/N (in dimensionless units)
for ξkmax = 2.5, and νeff ∼ 90/N for ξkmax = 1.5, correspond
to effective Reynolds numbers Re ∼ U0L0N/500 and Re ∼
U0L0N/90 (up to prefactors of order unity), respectively,
where N is the linear resolution of the simulation.

Finally, the comparison of finite-temperature quantum
turbulence at N = 1024 grid points with the low-Reynolds
Navier-Stokes numerical simulations further confirms our es-
timations of the effective viscosity νeff based on the mean-free
path of the thermal excitations, and allows us to determine the
amplitude of the unknown prefactors.

It is well known (see, e.g., Ref. [43]) that Kolmogorov
scaling becomes apparent in the Navier-Stokes numerical
simulations of the Taylor-Green flow with linear resolutions
of N = 256, for Re ≈ 1600. We can thus conclude that an
equivalent direct numerical simulation using the truncated
Gross-Pitaevskii equation performed at T ≈ Tλ would need
a resolution of about N ≈ 10 000 grid points in each spatial
direction for ξkmax = 1.5, and of N ≈ 43 000 for ξkmax = 2.5,
to achieve a similar Reynolds number and a classical direct
energy cascade with similar scale separation for the normal
fluid. These resolutions are out of reach using present day
computing resources. At smaller values of T , this situation
changes drastically, as the mutual friction between the fluid
and the superfluid depends on the density fraction of the
normal fluid as ρn/ρ0 [37].

Looking back at the estimates of effective viscosity,
it can be seen that the high value of νeff traces back
to the high value of (dωB/dk)2/�ω at k = kmax for the
Gross-Pitaevskii equation. This brings into mind the pos-
sibility of modifying the Bogoliubov dispersion relation
through modifications in Gross-Pitaevskii, and thereby chang-
ing the value of (dωB/dk)2 at high wave numbers. It
is well known that by changing the cubic term in the
Gross-Pitaevskii equation into a nonlocal term of the form
ψ

∫ |ψ (x′)|2V (|x − x′|) dx′, the first term in the Bogoliubov
dispersion relation can be changed to a term involving a
potential Ṽ (k) = ∫

V (r) exp[−ik · r] dr. In this way, it is
possible to “adjust” the dispersion relation [see, e.g., Eqs. (3)
and (4) of Ref. [35]]. This approach, aside from allowing for
the modeling of rotons in superfluid 4He at low temperatures,
can also lead to a decrease in the values of effective viscosity
at temperatures close to the λ transition. The impact of these
changes in νeff is left for future work.
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