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Helicity, topology, and Kelvin waves in reconnecting quantum knots
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Helicity is a topological invariant that measures the linkage and knottedness of lines, tubes, and ribbons. As
such, it has found myriads of applications in astrophysics, fluid dynamics, atmospheric sciences, and biology.
In quantum flows, where topology-changing reconnection events are a staple, helicity appears as a key quantity
to study. However, the usual definition of helicity is not well posed in quantum vortices, and its computation
based on counting links and crossings of centerline vorticity can be downright impossible to apply in complex
and turbulent scenarios. We present a definition of helicity which overcomes these problems and which gives the
expected result in the large-scale limit. With it, we show that certain reconnection events can excite Kelvin waves
and other complex motions of the centerline vorticity, which slowly deplete helicity as they interact nonlinearly,
thus linking the theory of vortex knots with observations of quantum fluids. This process also results in the
depletion of helicity in a fully turbulent quantum flow, in a way reminiscent of the decay of helicity in classical
fluids.
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I. INTRODUCTION

Helicity plays an important role in the dynamics of many
fluid flows, from astrophysics [1] to geophysics [2–4]. It is a
measure of the knottedness of field lines, which is conserved
under appropriate conditions, and as such it has been called a
“topological invariant” of many flows [5]. These ideas [6–9]
have found applications in areas beyond fluid dynamics, such
as DNA biology [10], optics [11], and electromagnetism [12].
Although helicity is perfectly conserved in barotropic ideal
fluids, in real fluids [13,14], and in superfluids [15–17], vortex
reconnection events, which alter the topology of the flow,
can take place. It is unclear if helicity is preserved under
reconnection. Experiments of vortex knots in water have
shown that centerline helicity remains constant throughout
reconnection events [18], while theoretical arguments indicate
that writhe (one component of the helicity) should be con-
served in antiparallel reconnection events [19], a fact later
confirmed in numerical simulations of a few specific quantum
vortex knots [20]. However, numerical studies of Burgers-type
vortices indicate that helicity is not conserved [21]. While
experiments studying helicity in quantum flows have not been
done yet, the recent experimental creation of quantum knots
in a Bose-Einstein condensate [22] is a significant step in that
direction.

Recently, quantum flows have been used as a testbed for
many of these ideas [18,20,23], as vorticity in a quantum flow
is concentrated along lines with quantized circulation, and as
these can reconnect without dissipation. However, the lack of a
fluidlike definition of helicity for a quantum flow requires com-
plex topological measurements of the linking and knottedness
of the centerline vorticity [18,23], or artificial filtering of the
fields [20] to prevent spurious values of helicity resulting from
the singularity near quantum vortices. Moreover, reconnection
events in superfluids can excite Kelvin waves [24] (helical
perturbations that travel along the vortices first predicted for
classical vortices [25]). These are believed to be responsible

for the generation of an energy cascade [26,27] leading to
Kelvin wave turbulence [28]. Possible links between helicity
and the development of turbulence have remained obscure as
a result of the difficulties involved in the measurement of both
helicity and Kelvin waves.

Here we study the time evolution of helicity and its link
with Kelvin waves in numerical simulations of the Gross-
Pitaevskii equation (GPE). The GPE models superfluids and
Bose-Einstein condensates (BECs) near zero temperature.
We present a fluidlike regularized definition for the helicity,
which solves the problem arising from the singularities in
the velocity and vorticity produced by the topological defects
in the quantum flow, and links quantum knots with helicity
as measured in fluid dynamics. We study its time evolution
in multiple linked rings and knots and show that only some
reconnection events conserve helicity, while in others helicity
decays towards a new constant value. We link the depletion of
helicity in the latter case to the excitation of complex motions
of the centerline vorticity and of a nonlinear transfer of energy
in Kelvin waves, which ultimately results in the radiation of
phonons. Finally, we illustrate how the regularized helicity can
be successfully used to quantify the helicity in complicated and
turbulent situations.

II. HELICITY IN QUANTUM FLOWS

Low temperature quantum flows and BECs can be modeled
as a field of weakly interacting bosons of mass m using the
GPE,

i�
∂�

∂t
= − �

2

2m
∇2� + g|�|2�, (1)

where � is the system’s wave function and g is proportional
to the scattering length. The total energy, which is conserved
by the GPE, can be decomposed into three components. First,
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the so-called “classical” kinetic energy density is defined as

Ek = 1
2ρ|v|2, (2)

where ρ = mn is the mass density, n is the particle density,
and v is the flow velocity, all obtained in terms of the wave
function (see below). Using a Helmholtz decomposition of the
flow velocity, this energy can be further decomposed into a
kinetic energy associated with compressible motions Ec

k , and
an energy associated with incompressible motions Ei

k . Second,
the so-called quantum energy is

Eq = �
2

2m2
(∇√

ρ)2. (3)

Finally, the potential (or internal) energy is given by

Ep = g

2m2
ρ2. (4)

A detailed study of the energy decomposition in the GPE can
be found in [29,30].

The flow from the GPE matches the behavior of a classical,
ideal, and compressible potential fluid, except at points where
a topological singularity takes place. These topological defects
take place when � = 0 and are the so-called quantum vortices
whose circulation is quantized and given by � = ∮

C
v(�) d� =

4πα, with α = �/(2m). The vorticity ω of the flow is thus

ω(r) = �

∫
ds

dr0

ds
δ(3)[r − r0(s)], (5)

where r0(s) is the position of the � = 0 centerline, and s is
the arc length.

From the wave function, the particle density is given by
n = ��, and the velocity field can be obtained from

v = P
n

, Pj = 2α
�∂j� − �∂j�

2 i
, (6)

where P is the unit mass momentum density. At a distance
r → 0 from a straight vortex these quantities are known [29]
to behave as n ∼ r2 and v = 2αeθ /r , where eθ is the azimuthal
unit vector and r is the radial distance in a cylindrical coordi-
nate system (er ,eθ ,ez) having its origin on the straight vortex.
Thus, the velocity v has an r−1 singularity perpendicular to
the centerline.

As the vorticity also has a singularity perpendicular to those
lines, the standard definition of helicity

H =
∫

dr ω(r) · v(r) (7)

is not well behaved, as it involves the product of two singular
distributions. The idea of the regularized helicity is to replace
in Eq. (7) the field v by a regularized smooth field vreg having
no divergences perpendicular to the line, and the same regular
behavior as v parallel to the line.

We can regularize the velocity along the centerline by
Taylor expanding � to first order in the numerator and the
denominator in Eq. (6), arriving at

v‖ = 2α

2i

Wj {[∂j ∂l�)∂l(�)] − [∂j ∂l�)∂l(�)]}√
WlWl(∂m�)(∂m�)

, (8)

where Wj = εjkl∂kPl is a smooth field oriented along the
vortex. We define the regularized helicity as

H =
∫

dr ω(r) · vreg(r), (9)

with vreg = v‖W/
√
WjWj .

The definition of the regularized helicity in Eq. (9) is well
behaved in the sense of standard distribution theory [31], as
it is the integral of the product of a distribution (ω) with a
well-behaved function (vreg). As such, it can be computed
numerically (e.g., in standard pseudospectral methods, in
Fourier space using Parseval identity), and should converge
algebraically. Although the choice of regularizing v (instead
of ω) may seem arbitrary, it is not. The vorticity as given in
Eq. (5) corresponds to an exact solution of the GPE. On the
other hand, the singular behavior of the velocity in the direction
parallel to the centerline is the result of a 0/0 indeterminate
form in the expression for v, as it follows directly from Eq. (6)
because � = 0 in the centerline. As such, the regularization
of the velocity in Eq. (8) can be seen simply as l’Hôpital
regularization to remove the indeterminacy when � = 0.

Next we show how this regularized helicity still holds the
geometrical interpretations valid for the standard (or classical)
one.

A. Relation with writhe

For an isolated structure helicity can be decomposed into
twist Tw, and writhe Wr. For a single curve we have [32]

Wr = 1

4π

∫ ∫
(dr × dr1) · (r − r1)

|(r − r1)|3 . (10)

It is easy to see that if one uses a velocity field V(r) given
by the Biot-Savart law

V(r) = �

4π

∫
dr1 × (r − r1)

|(r − r1)|3 , (11)

where r1 corresponds to the position of the centerline, and the
vorticity as defined in Eq. (5), then the helicity H is given by

H = �2

4π

∫ ∫
dr · [dr1 × (r − r1)]

|(r − r1)|3 .

From the identity (a × b) · c = a · (b × c) one finds that in this
simple case (for a single line), H = �2Wr.

B. Regularized helicity defined as the twist of constant
phase ribbon

Let us recall that the twist Tw of a ribbon [defined by both
a curve r(s), and a vector U(s) perpendicular to the curve] is
defined by

Tw = 1

2π

∫ (
U × dU

ds

)
dr
ds

ds = N + 1

2π

∫
τ (s)ds, (12)

where τ is the torsion, and N the number of turns around the
curve of U in the Frenet-Serret frame (see the Appendix A).
Under the GPE, constant phase surfaces will intersect on the
centerline. Now consider a line at a close distance of the vortex
and lying on a constant phase surface. The centerline and the
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FIG. 1. Renderings of the surface of zero phase for two knots
in a quantum fluid. Top: Two linked rings, note the surface has one
hole. Bottom: Trefoil knot, with three holes. The number of holes is
associated with the number of turns the vector that lies on the surface
perpendicular to the vortex does as it moves along the curve (a few
of these vectors are shown).

constant phase line define a ribbon. Using Eqs. (5) and (12)
we can see that H = −�2 Tw.

Figure 1 shows renderings of surfaces of zero phase for
two knots in a quantum fluid. A hole indicates that the vector
perpendicular to the vortex lying on this surface does a whole
turn as it moves along the vortex, thus making a contribution of
one quantum to the intrinsic twist. The arrows in Fig. 1 show
examples of the direction of this vector at different places (see
also the Supplemental Material [33] for an animation of these
knots).

III. METHODS

A. Numerical scheme

To study the time evolution of helicity in different con-
figurations, the GPE equations were integrated using GHOST
[34–36], a three-dimensional code which uses a pseudospectral
scheme with periodic boundary conditions to compute spatial
derivatives and a fourth order Runge-Kutta scheme to compute
time derivatives. The “2/3 rule” is used for de-aliasing. The
code is parallelized using both MPI and OpenMP. We consider
two sets of simulations. The vortex knots simulations were
done using 2563 grid points (other simulations at different
resolutions were performed to check numerical convergence,
but only the results from the simulations with 2563 grid points
are shown below). The largest simulation of an ABC flow
(a turbulent helical flow) discussed below was done with
20483 grid points, also with simulations performed at lower
resolution to verify convergence.

B. Preparation method for vortex knots

The initial data preparation method is based on the one
presented in [18]. The method consists of calculating the
velocity field generated by a vortex line (or lines) r(s), which
is then integrated to get the phase of the wave function. The
density at each point in space is then calculated by using
a Padé approximation. One of the two differences with the
method presented in [18] is that after doing this we first use the
generated wave function as an initial condition of the advected
real Guinzbug Landau equation (ARGLE), whose stationary
solutions are solutions of the GPE with minimal acoustic
energy [29], and then feed that solution to the GPE, thereby
minimizing errors (specially those stemming from the Padé
approximation [17]). The other key difference is that our
fields are truly periodic. Instead of using an array of replicas
to generate an almost periodic field, we work in the Fourier
domain using the Fourier transform of the vorticity in Eq. (5),
which as we evaluate only at integer wave numbers gives a
perfectly periodic field. The velocity field is then obtained by
applying the inverse of the curl operator (i.e., the Biot-Savart
law).

C. Preparation method for quantum ABC flow

The so-called ABC (Arnold, Beltrami, and Childress)
velocity field is a maximal helicity stationary solution of Euler
equations in which the vorticity is parallel to the velocity,
explicitly given by

uABC(x,y,z) = {[B cos(ky) + C sin(kz)]x̂

+ [A sin(kx) + C cos(kz)]ŷ

+ [A cos(kx) + B sin(ky)]ẑ}. (13)

This velocity is the sum of three simple (A = B = 0, A =
C = 0, and B = C = 0) flows. We first construct an ARGLE
initial wave function for each of these flows, and then take their
product and evolve the ARGLE in time to minimize errors and
the acoustic energy.

In particular, it is easy to see that the A = B = 0
flow is a constant z-dependent advection in each x-y
slice. By Madelung’s transformation the constant advection
C[sin(kz)x̂ + cos(kz)ŷ] should correspond to a wave function

�(x,y,z) = ei
C sin(kz)

2α
x+ C cos(kz)

2α
y . (14)

In order to have 2π -periodic initial data we initially set

�(x,y,z) = ei[ C sin(kz)
2α

]x+[ C cos(kz)
2α

]y, (15)

where [a] stands for the integer nearer to a.
The general initial data are made out of a product of such

functions, corresponding to nonzero A, B, and C, and various
values of the wave number k. Note that the frustration [the
relative difference between C sin(kz)/(2α) and an integer]
goes down when α = cξ/

√
2 → 0.

IV. EVOLUTION OF QUANTUM KNOTS

A. Dynamics of helicity

We consider four different initial conditions: one unknotted
ring, two unknotted but linked rings, a trefoil knot, and a (1,6)-
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FIG. 2. Time evolution of the helicity for four quantum vortex
configurations. At the top, snapshots of the configurations at different
times are shown. The single ring only moves at constant speed.
The two rings and the trefoil reconnect at times marked by the
vertical arrows. When reconnection takes place between two perfectly
antiparallel vortices (as in the two rings), helicity does not change.
In the trefoil reconnection takes place simultaneously at three points
and helicity changes abruptly at the time indicated by the red arrow;
later it decays slowly to its final value. The (1,6)-torus knot deforms
without reconnecting, and its helicity does not change.

torus knot. Snapshots at different times during their evolution
are shown in Fig. 2. The evolution of the regularized helicity
(normalized by �2) for each configuration as a function of
time is also shown in Fig. 2. A red and a green arrow mark
the moment when the trefoil and the two rings reconnect,
respectively.

All four configurations start at the expected value of helicity
(which we verified with other methods to compute helicity
in quantum flows [20]). The single ring moves at constant
velocity parallel to its axis without deformations, and helicity
remains constant at zero. The two rings move towards each
other, and align to reconnect two long antiparallel segments
(see the third panel of the snapshots). At that time there is a
small drop of the regularized helicity (associated with the fact
that the regularization is not well defined while reconnection
takes place), but then the helicity remains constant around
its original value of 2, even though there remains only one
ring after reconnection. This is to be expected for antiparallel
reconnection, as predicted in [19], and in agreement with
previous results [18,23]. As is clear from the visualizations,
the helicity in the link of the two rings gets converted into a

FIG. 3. Spatiotemporal spectrum for the two rings before (left)
and after reconnection (right). The dashed (blue) line corresponds
to the dispersion relation of sound waves, the solid (green) line to
Kelvin waves, the dash-dotted line to sweeping with velocity U1 (i.e.,
ω = U1k), and the dash-triple dotted line to sweeping with ω = U2k.
Sweeping concentrates most of the power, and only one energetic
mode with k ≈ 11 may be compatible with the dispersion relation of
Kelvin waves.

helical deformation (writhe) of the single ring. The trefoil
reconnects at three points simultaneously, but the vortices
are not perfectly antiparallel at the moment of reconnection.
Centerlines always form coplanar hyperbolas [37,38] and align
antiparallely, but as vortices have a finite size in the GPE,
reconnection can start before vortices can perfectly align
leading to the described situation [18]. As a result, helicity
rapidly drops by one quantum from an initial value of ≈ 3.4.
Remarkably, it then continues dropping slowly until it reaches
a new steady value of 2 quanta at t ≈ 25. As will be shown next,
this decay is associated with the excitation of helical waves
along the two vortex rings resulting from the reconnection.
Finally the (1,6)-torus knot deforms substantially as it evolves,
but its helicity remains around its initial value. Videos showing
the evolution in each case can be found in the Supplemental
Material [33].

To sum up, there exist stable helical solutions of the
GPE where vortex knots do not reconnect, antiparallel re-
connections conserve helicity in agreement with previous
studies [19,20], but in disagreement with previous studies
helicity is not always conserved. Even after reconnection
helicity can vary slowly by a yet unclear mechanism. Below
we show that this mechanism is the emission of phonons by
the nonlinear interaction of helical Kelvin waves and other
deformations excited along the centerline.

B. Kelvin waves excitation by reconnection

To understand the process that results in the slow depletion
of helicity, we compute the spatiotemporal spectrum of mass
density ρ(k,ω), before and after the reconnection, for the two
rings (Fig. 3) and for the trefoil (Fig. 4). This spectrum is
a useful tool to identify waves and flow displacements in
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FIG. 4. Spatiotemporal spectrum for the trefoil before (left) and
after the reconnection (right). The dashed (blue) line corresponds
to sound waves, the solid (green) line to Kelvin waves, and the
dash-dotted line to sweeping with ω = Uk. A broad range of modes
compatible with the dispersion relation of Kelvin waves is excited
after reconnection, and sound waves are visible at high frequencies.

complex flows [28,39]. The GPE can sustain two types of
waves that will be of interest in the following: sound waves
which follow the Bogoliubov dispersion relation ωB(k) =
ck

√
1 + ξ 2k2/2, where c =

√
g|�|2/m is the speed of

sound and ξ =
√

�2/(2mg|�|2) is the coherence length [29],
and Kelvin waves which follow ωK (k) = 2cξ/(

√
2a2)[1 ±√

1 + K0(ka)/K1(ka)], where a is the radius of the vortex
core and K0 and K1 are modified Bessel functions.

In Fig. 3, before reconnection takes place, the two rings
move towards each other at a mean velocity U1. This appears
in the spatiotemporal spectrum as sweeping of the vortices,
i.e., a concentration of power near the region with ω =
U1k (excitations corresponding to sound waves can also be
identified). After reconnection, the vortex still moves slowly
with a velocity close to U1, but the reconnected points separate
fast from each other with velocity U2, thus concentrating
energy along ω = U2k. Only at k ≈ 11 does there seem to
be an almost monochromatic Kelvin wave excitation. Indeed,
in the last snapshot of the two rings in Fig. 2, a small helical
perturbation with this wave number can be observed (see also
the video in the Supplemental Material [33]).

The spatiotemporal spectrum for the trefoil, for which
helicity is not conserved, is very different. Before reconnection
the vortex knot moves with mean velocity U , and sweeping
with ω = Uk can be observed in the spectrum. After recon-
nection the motion of the two rings is complex, although both
structures still move with an average velocity U . But the most
remarkable feature in the spectrum is the excitation of a broad
and continuous range of modes compatible with the dispersion
relation of Kelvin waves, which indicates the development of
nonlinear interactions of Kelvin waves. As only one vortex
knot is present, the system does not develop a fully turbulent
cascade (see [28] for a study of spatiotemporal spectra in the
case of fully developed turbulence in GPE).

The excitation of Kelvin waves with multiple wavelengths
in the trefoil creates a transfer of energy and helicity to
the smaller scales where it can be dissipated by phonon
emission [40], as is evidenced by the excitation of sound waves
at only high frequencies in Fig. 4. Kelvin waves fade away once
helicity reaches its new steady state value of ≈ 2�2. Note that
in Figs. 3 and 4 other modes are also excited. Sweeping with
ω = Uk is a particular case of a more general spectrum with
ω ∝ kr predicted for a randomly stirred vortex loop [41,42].
The data is thus compatible with such deformations of the
centerline.

V. HELICITY IN QUANTUM TURBULENCE

Finally, we show the regularized helicity is robust even for
quantum turbulence, where hundreds of thousands of knots can
be present in the flow. Figure 5 shows the three-dimensional
rendering of a helical flow, with a distribution of vortices such
that the flow large-scale structure corresponds to the classical
ABC flow. A grid of 20483 points was used. Computation
of the regularized helicity over the quantum flow gives the
expected value of 3, matching the classical value. In units of
�2 this value corresponds to ≈ 480 000 links.

Figure 6 shows the evolution of the helicity and of the
different components of the total energy, in a simulation with
the same initial conditions but using 10243 grid points. Note
that the total energy (i.e., the sum of all components) remains
constant through the simulation, as expected for the GPE. As
expected from previous results [28,29], the incompressible
kinetic energy decays into the other energy components,
mainly as the result of the emission of phonons produced by the
energy cascade (note the growth of Ec

k at late times). In other
words, the flow first evolves into a turbulent state dominated
by incompressible motions (note Ei

k remains approximately
constant as turbulence develops, up to t ≈ 4), and afterwards

FIG. 5. Rendering of vortices at early times in a quantum ABC
flow with helicity (spatial resolution of 20483 grid points). The
regularized helicity is equal to 3, matching the value expected for
the classical flow at large scales. Normalizing by the quanta, the
helicity of this flow is ≈ 480 000�2.
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FIG. 6. Evolution of helicity and all energy components during
the decay of a quantum turbulent flow with ABC initial conditions
using 10243 grid points. Both helicity and the incompressible kinetic
energy start to decay at around t ≈ 4, in a correlated manner. The
incompressible energy is redistributed into the other components, but
the helicity is, in principle, dissipated.

the incompressible kinetic energy decays into compressible
modes. Interestingly, the helicity is approximately conserved
up to t ≈ 4, but shortly before the incompressible kinetic
energy starts to decay, so does the helicity. This behavior is
reminiscent of the decay of energy and helicity in a freely
decaying classical helical turbulent flow [43]. The decay of
helicity at late times in Fig. 6 is probably due to the emission
of phonons by Kelvin waves as observed in the trefoil knot (see
Figs. 2 and 4), although further studies are needed to properly
address this point.

VI. CONCLUSIONS

In a quantum flow the definition of helicity from classical
hydrodynamics is ill defined, as it involves the integral of
the product of two singular distributions, the velocity and
the vorticity. However, the singular behavior of the velocity
in the direction parallel to the vorticity is the result of an
indeterminate 0/0 form, and can be regularized to obtain
an expression that matches the hydrodynamic definition of
helicity at large scales while also satisfying topological
definitions of the helicity based on the link, writhe, and twist
of the quantum vortices.

We show that the regularized helicity can be used to
study the evolution of simple knots and rings, yielding results
compatible with topological methods to calculate the helicity.
The regularized helicity can be also used successfully in
more complex turbulent flows in which tracing hundreds of
thousands of individual vortices may be unfeasible. Moreover,

by studying reconnection and the subsequent time evolution of
quantum knots we show that in cases in which a broad spectrum
of Kelvin waves is excited, helicity can be slowly depleted as
the Kelvin waves dissipate into phonos. In a fully developed
helical quantum flow helicity remains constat at early times,
and later decreases as the incompressible flow motions decay
into compressible (sound) modes.

While the behavior of helicity in a quantum flow is
reminiscent of that found in classical fluids, the results
presented here also showcase a clear difference between the
two cases: classical vortex tubes have an extra degree of
freedom that quantum vortices do not, as a classical vortex
tube has a finite width and as such can have any twist. Thus, a
large-scale bundle of quantum vortices can have helicity and
behave (as in the quantum ABC flow) in a way reminiscent
of a classical fluid. However, as the bundle disentangles
through reconnection and the helicity is transferred towards
helical deformations of individual vortices, these deformations
can decay into phonons. A detailed study of this transfer
mechanism in quantum turbulence, and of the decay of helicity
at late times, is left for future studies.
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APPENDIX: FRENET-SERRET FRAME AND EQUATIONS

Given a 3D curve r(s), with r = (x,y,z) and ds =√
dx2 + dy2 + dz2, the standard Frenet-Serret tangent T,

normal N, and binormal B vectors are defined as

dr
ds

= T, (A1)

dT
ds

/∥∥∥∥dT
ds

∥∥∥∥ = N, (A2)

T × N = B. (A3)

These obey the Frenet-Serret equations

dT
ds

= κN, (A4)

dN
ds

= −κT+τB, (A5)

dB
ds

= −τN, (A6)

where κ is the curvature and τ is the torsion.
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Gheorghe, and M. Möttönen, Nat. Phys. 12, 478 (2016).
[23] D. Kleckner, L. H. Kauffman, and W. T. M. Irvine, Nat. Phys.

(unpublished).
[24] E. Fonda, D. P. Meichle, N. T. Ouellette, S. Hormoz, and D. P.

Lathrop, Proc. Natl. Acad. Sci. USA 111, 4707 (2014).
[25] W. Thomson, Philos. Mag. 10, 155 (1880).

[26] E. Kozik and B. Svistunov, Phys. Rev. Lett. 92, 035301
(2004).

[27] V. S. L’vov and S. Nazarenko, J. Exp. Theor. Phys. Lett. 91, 428
(2010).

[28] P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev.
A 92, 063632 (2015).

[29] C. Nore, M. Abid, and M. E. Brachet, Phys. Fluids 9, 2644
(1997).

[30] G. Krstulovic and M. Brachet, Phys. Rev. E 83, 066311 (2011).
[31] M. J. Lighthill, An Introduction to Fourier Analysis and Gen-

eralised Functions (Cambridge University Press, Cambridge,
1958).

[32] K. Klenin and J. Langowski, Biopolymers 54, 307 (2000).
[33] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.94.043605 for videos showing the evolution
of the trefoil and the two rings knots.
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