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Dual cascade and dissipation mechanisms in helical quantum turbulence
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While in classical turbulence helicity depletes nonlinearity and can alter the evolution of turbulent flows, in
quantum turbulence its role is not fully understood. We present numerical simulations of the free decay of a
helical quantum turbulent flow using the Gross-Pitaevskii equation at high spatial resolution. The evolution has
remarkable similarities with classical flows, which go as far as displaying a dual transfer of incompressible kinetic
energy and helicity to small scales. Spatiotemporal analysis indicates that both quantities are dissipated at small
scales through nonlinear excitation of Kelvin waves and the subsequent emission of phonons. At the onset of the
decay, the resulting turbulent flow displays polarized large scale structures and unpolarized patches of quiescence
reminiscent of those observed in simulations of classical turbulence at very large Reynolds numbers.
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I. INTRODUCTION

From the oceans to the solar wind, turbulence is widely
found in nature. It is also observed in quantum fluids such as
superfluids and Bose-Einstein condensates (BECs) [1]. Unlike
classical flows, quantum flows have no viscosity and vorticity
is concentrated along topological line defects with quantized
circulation [2,3]. While similarities between these two types
of turbulence exist (e.g., both display Kolmogorov spectrum
[4,5]), there are also differences [6,7].

In classical turbulence helicity is an ideal invariant which
measures how tangled vorticity field lines are [8]. It is known
to deplete nonlinearities and energy transfer [9], slow down
the onset of dissipation in decaying turbulence and affect its
dissipation scale [10], play a role in convective storms [11],
and display a dual direct cascade with the energy [12,13].
Its role in quantum turbulence is less clear. Efforts focus
on determining if it is conserved by studying simple con-
figurations of reconnecting vortex knots [14–18]. Numerical
evidence indicates that in this case helicity is transferred from
large to small scales [14,16], and that reconnection or the
transfer of helicity can excite nonlinear interacting Kelvin
waves [17,19], which eventually may lead to a loss of helicity
by sound emission. Research into the role of helicity in
more complex quantum flows has been lacking, partly due
to the difficulties of quantifying helicity in fully developed
turbulent flows. However, developments in three-dimensional
(3D) vortex tracking in helium experiments [20] and in knot
generation in BECs [21] provide hopeful opportunities to
tackle this problem.

We present massive numerical simulations of helical quan-
tum turbulence using the Gross-Pitaevskii equation (GPE) as
a model. A quantum version of the classical Arnold-Beltrami-
Childress (ABC) flow is introduced and used as initial
condition to create a helical flow. We use different methods
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to quantify helicity, including the regularized helicity [17]
which was shown to give results equivalent to the centerline
helicity for simple knots, and to the classical helicity for flows
with scale separation. We show that helicity is depleted as
the incompressible kinetic energy. As in the classical case
[12], both the incompressible energy and the helicity follow
a Kolmogorov spectrum down to the intervortex distance. At
smaller scales a bottleneck in the energy spectrum is followed
by another Kolmogorov spectrum associated to a Kelvin
waves cascade. Energy and helicity dissipation at coherent
length scales is related to Kelvin waves damping by phonon
emission. In physical space, the flow displays polarized large
scale structures formed by a myriad of small scale knots, and
unpolarized quiescent patches mimicking what is observed in
isotropic and homogeneous classical flows at large Reynolds.
These results open up questions about helicity in quantum
flows. In particular, while successful theories for the energy
spectrum exist [22], this is not yet the case for the helicity
spectrum.

II. GROSS-PITAEVSKII EQUATION

The GPE describes the evolution of a zero-temperature
condensate of weakly interacting bosons of mass m,

ih̄∂t� = −h̄2(2m)−1∇2� + g|�|2�, (1)

where g is related to the scattering length. Madelung transfor-
mation � = √

ρ/m exp (imφ/h̄) relates the wave function �

to a condensate of density ρ and velocity v = ∇φ. Linearizing
Eq. (1) around a constant � = �̂0 yields the Bogoliubov dis-
persion relation ωB(k) = ck(1 + ξ 2k2/2)1/2 for sound waves
(or phonons) of speed c = (g|�̂0|2/m)1/2, with dispersion
taking place at lengths smaller than the coherence length
ξ = [gh̄2|�̂0|2/(2m)]1/2. The Onsager-Feynman quantum of
velocity circulation around the � = 0 topological defect lines
is h/m, and the vortex core size is of order ξ [23].

The GPE conserves the total energy E, which can be
decomposed as [24,25]

E = Ekin + Eint + Eq, (2)
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with the kinetic energy Ekin = 〈|√ρv|2/2〉, the internal
energy Eint = 〈c2(ρ − 1)2/2〉, and the so-called quantum
energy Eq = 〈c2ξ 2|∇√

ρ|2〉. The kinetic energy Ekin can be
also decomposed into compressible Ec

kin and incompress-
ible Ei

kin components, using (
√

ρv) = (
√

ρv)c + (
√

ρv)i with
∇ · (

√
ρv)i = 0.

A. Helicity in quantum flows

The definition of helicity in a classical flow is

H =
∫

v · ω dV, (3)

where ω = ∇ × v is the vorticity. It follows from Madelung
transformation that

ω(r) = h

m

∫
ds

dr0

ds
δ(r − r0(s)), (4)

where r0(s) denotes the position of the vortex lines and s the
arclength. Thus vorticity in a quantum flow is a distribution
concentrated along � = 0 topological line defects where v
is ill behaved. In spite of this, some authors [15] compute
H by filtering fields to the largest scales or relying on
the regularization introduced by the numerics. Other authors
compute the “centerline helicity” by calculating the writhe and
link, two topological quantities which quantify how knotted
vortex lines are, but which require detailed extraction of all
centerlines of the quantized vortices in the flow [14,16,26,27].
Some authors suggest to also add the twist of equal-phase
surfaces (or else just the torsion) to this definition, but then the
total helicity vanishes identically (or else smoothly formed
inflection points change the helicity discontinuously) [18].
A method which yields the same results as the centerline
helicity was introduced in [17] by using the fact that the
velocity parallel to the quantized vortex has only an apparent
singularity. The regular smooth velocity oriented along the
vortex line is defined as vreg = v‖w/

√
wjwj , where

v‖ = h̄ wj [(∂j ∂l�)∂l� − (∂j ∂l�)∂l�]

2im
√

wlwl(∂m�)(∂m�)
, (5)

and

w = h̄

im
∇� × ∇� (6)

(see the Appendix for a detailed derivation). The regularized
helicity thus reads

Hr =
∫

vreg · ω dV, (7)

and is well defined in the sense of distributions [28], as the
test function vreg is smooth. This expression was proven useful
even in flows with hundreds of thousands of knots.

B. Numerical simulations

The GPE is solved in its dimensionless form and all quan-
tities presented here are dimensionless (see [25,29] for more
details). All numerical simulations in this paper have mean
density ρ0 = 1. Physical constants in Eq. (1) are determined
by ξ and c = 2, and the quantum of circulation h/m = cξ/

√
2.

Simulations were performed using 5123, 10243, and 20483 grid

points, in a domain of linear size L = 2π . The largest 20483

GPE simulation has a healing length ξ ≈ 2.2 × 10−3 and an
intervortex distance 
 ≈ 8 × 10−2 (computed as in [24,25]).
As a comparison, in 3He experiments the size of the vortex
core is ≈10−8 m, the intervortex distance is ≈10−5 m, and
the system size is of order 10−2 m [1]. Scale separation is
smaller for BECs, which are also better modeled by the GPE.
Although proper scale separation in a simulation is currently
out of reach, the 20483 run is a significant improvement over
most simulations of quantum turbulence which have one order
of magnitude difference between L and ξ .

To compare the GPE simulations with classical ABC flows
we also simulated the incompressible Navier-Stokes (NS)
equation

∂tu + (u · ∇)u = −∇p + ν∇2u, (8)

with ∇ · u = 0, using 5123 points and viscosity ν = 6.5 ×
10−4. All equations were integrated using GHOST [30],
a pseudospectral code with periodic boundary conditions,
fourth-order Runge-Kutta to compute time derivatives, and
the 2/3 rule for dealiasing.

As initial condition we use a superposition of k = 1 and
k = 2 basic ABC flows: vABC = v(1)

ABC + v(2)
ABC, with

v(k)
ABC = [B cos(ky) + C sin(kz)]x̂ + [C cos(kz)

+A sin(kx)]ŷ + [A cos(kx) + B sin(ky)]ẑ, (9)

and (A,B,C) = (0.9,1,1.1)/
√

3. The basic ABC flow is a
2π -periodic stationary solution of the Euler equation with
maximal helicity. To build its quantum version we first take
the flow with B = C = 0 and use Madelung transformation
to obtain a wave function �

x,y,z

A,k = exp{i[A sin(kx) m/h̄]y +
i[A cos(kx) m/h̄]z}, where [a] stands for the nearest integer to
a to enforce periodicity. The wave function of the quantum
ABC flow is then obtained as �

(k)
ABC = �

x,y,z

A,k × �
y,z,x

B,k ×
�

z,x,y

C,k . Finally, �ABC = �
(1)
ABC × �

(2)
ABC corresponds to the

initial flow vABC. In practice, to correctly set the initial
density with defects along the vortex lines and to correct
frustration errors arising from periodicity, following [24,25]
we first evolve �ABC using the advected real Guinzburg-
Landau equation [31], whose stationary solutions are solutions
of the GPE with minimal emission of acoustic energy.

III. RESULTS

In Fig. 1 we show the evolution of the incompressible
kinetic energy Ei

k and of the regularized helicity Hr for the
10243 and 20483 GPE runs, and for the NS equation (with
Hr ≡ H ). In all cases, Ei

k and Hr remain approximately
constant for the first turnover times while turbulence develops
(the so-called “inviscid” phase in the decay of classical flows).
The total vortex length 
v peaks at the end of this phase, which
ends slightly earlier for Hr than for Ei

k . Afterwards, Hr and Ei
k

decrease in what seems a self-similar decay, with different rates
in each system. As total energy is conserved in GPE, the decay
of Ei

k is accompanied by a growth of the other components of
the energy, in particular of Ec

k . Indeed, in quantum turbulence
the decay of Ei

k is expected to result from the emission of
phonons [32], and thus from classical results [33] the decay in
Ei

k should also produce a decay in Hr .
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FIG. 1. Evolution of the incompressible energy Ei
k and of the

regularized helicity Hr in the 10243 and 20483 GPE runs, and in
Navier-Stokes. Note the early “inviscid” phase in which quantities are
approximately constant. The solid black line shows the total vortex
length in the 20483 GPE run. Inset: Hr (t) (dashed blue line) and the
nonregularized helicity H (t) (solid red line) in the 20483 GPE run.

The inset in Fig. 1 compares H (nonregularized) and Hr

in the 20483 GPE run. Both are in good agreement, but Hr

is smoother and less noisy, making it a better fit to study the
global evolution of helicity in quantum turbulence. However,
the agreement between Hr and H allows us to use H to
compute spectra.

Figure 2 shows spectra of Ei
k and H at different times in

the 20483 GPE run. The spectra build up rapidly from the
initial conditions, and the energy and helicity excite larger
wave numbers as time increases. At t = 5 both already display
inertial ranges. At large scales they follow a power law
compatible with a classical dual energy and helicity cascade
[12], with Kolmogorov constant CK ≈ 1

E(k) ≈ ε2/3k−5/3, H (k) ≈ ηε−1/3k−5/3, (10)
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FIG. 2. Spectrum of the (a) incompressible kinetic energy, and
(b) helicity in the 20483 GPE run. At large scales both follow a
scaling compatible with a classical dual cascade (thick dashed lines).
At scales smaller than the intervortex scale (k
 ≈ 80) a second range
compatible with a Kelvin wave cascade is observed in Ei

k (thick
dash-dotted line). The helicity spectrum broadens in time indicating
a direct transfer.
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FIG. 3. Compensated helicity spectra in the 20483 GPE run. The
spectrum is compatible with ηε−1/3k−5/3 scaling. The time-averaged
spectrum is also shown.

and with ε and η calculated directly using

ε = −dEi
k/dt, η = −dH/dt, (11)

from the data in Fig. 1 after the onset of decay. Around
the mean intervortex scale (k
 ≈ 80) Ei

k diplays a bottleneck
compatible with predictions in [22]. This bottleneck is fol-
lowed by an inertial range ∼k−5/3 predicted for a Kelvin wave
cascade [22,34] and which below is confirmed for the lower
resolution run. Figure 3 shows compensated helicity spectra,
which corroborates the behavior observed in Fig. 2.

Of particular interest is the evolution of H (k). For early
times H is concentrated at low wave numbers, as expected
for the initial condition. But later it is transferred to larger
wave numbers as the cascadelike spectrum develops. While
there is no rigourous proof of conservation of helicity in
quantum flows, note that using the Hasimoto transformation
[35] the evolution of a vortex line can be mapped into a
nonlinear Schrödinger equation which conserves momentum.
But momentum of a vortex line (e.g., the translation of the
centerline in the direction of vorticity) can result in net helicity.
Thus, vortex lines evolution could indeed conserve helicity
(except for depletion by emission of phonons). At small scales
H (k) displays wild fluctuations (in amplitude and sign), which
is to be expected as the nonregularized helicity is ill behaved
at those scales. The fact that the helicity dynamics, at least at
large scales, of a quantum flow mimics those of a classical one
is remarkable. But it also begs the question of what happens
to the helicity at scales smaller than the intervortex distance.
Indications exist that Kelvin waves carry helicity [14,17], but
such a possibility requires confirmation of their presence.

To verify this, as well as phonons being the dissipation
mechanism for Ei

k and H , we must detect Kelvin and sound
waves. To do this we use the spatiotemporal spectrum [29], i.e.,
the four-dimensional power spectrum of a field as a function of
wave vector and frequency. The spectrum allows quantification
of how much power is in each mode (k,ω), and waves can be
separated from the rest as they satisfy a known dispersion
relation ω(k). As its computation requires huge amounts of
data (i.e., storage of fields resolved in space and time), we
compute it for the 5123 GPE run. Figure 4 shows this spectrum
(after integration in k using isotropy to obtain dependency on
k and ω) for ρ, and zooms for small k for Ei

k and Ec
k , for

early and late times (respectively, t ∈ [0,2] and t ∈ [8,10]).
The dispersion relation of Kelvin ωK (k) [36] and sound waves
ωB(k) are shown. Note that, compared with the 20483 run, ξ

in this run is four times larger, and values of k are four times
smaller.
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FIG. 4. Spatiotemporal power spectra for the 5123 GPE run
between t = 0 and 2 for (a) the mass density ρ, and zooms between
k = 0 and 100 for (b) the incompressible and (c) compressible
velocity. Same for late times (t ∈ [8,10]) are shown in (d), (e), and
(f). The solid (green) curve is the dispersion relation of Kelvin waves,
while the dotted (white) curve corresponds to sound waves.

At early times, power in the spatiotemporal spectrum of ρ is
broadly spread over modes that do not correspond to waves. Ei

k

shows some excitations compatible with Kelvin waves, and Ec
k

has little energy with no phonon excitation. At late times power
in fluctuations of ρ moves towards the Kelvin wave dispersion
relation up to k ≈ 80, and then the power jumps towards the
dispersion relation of phonons. The spectra Ei

k and Ec
k confirm

this picture, with power concentrating in Ec
k in the vicinity of

the sound dispersion relation. Exploration of these spectra for
different time ranges shows that as time evolves more energy
goes from Kelvin wave modes to phonons. While this analysis
is performed at lower resolution and thus wave numbers for
the transition are smaller than in the 20483 run, the spectra
confirm the dynamics in Figs. 1 and 4: with time, energy and
helicity go from large to smaller scales in which Kelvin waves
are excited, and they are finally dissipated into phonons.

This can be further confirmed by visualizing vortices in real
space at the onset of decay. Figure 5 shows a three-dimensional
rendering of quantum vortices at t ≈ 2.5 in the 20483 GPE run.
Large-scale eddies, formed up by a myriad of small-scale and
knotted vortices, emerge. Similar behavior has been observed
at finite temperature quantum turbulence simulations, where
the bundle was correlated with high vorticity in the normal-
fluid component [37,38]. At zero temperature two results
[39–41] also hinted at this behavior, but in none was the
fine structure of the vortex bundle resolved. More importantly,
the large scale flow shows inhomogeneous regions with high
density of vortices and quiet regions with low density. These
large-scale patches were not present in the initial conditions

FIG. 5. Three-dimensional rendering of vortex lines at the onset
of the decay in the 20484 GPE run of (a) a slice of the full box, and
successive zooms in (b) and (c) into the regions indicated by the (red)
rectangles. (d) Sketch of the transfer of helicity from writhe to twist
in a bundle of vortices, and for an individual vortex.

(which have homogeneously distributed vortices) and are
created by the evolution as shown below. The patches are
reminiscent of those observed in isotropic and homogeneous
turbulence at high resolution in nonhelical [42] and helical
[43] flows, further confirming the similarity between quantum
and classical turbulence at scales larger than the intervortex
separation.

The spontaneous emergence of large-scale correlations
in the system can be confirmed by the spatial correlation
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FIG. 6. Correlation function of ρ in the 20483 GPE run. At
t = 0 it decays rapidly in units of the healing length ξ , but then
quickly develops long-range correlations. Inset: Ratio of eigenvalues
λmax/λmin as a function of 2π/d , with d the size of the box used
for the average (blue triangles: regions with structures; red triangles:
regions of quiescence).
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function

C(d) = 〈[ρ(x + dx̂) − ρ0][ρ(x) − ρ0]〉, (12)

shown in Fig. 6. This correlation function is related to the
internal energy spectrum by the Wiener-Khinchin theorem. At
t = 0, C(d) decays rapidly in units of the healing length ξ ,
and it is dominated by the vortex core size. But the system
rapidly develops long-range correlations (up to ≈1000ξ ) and
later C decays in a self-similar way. Furthermore, computing
the ratio of eigenvalues τ = λmax/λmin for the tensor 〈∂iρ∂jρ〉
averaged in boxes of size 1/10 of the linear domain size
typically yields τ ≈ 3 in regions with large scale structures
and τ ≈ 1 in quiescent regions, indicating anisotropy and a
copious vortex polarization in the former (see Fig. 6 inset).

IV. CONCLUSIONS

The results indicate that helicity can be conserved in
quantum turbulence at large scales and as it is transferred
towards smaller scales (see Fig. 2), but eventually it decays
through the emission of phonons produced by a Kelvin wave
cascade (Fig. 4). We can draw a comparison with the classical
case, where now a bundle of quantum vortices (as seen in
Fig. 5) would play the role of classical vortex tubes. Tubes, in
contrast to lines, add an extra degree of freedom to the helicity:
their twist. Thus in the classical and quantum cases, large scale
helicity can be transformed from writhe to twist for a bundle of
vortices [see Fig. 5(d)]. But for individual quantum vortices,
the transfer (e.g., through reconnection) would result in the
excitation of a Kelvin wave which can eventually be damped.
This indicates that individual quantum vortex lines behave like
classical vortex tubes with a mechanism to relax the twist, and
as such, the correct analogy between classical and quantum
flows only holds for scales larger than 
 for which bundles of
quantum vortices behave as classical vortex tubes.
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APPENDIX: DERIVATION OF THE REGULARIZED
VELOCITY

To calculate the helicity in a quantum flow we need
information of both the velocity and the vorticity along the
vortex lines. This is problematic as both quantities have
singularities along those lines. Therefore, we need to regularize
one of them in order to have a well-behaved integral for
the helicity (in the sense of distributions [28]). Although in
principle it may seem possible to regularize any of the two
fields, the choice of regularizing the velocity and not the
vorticity is not arbitrary. In the Gross-Pitaevskii equation,
the vorticity is correctly described by a distribution. Instead,
the only component of the velocity that is not well behaved
is the one perpendicular to the vortex line. But for the
calculation of the helicity we need the parallel component,
whose problem is to have a 0/0 indeterminacy in its definition.

Thus, regularizing the velocity allows us to keep its well
defined component which contributes to the helicity, while
leaving the vorticity as a Dirac δ distribution also allows us
to not bother with the values of the regularized field outside
the vortex line, which should give no contribution to the
helicity. Here we outline a detailed explanation of how to
derive the regularized velocity, from which the expression of
the regularized helicity follows immediately.

The velocity of the superfluid is given by

v = h̄

2im

�̄∇� − �∇�̄

��̄
. (A1)

Without loss of generality we can suppose that there is a vortex
line going through r = 0 (the radial cylindrical vector) in the
direction of the z axis. Let us define the unit vector basis
(êx,êy,êz). The existence of a vortex line passing through
r = 0 and pointing in the z direction implies that �(0) = 0,
�̄(0) = 0, êz · ∇�(0) = 0, and êz · ∇�̄(0) = 0. Thus ∇�(0)
and ∇�̄(0) are linear combinations of êx and êy . Taylor
expanding to first order the numerator and denominator of
the above expression for v(r) around r = 0 one finds

�(x,y,z) = x∂x�(0) + y∂y�(0) + O(r2), (A2)

�̄(x,y,z) = x∂x�̄(0) + y∂y�̄(0) + O(r2), (A3)

∇�(x,y,z) = ∇�(0) + r · ∇(∇�)(0) + O(r2), (A4)

∇�̄(x,y,z) = ∇�̄(0) + r · ∇(∇�̄)(0) + O(r2). (A5)

After replacing the above expressions in Eq. (A1) and drop-
ping quadratic terms, the perpendicular (x and y) components
of the velocity diverge in the limit r → 0, as v⊥ reads

v⊥(r) = h̄

2im

( ∇�(0)

x∂x�(0) + y∂y�(0)
− c.c.

)
. (A6)

On the other hand, the velocity component parallel to the
centerline vorticity v‖(r) = v(r) · êz reads

v‖(r)

= h̄

2im

(
x(∂xz�)(0) + y(∂yz�)(0) + z(∂zz�)(0)

x∂x�(0) + y∂y�(0)
− c.c.

)
,

(A7)

which is finite in the limit r → 0. This last expression for v‖(r)
can be seen as resulting from l’Hôpital’s rule applied to the
limit of v‖(r) when r → 0 in the direction (x,y,z). The limit
obviously depends on the direction as, in deriving the above
formulas, the only hypotheses we have made are that � is
sufficiently differentiable and has a zero line directed toward z.

In order to turn the above expression into a workable ansatz
for v‖(0), we need to pick a reasonable direction along which �

will have a significant variation. The simplest vectors we have
at point r = 0, perpendicular to the vortex line and satisfying
the condition, are ∇�(0) and ∇�̄(0). Thus we can multiply
the first term in the right-hand side of Eq. (A7) by ∇�̄, and
its complex conjugate by ∇� in order to maintain the reality
of the velocity field. In this way we arrive at the following
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expression:

v‖(0) = h̄

2m i

(
∂x�̄∂xz� + ∂y�̄∂yz� + ∂z�̄∂zz�

∂x�̄∂x� + ∂y�̄∂y� + ∂z�̄∂z�
− c.c.

)
.

(A8)

A first check that this ansatz is reasonable is to plug
in � ∼ (x + iy)eizUzm/h̄ and explicitly verify that this gives
v‖(0) = Uz. Further validations were performed in [17], where
it was shown that the helicity computed with the regularized

velocity agrees with the topological definitions of writhe, link,
and twist. Also, in [17] it was shown that this expression gives
the correct value of helicity for different knots, and that in
quantum flows with helicity it gives a value that matches
the helicity in the equivalent classical large-scale helical
flow.

As a final remark, it is important to note that for arbitrarily
aligned vortex lines, the direction parallel to the vortex line (ẑ
in the particular case considered above) can be easily obtained
by doing the vector product between ∇� and ∇�̄.
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