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A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N ) gauge invariance is
introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of
a Dirac fermion coupled to usual U(N ) gauge fields in two-dimensional spacetime. A discrete generalization of
the usual U(N ) curvature is also constructed. An alternate interpretation of these results in terms of superimposed
U(1) Maxwell fields and SU(N ) gauge fields is discussed in the Appendix. Numerical simulations are also
presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare
the DTQWs with classical (i.e., nonquantum) motions in classical SU(2) fields. The results presented in this
paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.
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I. INTRODUCTION

Discrete-time quantum walks (DTQWs) are unitary quan-
tum automata and can be viewed as formal generalizations
of classical random walks. They were first considered in a
systematic way by Meyer [1], following the seminal work of
Feynman and Hibbs [2] and Aharonov et al. [3]. DTQWs have
been realized experimentally with a wide range of physical
objects and setups [4–10], and are studied in a large variety of
contexts, ranging from fundamental quantum physics [10,11]
to quantum algorithmics [12,13], solid-state physics [14–17],
and biophysics [18,19].

It has been shown recently that the continuous limit
of several DTQWs coincides with the dynamics of Dirac
fermions coupled to electromagnetic [20–22] and relativistic
gravitational fields [23–26]. Though these fields are naturally
gauge fields, they are not generic Yang-Mills gauge fields.
Indeed, electromagnetism is based on the Abelian gauge group
U(1), while relativistic gravitational fields are not Yang-Mills
gauge fields, since they are represented by a metric, and not by
a connection. The aim of this paper is to exhibit and study
DTQWs the continuous limit of which coincides with the
dynamics of a fermion coupled to Yang-Mills U(N ) gauge
fields.

To make things definite and as simple as possible, we focus
on one-dimensional (1D) DTQWs. The minimal 1D DTQWs
have a two-dimensional coin space. Their wave functions
thus have two components, one propagating towards the left
and one towards the right. To take into account the internal
degrees of freedom associated to U(N ) gauge invariance, we
consider 1D DTQWs with coin space of dimension 2N , i.e.,
2N -component wave functions. Half of the wave-function
components propagates towards the left, and the other half
towards the right. The so-called mixing operator advancing
the walk in time is represented by a 2N × 2N time- and
space-dependent unitary matrix.
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We introduce 1D DTQWs with 2N components which
admit an exact discrete U(N ) gauge invariance and build for
the DTQWs a discrete equivalent F of the usual Yang-Mills
curvature F . We then prove that the limit of these DTQWs,
when it exists, coincides with the dynamics of Dirac fermions
coupled to U(N ) gauge fields and that the discrete curvature
F tends towards F in the continuous limit.

These formal computations are complemented by numeri-
cal simulations. These address the convergence of the DTQWs
towards their continuous limit and the correspondence with
classical (i.e., nonquantum) trajectories in Yang-Mills fields
[27]. The paper concludes by a brief summary and a discussion
of the main results. Finally, the Appendix elaborates on the fact
that a U(N ) gauge field can be viewed as the superposition of a
U(1) Maxwell field and an SU(N ) gauge field, and reinterprets
our results in that alternate context.

II. THE DTQWS AND THEIR GAUGE INVARIANCE

A. The DTQWs

We consider DTQWs defined over discrete time and infinite
discrete one-dimensional space. Instants are labeled by j ∈ N
and space points are labeled by p ∈ Z. The coin space of the
DTQWs has dimension 2N . Given a certain orthonormal basis
in this space, the wave functions � of the walks are represented
by 2N components and we group these components into two
N -component sets ψ− and ψ+, which represent those parts of
� which propagate, respectively, to the left and to the right.
The evolution equations read[

ψ−
j+1,p

ψ+
j+1,p

]
= B(θ,Pj,p,Qj,p)

[
ψ−

j,p+1
ψ+

j,p−1

]
, (1)

with

B(θ,P,Q) = (C(θ ) ⊗ 1N ) ×
[
P 0
0 Q

]

≡
[

(cos θ ) P (i sin θ ) Q

(i sin θ ) P (cos θ ) Q

]
, (2)
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where ⊗ is the so-called Kronecker (or tensorial) product for
matrices, and P and Q are elements of U(N ). These walks are
unitary, i.e., �j = ∑

p |�j,p|2 is independent of j .
In the continuous limit, the parameter θ will code for the

mass of the fermion and the matrices P and Q will code for
the potential of the U(N ) gauge field to which the fermion is
coupled.

B. Discrete U(N) gauge invariance and discrete curvature

The DTQWs defined by Eq. (1) admit a discrete local
U(N ) gauge invariance. Indeed, consider the local gauge
transformation �j,p = (12 ⊗ G−1

j,p) � ′
j,p, where Gj,p is some

matrix of U(N ). Equation (1) is kept invariant under this
transformation, that is,[

ψ ′−
j+1,p

ψ ′+
j+1,p

]
= B(θ,P ′

j,p,Q′
j,p)

[
ψ ′−

j,p+1

ψ ′+
j,p−1

]
, (3)

provided that we set

P ′
j,p = Gj+1,p Pj,p G−1

j,p+1,

Q′
j,p = Gj+1,p Qj,p G−1

j,p−1. (4)

The above gauge invariance suggests that R = (P,Q) is
the discrete equivalent of the usual continuous U(N ) gauge
potentials. This will be confirmed in Sec. III, where the
continuous limit of Eq. (1) will be derived. We now wish
to build out of R an object F defined on the spacetime
lattice, which generalizes for DTQWs the usual curvature
(field-strength) tensor [28] F of standard gauge fields. This
will be done by searching for an object whose transformation
law under a change of gauge resembles the transformation law
of F . Let

Uj,p(R) = Q
†
j,p Pj,p,

Vj,p(R) = Qj,p Pj−1,p−1, (5)

whose transformation under a change of gauge reads

U ′
j,p(R′) = Gj,p−1 Uj,p(R) G

†
j,p+1,

V ′
j,p(R′) = Gj+1,p Vj,p(R) G

†
j−1,p, (6)

involving shifts of Gj,p only in the spatial (temporal) dimen-
sion for Uj,p(R) [Vj,p(R)], while these shifts were mixed in
the transformation laws of Eq. (4). From these equations,
we can write transformation laws involving the 2 × 2 = 4
discrete-spacetime neighbors of Gj,p:

U ′
j+1,p(R′) = Gj+1,p−1 Uj+1,p(R) G

†
j+1,p+1,

U ′
j−1,p(R′) = Gj−1,p−1 Uj−1,p(R) G

†
j−1,p+1, (7)

V ′
j,p−1(R′) = Gj+1,p−1 Vj,p−1(R) G

†
j−1,p−1,

V ′
j,p+1(R′) = Gj+1,p+1 Vj,p+1(R) G

†
j−1,p+1,

from which we can build

Fj,p(R) = U
†
j−1,p(R) V

†
j,p−1(R) Uj+1,p(R) Vj,p+1(R) , (8)

whose transformation law reads

F ′
j,p(R′) = Gj−1,p+1 Fj,p(R) G−1

j−1,p+1. (9)

As will become apparent in the next section, F is a discrete
equivalent to the curvature (field-strength) tensor of continuous
gauge fields.

III. CONTINUOUS LIMIT

We now show that it is possible to choose θ , P , and Q in
such a way that Eq. (1) admits a continuous limit identical to
the Dirac equation for a fermion coupled to an arbitrary U(N )
gauge field.

In order to compute the continuous limit of Eq. (1), we first
introduce a dimensionless time and space step ε, and consider
that �j,p, Pj,p, and Qj,p are the values �(tj ,xp), P (tj ,xp),
and Q(tj ,xp) taken at spacetime point (tj = jε,xp = pε) by a
2N -component wave function � and two time- and spacetime-
dependent matrices P and Q in U(N ). We then assume that
�, P , and Q are at least twice differentiable with respect to
both space and time variables and let ε tend to zero.

As ε tends to zero, the wave functions on the left-hand
side and on the right-hand side of Eq. (1) both tend towards
�(tj ,xp). Thus, the continuous limit of Eq. (1) can only exist if,
in that limit, B(θ,P,Q) tends to unity at all points in spacetime.
This is achieved by choosing an angle θ which tends to zero
with ε and two matrices P and Q which tend to unity as ε goes
to zero. We retain θ = −εm, where m is a positive constant (as
opposed to a function of t and x) which will play the role of a
mass in the continuous limit. As for the matrices P and Q, we
remark that U(N ) is a compact and connected Lie group. Thus,
the exponential map generates the whole group [29], i.e., all
elements M ∈ U(N ) can be written as

M = exp

(
i
∑

k

Xk
Mτk

)
, (10)

where the τk’s are N2 generators of U(N ) and the Xk
M ’s can

serve as coordinates for M .
To ensure that both functions P (t,x) and Q(t,x) tend to

unity when ε tends to zero, we choose Xk
P (t,x) = εbk

P (t,x) and
Xk

Q(t,x) = εbk
Q(t,x), where bk

P/Q(t,x) are two real functions
independent of ε.

Taylor expanding Eq. (1) at first order in ε and letting ε

tend to zero then delivers(
∂0 − ibk

0τk

)
ψ− − (

∂1 − ibk
1τk

)
ψ− = −imψ+,(

∂0 − ibk
0τk

)
ψ+ + (

∂1 − ibk
1τk

)
ψ+ = −imψ−, (11)

where ∂0 = ∂t , ∂1 = ∂x ,

b0 = (bQ + bP )/2,

b1 = (bQ − bP )/2, (12)

and summation over repeated index k is implied.
Equations (11) can be recast as

[iγ μDμ − m]� = 0, (13)

where index μ is summed over from zero to one, with the
gamma matrices γ 0 = σ1 ⊗ 1N and γ 1 = iσ2 ⊗ 1N and the
covariant derivative Dμ = ∂μ − ibk

μτk . Equation (13) is
the flat-spacetime Dirac equation, with convention [ημν] =
diag(+,−), for a spin-1/2 fermion of mass m coupled to
a non-Abelian U(N ) potential bk

μτk (with coupling constant
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g = −1) [28] belonging to the Lie algebra of U(N ). Note that
the bk

μ’s are real-valued space- and time-dependent fields.
Taylor expanding Definition (8) for F delivers

F(t,x) = 1N + 4ε2F10(t,x) + O(ε3), (14)

where F10 is the only nonvanishing component of the antisym-
metric curvature (field-strength) tensor Fμν of the connection
Bμ = bk

μτk , defined by

Fμν = ∂μBν − ∂νBμ − i[Bμ,Bν], (15)

with [Bμ,Bν] = BμBν − BνBμ. Note that the transformation
law for Fμν under a change of gauge reads

F ′
μν = GFμνG

−1, (16)

which closely parallels Eq. (9).

IV. NUMERICAL SIMULATIONS OF
U(2)-INVARIANT DTQWS

A. Simulated walk

As shown in the Appendix to this paper, U(N ) factorizes
into the product of U(1) and SU(N ). In physical terms, this
means that a U(N ) gauge field can be seen as the superposition
of a U(1) Maxwell field and an SU(N ) gauge field. The effects
of Maxwell fields on DTQWs have already been presented in
several publications [20,21,24]. We want to focus on the effects
of non-Abelian Yang-Mills fields and thus choose to simulate
situations where the Maxwell field identically vanishes so that
the U(N ) gauge field is then actually an SU(N ) gauge field.
We also choose the simplest option N = 2. The group SU(2)
is compact and connected, and can thus be fully generated
by the exponential map, from three generators τ̄k , k = 1,2,3,
belonging to its Lie algebra. We retain (see the Appendix)
τ̄k = σk/2 where the σk’s are the three Pauli matrices, and
choose

X̄0 = (X̄Q + X̄P )/2 = (0,0,0),
(17)

X̄1 = (X̄Q − X̄P )/2 = (εEYMt,0,0).

The bar is used to distinguish the notations used for SU(2)
from those used for U(N ), including U(2), in Sec. III. The
boldface notation is used as a reminder that the Lie algebra of
SU(2) is of dimension 3. The continuous limit can be recovered
by letting ε tend to zero (see Sec. III). In such a continuous
limit, this potential, Eq. (17), generates a uniform and constant
SU(2) “electric” field EYM in the τ̄1 direction of the SU(2) Lie
algebra.

B. Convergence towards the continuous limit

To study numerically the convergence of a DTQW towards
a solution of the Dirac equation, we choose an initial wave
function and compare, for some given time j , its evolution
ψu

QW (tj = εj,·),u ∈ {+,−}, through the DTQW to the evolu-
tion ψu

D(tj ,·) of the same initial condition through the Dirac
equation. The comparison is carried out through the following
mean relative difference:

δψu
j =

√√√√〈∣∣ψu
D(tj ,·) − ψu

QW (tj ,·)
∣∣2〉

〈∣∣ψu
D(tj ,·)

∣∣2〉 , (18)

FIG. 1. Relative differences δfj for f = Im ψ− and f = Re ψ−

as functions of ε, at time j = 100, with m = 0.1 and EYM = 0.08.
The initial condition is given by Eq. (20) with σ = 0.5.

where

〈f (tj ,·)〉 =
pmax(ε)∑

p=−pmax(ε)

f (tj ,xp) ε. (19)

The numerical simulations are carried out over the space
interval [−xmax,xmax] with xmax = 200, and pmax(ε) ≡ xmax/ε.
The maximal time over which we carry out the simulations,
tmax = 350, is short enough so that the walker never reaches
the spatial boundaries.

Note that δψu
j does not measure the difference between

quantum states, for which phase differences are unimportant,
but rather the difference between the functions ψu

D and
ψu

QW . This is appropriate here because we want to test
the convergence of a discrete scheme towards its formal
continuous limit, and this convergence should be verified on
both modulus and phase, i.e., on the whole complex function,
and not only on the state it represents.

Since there is only a time dependence and no space depen-
dence in the potentials (17), we can use as numerical solver for
the Dirac equation standard pseudospectral methods [30,31],
with resolution 2π/ε in 2π -periodic boundary conditions.
Time marching is performed using a second-order Runge-
Kutta scheme. The original DTQW can also be simulated in
spectral space using the standard translation operator in Fourier
space.

Figure 1 shows that the mean relative differences δfj for
f = Im ψ− and Re ψ− scale as ε as expected: indeed, this
scaling coincides with the theoretical expectation since, for a
single time step, the discrepancy is theoretically of order ε2.
Thus, after a fixed time t = O(ε−1), the discrepancy is of order
ε−1ε2= ε. These results also confirm that the DTQW Eq. (1)
with choice Eq. (17) can be used to simulate massive Dirac
dynamics in a constant and uniform non-Abelian electric field
EYM.

C. Comparison with classical trajectories

Given a wave equation, it is well known [32] that the
center of mass of a wave-packet solution follows classical
trajectories. In the continuous-limit case described above in
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FIG. 2. Time evolution of the DTQW mean trajectory x̄(t) for a
non-Abelian coupling constant g = 1 and different values of EYM, vs
classical trajectories (black solid line). Short-time agreement between
quantum and classical dynamics is shown in the ultrarelativistic range
k2

0 = 1 (green and blue) and the nonrelativistic range k2
0 = 0 (red).

The initial condition is given by Eq. (20) with σ = 0.5 (green and
blue), σ = 1 (red), and m = 0.1.

Sec. IV A, the corresponding classical equations have been
explicitly derived in [27]. We now want to investigate whether
the original DTQW also reproduces classical motions of the
center-of-mass of wave packets.

We consider k0-centered Gaussian wave packets of positive-
energy eigenvector u+(k) of the two-component [i.e., without
SU(2) internal degree of freedom] free Dirac Hamiltonian,
tensorized with an equally weighted initial SU(2) state:

�(x) =
∫

dk e
− (k−k0)2

2σ2 +ixk[u+(k) ⊗ (1,1)�/
√

2], (20)

where superscript � denotes the transposition, and

u+(k) =
⎡
⎣ √

k2 + m2 − k√
(
√

k2 + m2 − k)2 + m2

,
1√

(
√

k2+m2−k)2

m2 + 1

⎤
⎦

�

.

(21)

Figure 2 demonstrates the short-time agreement between
solutions of classical particle trajectory equations (see [27])
and the centers of wave packets x̄(t) obtained from DTQW
solutions, both in the nonrelativistic case, k2

0 = 0, m = 0.1, and
in the relativistic case, k2

0 = 1, m = 0.1. When the agreement
is lost, the oscillatory trajectory for x̄(t) is produced by the
DTQW. Note that similar long-time oscillations are also found
in the simple context of DTQWs corresponding to Dirac
fermions coupled to electromagnetic fields [33].

V. CONCLUSION

We have introduced DTQWs on the line which exhibit an
exact discrete U(N ) gauge invariance and the continuous limit
of which coincides, when it exists, with the dynamics of Dirac
fermions coupled to U(N ) gauge fields. We have also built
a discrete generalization of the curvature tensor of the gauge
fields. We have finally complemented these analytical results
by numerical simulations which explore the convergence of

the DTQWs towards their continuous limit and compare
the DTQWs with the dynamics of nonquantum particles in
classical gauge fields. The interpretation of our results in terms
of Maxwell fields superimposed to SU(N ) gauge fields is
presented in the Appendix. The results presented in this paper
constitute a first step towards quantum simulations of generic
Yang-Mills gauge theories through DTQWs. Until now, only
DTQWs with two-component wave functions have been real-
ized experimentally [34]. But experimental procedures allow-
ing the implementation of DTQWs with wave functions having
more than two components have been proposed in [35,36]. In
these procedures, the DTQWs are implemented with single
photons or classical light, for example in optical cavities.

Let us now mention a few avenues open to future studies.
The DTQWs presented in this paper should first be extended
to (1 + 2) and then to (1 + 3) spacetime dimensions. Note that
DTQWs modeling Dirac fermions coupled to U(1) gauge fields
have already been proposed in (1 + 1) and (1 + 2) dimensions
[20–22]. Another possible extension would be the construction
of DTQWs which are coupled, not only to U(N ) gauge
fields but also to gravity. Until now, this has only been done
for N = 1 and in (1 + 1) spacetime dimensions [24]. Also,
performing full quantum simulations of Yang-Mills gauge
theories will require complementing the fermionic DTQW
dynamics by dynamical equations for the discrete gauge fields,
i.e., for matrices P,Q ∈ U(N ) which define the DTQW. The
dynamical equations for the gauge field should be a set
of finite difference equations relating the discrete curvature
(field-strength) tensor F introduced in the present paper to
a discrete gauge-invariant fermionic current associated to the
DTQW. This current has already been presented in [22] for
N = 1 in (1 + 2) spacetime dimensions, and the corresponding
discrete Maxwell equations have also been written down. The
procedure should now be extended to generic noncommutative
discrete gauge fields. Finally, incorporating Yang-Mills fields
to DTQWs defined on arbitrary graphs is certainly worth
working on, if only for applications to quantum information.
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APPENDIX: ALTERNATIVE PHYSICAL
INTERPRETATION

The Lie group U(N ) is the group of N × N unitary
matrices, i.e., N × N matrices the determinant modulus of
which equals unity. In particular, elements of U(1) are complex
numbers of the unit modulus, i.e., complex numbers of the
form exp(iβ), where β is an arbitrary real number. The
group U(N ) is Abelian for N = 1 and non-Abelian for
N > 1. Consider now an arbitrary element M of U(N ), its
determinant detM = exp(iα), α ∈ ] − π, + π ], and we define
the matrix M̄ = M/δ where δN = detM . The matrix M̄ has
a unit determinant and is thus an element of the special
unitary group SU(N ). The group U(N ) can therefore be
factorized into the direct product of U(1) and SU(N ). This

012335-4



QUANTUM WALKS AND NON-ABELIAN DISCRETE GAUGE . . . PHYSICAL REVIEW A 94, 012335 (2016)

factorization is not unique because δ is not uniquely defined
by the equation δN = detM . Indeed, this equation has the N

distinct solutions δk = exp [i(α + 2kπ )/N ], k = 0,. . .,N − 1,
and each solution defines a different factorization. Note also
that imposing a factorization which depends continuously on
M is only possible if one makes a cut along the negative real
axis in the complex plane of detM , i.e., if one does not define
the factorization for matrices M the determinant of which
corresponds to the value α = π (and is thus equal to −1).

To make all computations definite, we now choose k = 0
in the above definition of δk . This defines unambiguously a
factorization of U(N ) into the direct product of U(1) and
SU(N ). This factorization is not continuous for matrices M

with detM = −1, but that should not be a practical problem
when one is working on a spacetime lattice. In the continuous
limit, all U(N ) matrices considered in this paper tend to unity.
Their determinant is thus close to unity and the retained
factorization is thus defined and continuous for all these
matrices.

In physical terms, the existence of the factorization means
that a U(N ) gauge field can be interpreted as the superposition
of a U(1) Maxwell field and an SU(N ) gauge field. Now,
SU(N ) is itself a compact and connected Lie group, so the
whole group is generated from the identity by the exponential
map. The above factorization can thus be used to write all
matrices M ∈ U(N ) as

M = δMM̄ = exp(iYM ) exp

(
i
∑

k

X̄k
M τ̄k

)
, (A1)

where the τ̄k’s are the N2 − 1 generators of SU(N ). This point
of view is adopted in Sec. IV A. Note that the factorization
of U(N ) also shows that the DTQWs presented in this paper
coincide, for N = 1, with the DTQWs already proposed to
simulate Dirac fermions coupled to arbitrary electric fields
[20].

The discrete curvature F also factorizes into a curvature for
the Maxwell field and a curvature for the SU(N ) gauge field.

One finds indeed that

Fj,p(R) = Fj,p(δR)Fj,p(R̄) (A2)

where δR = (eiYP ,eiYQ ) and R̄ = (P̄ ,Q̄). The SU(N ) curvature
Fj,p(R̄) is given by Eq. (8) and the U(1) Abelian curvature
reads

Fj,p(δR) = exp[2i(If10)j,p], (A3)

where

(f10)j,p = (d1Y0)j,p − (d0Y1)j,p, (A4)

with

Y0 = (YQ + YP )/2,

Y1 = (YQ − YP )/2, (A5)

d0 = (L0 − �1), d1 = �1, (A6)

and

(L0K)j,p = Kj+1,p,

(�1K)j,p = (Kj,p+1 + Kj,p+1)/2, (A7)

(�1K)j,p = (Kj,p+1 − Kj,p+1)/2,

where K is an arbitrary quantity which depends on j and p.
Operator I is defined in terms of L0 and L1 by

I = 1 + L−1
0 L−1

1 . (A8)

This form of Fj,p(δR) is interesting because (f10)j,p and
operators d0 and d1 have already been introduced in [22] in the
context of DTQWs exhibiting a U(1) gauge invariance.

Choosing Yμ = εAμ, X̄k
P/Q = εb̄k

P/Q and Taylor expanding
Eq. (A2) at second order in ε delivers

Fj,p(R) = 1N + 4ε2(f101N + F̄10) + O(ε3), (A9)

where F̄10 is given by Eq. (15) after substitution B → B̄, and
f10 = ∂1A0 − ∂0A1 is the (10) component of the usual Abelian
curvature tensor.
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