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Sticking transition in a minimal model for the collisions of active particles in quantum fluids
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Particles of low velocity, traveling without dissipation in a superfluid, can interact and emit sound when they
collide. We propose a minimal model in which the equations of motion of the particles, including a short-range
repulsive force, are self-consistently coupled with the Gross-Pitaevskii equation. We show that this model
generates naturally an effective superfluid-mediated attractive interaction between the particles; and we study
numerically the collisional dynamics of particles as a function of their incident kinetic energy and the length scale
of the repulsive force. We find a transition from almost elastic to completely inelastic (sticking) collisions as the
parameters are tuned. We find that aggregation and clustering result from this sticking transition in multiparticle
systems.
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Studies of an assembly of particles in a superfluid have a
rich history [1]. This challenging problem is of relevance to
recent experiments on particles in superfluid helium [2–6] and
impurities in cold-atom Bose-Einstein condensates (BECs)
[7]. Its understanding requires models and techniques from the
physics of quantum fluids with state-of-the-art methods from
theoretical and numerical studies of turbulence. In contrast
to particles moving through a viscous fluid, particles move
through a zero-temperature superfluid without dissipation, so
long as they travel at speeds lower than the critical speed above
which the particles shed quantum vortices [8–10]. The motion
of a single particle, which is affected by the superflow and acts
on it too, has been studied in Ref. [11] in a Gross-Pitaevskii
(GP) superfluid. We refer to this as an active particle.

We go well beyond earlier studies [11–13] of this problem
by developing a minimal model. We introduce active and
interacting particles in the Gross-Pitaevskii Lagrangian that
describes a weakly interacting superfluid at zero temperature.
By using this model we show that even if particles move
through the superfluid at subcritical speeds, they can dissipate
energy when they collide, because a two-particle collision
excites sound waves; clearly the coefficient of restitution
e < 1 for such a collision. We show that our model leads
naturally to a superfluid-mediated attraction between the
particles. We calculate this attraction both approximately, via a
Thomas-Fermi approximation, and numerically, from a direct
numerical simulation (DNS) of the Gross-Pitaevskii equation
(GPE). We show that the interplay between the short-range
(SR) particle repulsion, which we have included in our
Lagrangian, and the superfluid-mediated (SM) attraction leads
to a sticking transition at which the coefficient of restitution
e for two-particle collisions vanishes. We develop a simple,
mean-field theory for this transition and we compare it with
our DNS results. Furthermore, we elucidate the rich dynamical
behaviors of (a) two-particle collisions in the superfluid, when
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the impact parameter b is nonzero, and (b) assemblies of
particles, which aggregate because of the SM attraction. We
present illustrative calculations in two dimensions (2D).

To study the dynamics of particles in a Bose superfluid, we
propose the Lagrangian
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where ψ is the complex, condensate wave function, ψ∗ its
complex conjugate, A the simulation domain, g the effective
interaction strength, m the mass of the bosons, μ the chemical
potential, VP the potential that we use to represent the particles,
and N0 the total number of particles with mass mo. The last
term in Eq. (1) is the SR repulsive, two-particle potential; we
treat �E and rSR as parameters.

The Lagrangian (1) yields the GPE

i�
∂ψ

∂t
= − �

2

2m
∇2ψ − μψ + g|ψ |2ψ +

N0∑
i=1

VP (r − qi)ψ ;

(2)
and the equation of motion for the particle i

moq̈i = fo,i + fSR,i , (3)

where

fo,i =
∫
A

|ψ |2∇VPdr; (4)

fSR,i arises from the SR repulsive potential [the last term in
Eq. (1)]. In the absence of any external force, the total energy
of this system is conserved. Moreover, the dynamical evolution
of the coupled set of Eqs. (2) and (3) conserves the total
momentum and the number of bosons, which constitute the
superfluid. We can express the GP in terms of hydrodynamical
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variables by using the Madelung transformation ψ(r,t) =√
ρ(r,t)/m exp[iφ(r,t)], where ρ(r,t) and φ(r,t) are the

density and phase fields, respectively; the superfluid velocity
is v(r,t) = (�/m)∇φ(r,t), which shows that the motion is
irrotational in the absence of any vortices. We represent a
particle by the Gaussian potential VP = Vo exp(−r2/2d2

p);
here Vo and dp are the strength of the potential and its width,
respectively. The particle displaces some superfluid with an
area of the order of the particle area; we denote the mass of the
displaced superfluid by mf . We use the ratio M ≡ mo/mf to
define three types of particles: (1) heavy (M > 1), (2) neutral
(M = 1), and (3) light (M < 1).

To solve Eqs. (2) and (3) numerically, we use a pseudospec-
tral method with the 2/3-dealiasing rule [14,15] on a 2D,
periodic, computational domain of side L = 2π , i.e., A = L2;
we use a fourth-order Runge-Kutta scheme for time marching.
We work with the quantum of circulation κ ≡ h/m ≡ 4πα0,
speed of sound c = √

2α0gρ0, healing length ξ = √
α0/(gρ0),

and mean density ρ0. In all our calculations, we set ρ0 = 1,
c = 1, and ξ = 1.44 dx, where dx = L/Nc, N2

c = 1282 is the
number of collocation points, μ = g, Vo = 10 g, dp = 1.5 ξ ,
and �E = 0.062. (See Supplemental Material [16].)

We first examine a head-on, two-particle collision. We
prepare an initial state with two neutral particles, at rest,
separated by r0 = 7 ξ in the superfluid [17]. We evolve this
state by using the GPE in the presence of the SR repulsion
between the particles, with rSR = 1.5 ξ , after they are released
from rest at t = 0. In Fig. 1(a) we plot the particle positions
versus the scaled time ct/ξ . In the insets of Fig. 1(a), we show
pseudocolor plots of ρ(r) at times labeled (i)–(vi); these plots
show sound waves after the collision between the particles,
which appear as blue disks with ρ = 0. We see that the particles
accelerate toward each other and stop on collision, when the
separation r � rSR; and then their motion is reversed, but they
do not escape to infinity and undergo multiple collisions, which

are accompanied by acoustic emission, until they lose their
initial kinetic energy and they stick to form a bound pair;
i.e., we have an inelastic collision (Video M1, Supplemental
Material [16]).

To characterize the SM attractive potential between the
particles [18], we write the total energy contained in the
superfluid field as

EF = 1

A
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A

[
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2
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|∇ψ |2 + g

2
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|ψ |2 − μ

g

)2

+
No∑
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VP (r − qi)|ψ |2
]
dr. (5)

We now perform DNSs in which we vary the initial scaled
distance r/ξ between the particles; we then obtain EF (r/ξ ), the
energy of the minimum-energy state without the SR repulsion,
by using the imaginary-time procedure [17]. In Fig. 1(b), we
plot the potential UA = EF(r) − EF(r = ∞) versus r/ξ ; UA

is negative (i.e., attractive), for small r/ξ and vanishes in the
limit r/ξ → ∞.

We can estimate UA(r/ξ ) for the two-particle case by using
the Thomas-Fermi (TF) approximation [19] as follows. We
neglect the kinetic-energy term in Eq. (2) and write

|ψ(r)|2 = (μ − VP )θ (μ − VP )/g, (6)

with VP = VP (r − q1) + VP (r − q2) and θ the Heaviside
function that ensures |ψ |2 > 0. In this approximation,

ETF
F = 1

A

∫
A

[μ2 − (μ − VP )2θ (μ − VP )]/(2g)dr; (7)

UTF
A = ETF

F (r) − ETF
F (r = ∞), which we plot in the inset of

Fig. 1(b) versus r/ξ . It is in qualitative agreement with UA

from our DNS; the quantitative difference arises because the
TF approximation neglects the kinetic-energy term in Eq. (2).
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FIG. 1. Superfluid-mediated attractive potential: (a) Plot of the particle (M = 1) positions qo,x vs the scaled time ct/ξ . Inset: the sequence
of the collision events shown via the pseudocolor plots of the density field ρ(r) (the particles appear as blue disks in which ρ = 0); particles
are released from rest, with an initial separation r0 = 7 ξ , they undergo multiple collisions with the generation of sound waves in the wake
of this collision; and they form a bound state with r � rSR; O1 and O2 are the particle labels. (b) Plot of the superfluid-mediated attractive
potential UA vs the separation between the particles r/ξ obtained from our DNSs; the inset shows the same plot, but evaluated by using the
Thomas-Fermi approximation Eq. (7). Energies are in units of Eξ = 2α0 ρ2

0 g.
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FIG. 2. Head-on collisions: (a) Schematic diagram outlines the initial configuration and the procedure that we use to study the head-on
collision between two particles (blue disks). (b) Plots of the particle velocity uo,x versus t following a head-on collisions between two heavy
particles (M = 7.5) for three different values of the incident kinetic energy Eo of each particle, at rSR = 1.5 ξ . (c) Plot of the coefficient of
restitution e (Eq. (8)) versus Eo, for the head-on collision between two heavy particles (M = 7.5). The inset shows e versus rSR/ξ , but for two
neutral particles (M = 1).

We now study two simplified cases: (1) head-on collisions,
with impact parameter b = 0 and (2) collisions with finite
but small b. The schematic diagram in Fig. 2(a) outlines
our procedure. We use an initial state with two stationary
particles: O1 at (π/2,π ) and O2 at (3π/2,π ). We apply the
external forces Fext = F0x̂ and Fext = −F0x̂, respectively, to
accelerate the particles; and then we turn off Fext at t = t0 [red
vertical line in Fig. 2(a)]. In Fig. 2(b) we plot particle velocities
uo,x(t), from our DNS with two heavy particles (M = 7.5 and
rSR = 1.5 ξ ), for three different values of the incident kinetic
energy Eo of each particle. For Eo = 2.9 × 10−4 [blue (black)
curves in Fig. 2(b)], the behavior of uo,x(t) is similar to that
of neutral-particle collisions with SR repulsion [Fig. 1(a)];
the collision is completely inelastic and the particles form a
bound pair; and the separation between their centers fluctuates
around r � rSR. Figure 2(b) shows that for Eo = 3.6 × 10−4

[green (light gray) curves], the two particles rebound, with
small nonzero mean velocities; at the time of the collision,
most of the energy is transferred to the repulsive term
because of the change in EF (t) − EF (t0) and Eo (see the
Supplemental Material [16]). After the collision, most of the
energy is transferred back to the fluid and the particles have a
small kinetic energy. For higher values, e.g., Eo = 1.0 × 10−3

[magenta (dark gray) curves], the head-on collision between
the heavy particles is nearly elastic; and the particles rebound
with velocities that are significant fractions of their values
at incidence (Videos M2, M3, and M4 in the Supplemental
Material [16]).

We characterize this inelastic-elastic transition by calculat-
ing the coefficient of restitution for head-on collisions:

e = u2,F − u1,F

u1,I − u2,I

, (8)

where u1,I and u2,I are, respectively, the mean velocities of
the particles O1 and O2 before the collision and u1,F and u2,F

are the mean velocities of these particles after the collision.
For the collisions described above, we find (1) e � 0 for Eo =
2.9 × 10−4; (2) e � 0.24 for Eo = 3.6 × 10−4; and (3) e �
0.68 for Eo = 1.0 × 10−3. In Fig. 2(c) we plot e versus Eo.
At low values of Eo, the collision is inelastic with e = 0;
and as we increase Eo, e becomes finite at a critical value

Eo � 3.3 × 10−4, and then there is a steep increase followed
by a slow, asymptotic growth toward a value close to 1. We
observe a similar inelastic-elastic transition, when instead of
Eo, we vary rSR/ξ ; here we consider neutral particles (M = 1)
to illustrate that the sticking transition does not necessarily
require heavy particles. The plot of e versus rSR/ξ in the inset
of Fig. 2(c) shows that at low values of rSR/ξ , the collision
is inelastic with e = 0; and as we increase rSR/ξ , e becomes
finite at a critical value rSR/ξ � 6.46, and finally attains a
value close to 1.

Our data are consistent with a continuous sticking transition
at which e goes to zero continuously as a power β of the
control parameter (either Eo or rSR/ξ ). We now give a mean-
field calculation of this power-law exponent β. The symmetry
of these head-on collisions allows us to write uI � −u1,I �
u2,I and uF � u1,F � −u2,F . The energy balance between the
states, before and after the collision, is Erad(uI ) + mou

2
F =

mou
2
I , where Erad is the energy radiated into sound waves.

Therefore,

e(uI ) =
√

1 − Erad(uI )/mou
2
I , (9)

which yields the critical velocity uc
I at which e(uc

I ) first
becomes nonzero. In a simple, mean-field approximation,
the Taylor expansion of Erad(uI ), around uI = uc

I , yields the
mean-field (MF) exponent βMF = 1/2. Our DNSs yield values
of β that are comparable to, but different from, βMF = 1/2.
The calculation of β for this sticking transition, beyond our
mean-field theory, and its universality, if any, is a challenging
problem.

In Fig. 3(a) we show the trajectories of two heavy particles
(M = 7.5 and rSR = 1.5 ξ ) that collide with each other, with
an impact parameter b > 0. If the incident kinetic energy of the
particles is sufficiently high, e.g., Eo � 1.7 × 10−3, they do not
stick; the particles get deflected from their incident trajectory
at an angle 
, which depends on b [see Fig. 3(a) for b = 2 ξ

and b = 4 ξ ]. However, for b = 2 ξ with Eo � 1.8 × 10−5, the
incident kinetic energy is small enough to allow the formation
of a bound pair [red (center black) curves in Fig. 3(a)]; the inset
shows an enlarged version of the particle trajectories, after the
collision, with red solid (dashed) curves for particle O1 (O2).
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FIG. 3. (a) Collisions at impact parameters b � 0. Light green (light gray), dark green (top black), and blue (gray) curves show the particle
trajectories for two heavy particles (M = 7.5) O1 (solid curves) and O2 (dashed curves) colliding at b = 0, b = 4 ξ , and b = 2 ξ , respectively,
with incident kinetic energy Eo � 1.7 × 10−3. For b = 2 ξ and Eo = 1.8 × 10−5, the colliding particles stick to form a bound pair [red (center
black) curves]; the inset shows an enlarged view of the particle trajectories for the bound pair, the particle motion is a quasiperiodic function
of time. (b) Aggregation. Plots of the time evolution of EF (t) − EF (t0), the total kinetic energy ET

o , and the total repulsion energy ESR for
nine heavy particles (M = 7.5) initially placed on a lattice; these are set into motion by the application of constant-in-time forces, random in
magnitude and direction, for a short duration t � t0 ∼ 85 (in units of ξ/c). The insets (i)–(iv) illustrate multiparticle collisional dynamics at
the representative times t(i) = 0 < t(ii) < t(iii) < t(iv) by pseudocolor plots of the density field ρ(r); the particles appear as blue disks in which
ρ = 0. Energies are in units of Eξ = 2α0 ρ2

0 g.

The sun-flower-petal pattern of these trajectories indicates
that after transients have decayed, the damped oscillatory
motion of the particles in the bound pair is akin to that of a
dimer, with vibrational and rotational degrees of freedom. The
power spectra of the time series qi,j (t), for particle i ∈ {1,2}
and coordinate j ∈ {x,y}, show three prominent frequencies,
ωa = 0.0185c/ξ , ωb = 0.0148c/ξ , and ωc = 0.0222c/ξ , with
2ωa = ωb + ωc, i.e., the oscillatory motion is quasiperiodic
(data not shown).

If we start with more than two particles, then a succession of
inelastic collisions can lead to the formation of multiparticle
aggregates. We illustrate this in Fig. 3(b) for an assembly
of nine particles (M = 7.5 and rSR = 1.5 ξ ); to initialize the
system, we place the particles on a lattice [inset (i)] and set
them into motion by applying constant-in-time forces, with
random magnitudes and directions, for a given duration, such
that the collisions occur only after the forces are switched
off at t = t0. In Fig. 3(b) we plot EF (t) − EF (t0), the
total kinetic energy ET

0 , and the total repulsion energy ESR

versus ct/ξ ; large spikes in these plots occur at collisions;
subsequent rearrangements into clusters give rise to strong
fluctuations in ESR; as the clusters settle into their optimal
configurations, the fluctuations in ESR decrease until they
saturate toward the end of our DNS. The pseudocolor plots
of ρ(r) in the insets (ii)–(iv) of Fig. 3(b) show the aggre-
gation of particles (Video M5 in the Supplemental Material
[16]).

In conclusion, our minimal model of active and interacting
particles in the Gross-Pitaevskii superfluid yields remarkable
results, such as the sticking transition and rich aggregation
dynamics of particle assemblies. Our qualitative results should
hold even in superfluids like helium, in BECs [20], and in
three dimensions (we discuss this in the Supplemental Material
[16]). Particles in superfluids have been considered by using
Biot-Savart methods [13,21–23] and a two-fluid model [24];
the GPE has been studied with a single spherical particle [11];
however, these studies have not considered the collisions and
aggregation we elucidate. Impurities in BECs [25] have been
described in terms of generalized Bose-Hubbard models, but
these works do not study the problems we consider; however,
it is an active area of research [26–30]. We hope our work
will lead to experimental studies of particle collisions and
aggregation in superfluids and BECs.
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