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Spatiotemporal detection of Kelvin waves in quantum turbulence simulations
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We present evidence of Kelvin excitations in space-time resolved spectra of numerical simulations of quantum
turbulence. Kelvin waves are transverse and circularly polarized waves that propagate along quantized vortices,
for which the restitutive force is the tension of the vortex line, and which play an important role in theories of
superfluid turbulence. We use the Gross-Pitaevskii equation to model quantum flows, letting an initial array of
well-organized vortices develop into a turbulent bundle of intertwined vortex filaments. By achieving high spatial
and temporal resolution we are able to calculate space-time resolved mass density and kinetic energy spectra.
Evidence of Kelvin and sound waves is clear in both spectra. Identification of the waves allows us to extract the
spatial spectrum of Kelvin waves, clarifying their role in the transfer of energy.
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I. INTRODUCTION

Quantum turbulence is the chaotic and erratic spatiotem-
poral behavior observed in superfluids and Bose-Einstein
condensates (BECs) [1,2]. Its motion is characterized by the
interaction between vortex filaments, where all vorticity is
concentrated and which have quantized circulation [3]. As
superfluids have no viscosity, quantum turbulence has garnered
much attention from the classical turbulence community, for
it could provide insight into extremely developed turbulence.
But it has also been a matter of debate how similar quantum
and classical turbulence actually are. One of the characteristic
features of turbulence, the existence of a Kolmogorov energy
spectrum, has been confirmed in superfluids [4,5]. However,
the physical mechanisms behind this spectrum are not com-
pletely understood. Moreover, other features, such as velocity
statistics, appear to be different between classical and quantum
turbulence [6,7].

An interesting property of classical and quantum vortex
lines, first predicted by Lord Kelvin [8], is that waves can
propagate along them when the line is subjected to helical
deformations. These waves are known as Kelvin waves. In
quantum fluids they are believed to play a crucial role in the
turbulent energy cascade [9–12], where energy is transferred
from large to small scales and it is ultimately dissipated by
phonon emission [13,14]: while at large scales vortex interac-
tion and reconnection [15] dominate the transfer of energy, at
small scales Kelvin waves are believed to interact nonlinearly,
exciting fluctuations at even smaller scales. They play a role
in various problems in classical fluid dynamics [16,17], but
not in classical turbulence, the turnover time or the period of
waves particular to that system (such as inertial waves in a
rotating flow or Alfvén waves in a magnetofluid) being the
only relevant time scales [18,19]. As a result, detection of
Kelvin waves in a disorganized superfluid flow is considered
a signature of quantum turbulence [6,20].

There are several theoretical studies of Kelvin wave
turbulence in superfluids, whose main focus is to understand
nonlinear interactions and the resulting energy spectrum.
Particular attention is given to the latter, as predictions for
the energy spectrum differ. Using wave turbulence theory [21]

different teams of researchers have arrived at different answers,
one being that the energy spectrum scales with wave number
as ∼k−7/5 [9], and the other that it goes as ∼k−5/3 [10] (it
should also be noted that some authors claim that Kelvin
waves play a neglible role in the spatial energy spectrum [22]).
Recent numerical studies yield results compatible with a
∼k−5/3 spectrum [23–26]. However, studies of wave dynamics
usually have a single or a few vortices, either using vortex line
dynamics simulations [25], or solving the Gross-Pitaevskii
equation (GPE) [27]. In the laboratory Kelvin waves have been
detected in superfluid helium using submicron ice particles as
tracers [20]; the analysis focused on selected reconnection
events and the subsequent emission of Kelvin waves. Finally,
Kelvin waves and other vortex wave modes have also been
studied and identified in BECs [28–31].

Our aim is to study Kelvin waves in quantum turbulence.
As mentioned above, numerical studies of quantum turbulence
have two main approaches. One is to simulate quantum vortex
lines dynamics [26,32]; in this approach the velocity field
outside the vortex lines is given by the Biot-Savart law and
reconnection events are performed ad hoc. The approach we
use solves the GPE, an equation for the evolution of the
wave function ψ for a system of bosons. A Kolmogorov
spectrum ∼k−5/3 was obtained in simulations of the GPE in
Refs. [13,33–35]. We consider a flow that shares similarities
with the von Kármán flow generated in recent experiments with
superfluid helium [36]. We extract and save four-dimensional
information to compute the spatiotemporal spectrum of quan-
tum turbulence, where the presence of sound and Kelvin waves
is evident. In previous studies using a similar technique sound
waves [37,38] and Kelvin waves in a single and straight vortex
filament [25] have been observed. Our study is done in a
three-dimensional highly turbulent environment, with a large
number of vortices.

II. THE GROSS-PITAEVSKII EQUATION

The GPE describes the evolution of the wave function ψ of
a field of weakly interacting bosons of mass m,

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + g|ψ |2ψ, (1)
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where g is proportional to the scattering length. By means of
the Madelung transformation

ψ(r,t) =
√

ρ(r,t)
m

eimφ(r,t)/�, (2)

where ρ is the density of particles and the phase φ can
be associated with a velocity by v = ∇φ, one obtains a
hydrodynamic description of the system [39]:

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

∂v
∂t

+ v · ∇v = − g

m2
∇ρ + �

2

2m2
∇

(∇2√ρ√
ρ

)
. (4)

These equations are similar to the Euler equations for a
classical and compressible barotropic fluid, except for the
extra second term on the right-hand side of Eq. (4) which is
referred to as the “quantum pressure.” By solving the GPE we
get the full three-dimensional velocity and density fields, and
compared to other methods [40], we do not need to reconstruct
them from the vortex tangle configuration.

The hydrodynamic description allows us to define a quantity
akin to the classical kinetic energy of a fluid, namely, Ek =
ρv2/2. Note that this is only a fraction of the total energy
density, given by �

2|∇ψ |2/2m + g|ψ |4/2. For simplicity, we
refer to the classical kinetic energy just as the kinetic energy. It
can be further decomposed into an incompressible component,
Ei

k , and a compressible component, Ec
k , by decomposing the

velocity field into irrotational and solenoidal components.
The two components will be useful to discriminate between
sound waves and other excitations in the fluid. More details
on the energy decompositions are given below (see also
Refs. [33,41]).

This system can have sound waves which follow the
Bogoliubov dispersion relation [39],

ωB(k) = k

√
c2 + c2ξ 2

2
k2, (5)

where the speed of sound is c =
√

g|ψ |2/m and the coherence
length is ξ =

√
�2/(2m|ψ |2g) [33,39], and Kelvin waves [3]

which follow the dispersion relation

ωK (k) = 2cξ√
2a2

(
1 ±

√
1 + ka

K0(ka)

K1(ka)

)
, (6)

where a is the vortex core radius, and K0 and K1 are modified
Bessel functions. The dispersion relation is quadratic in the
small-k limit, while for large k it is linear.

To solve numerically Eq. (1) we use GHOST [42], a highly
parallel code which uses a pseudospectral method to compute
spatial derivatives, uses fourth-order Runge-Kutta to compute
time derivatives, and can solve partial differential equations
in Cartesian periodic grids. We use 5123 grid points and the
“2/3 rule” for dealiasing. The speed of sound is c = 2 and
the coherence length is ξ = 0.1/(8

√
2) in dimensionless units

in a three-dimensional box of length L = 2π . Quantities are
made dimensionless using characteristic length L0, velocity
U0, and mean density ρ0 (see Ref. [33]). These parameters
result in an intervortex distance 	 such that k	 = 2π/	 ≈ 10

FIG. 1. (Color online) Three-dimensional rendering of the mass
density. The lines, corresponding to regions of low density, are
associated with quantized vortices. Typical length scales are indicated
by the black bars (see text for description). On the left we show a
zoom into a single vortex; helical perturbations propagating along
it can be identified. Due to the highly turbulent nature of the flow,
identifying waves here is like looking for needles in a haystack.

(see Refs. [13,33]) and in a vortex core radius a ≈ 2ξ as
measured directly from the full width at half maximum of the
mass density profile. Also, the quantum of circulation h/m in
dimensionless units is given by 4πcξ/

√
2 = 0.05π .

As an initial condition we use the Taylor-Green flow,
which results in a set of vortex loops in two counter-rotating
large-scale eddies with turnover time of order unity, and whose
geometry mimics the von Kármán flow [33]. The von Kármán
flow has been used in recent experiments with two counter-
rotating propellers such as SHREK (the Superfluid High
REynolds von Kármán experiment) [36] and has been used in
the past to measure Kolmogorov spectra in superfluids [4]. For
more information about the generation of the initial conditions
see Appendix A. We let the simulation run for ≈20 large-scale
turnover times, so as to get good statistics on the slowest waves
in the system. To also resolve the fastest waves, we use a very
high output cadence, storing one output of the wave function
every half period of the fastest waves (i.e., the sound waves
for the maximum wave number in the spatial domain). This
very high temporal resolution allows us to properly calculate
space-time resolved spectra.

III. CHARACTERIZATION OF THE FLOW

Figure 1 shows a three-dimensional rendering of the
density field ρ. The visualization is done using the software
VAPOR [43], and only regions with low density (indicating
topological defects associated with quantized vortices) are
shown. The field evolves from a well-ordered structure to
a bundle of intertwined and structurally rich vortices. This
evolution is associated with the development of reconnection
events, which become prominent at t ≈ 5 and start to subside
after t ≈ 10. The analysis below is done during this period,
as afterwards too much of the total energy has decayed into
phonons. Tracking reconnection events and the subsequent
generation of Kelvin waves in this flow is not an easy task.
However, the identification of helical waves from spatial
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FIG. 2. (Color online) Time evolution of the incompressible ki-
netic energy Ei

k , of the compressible kinetic energy Ec
k , of the

potential energy Ep , and of the quantum energy Eq .

observations is possible if single vortices or single reconnec-
tion events are followed in time (see, e.g., Ref. [20]).

In Fig. 2 we present the evolution of the different com-
ponents of the total energy in the simulation. As mentioned
above, the classical kinetic energy density is defined as

Ek = 1
2ρv2. (7)

The remaining components of the total energy density in the
system are the so-called quantum energy,

Eq = �
2

2m2
(∇√

ρ)2, (8)

and the potential (or internal) energy,

Ep = g

2m2
ρ2. (9)

A detailed analysis and derivation of each component of the
total energy density can be found, e.g., in Ref. [41].

From Fig. 2 different regimes can be identified in the
evolution. In the first stage, up to t ≈ 5, the incompressible
kinetic energy oscillates around a mean value. Afterwards
it decays and the other components of the energy grow, as
reconnection of vortex lines takes place and the flow becomes
more complex (see Fig. 1). After t ≈ 10 the number of
reconnection events in the flow subsides and the growth of
the compressible, potential, and quantum energies becomes
slower. During this process the total energy is conserved up
to the sixth significant digit. Mass and momentum are also
conserved. Snapshots of the velocity field and of the density
between t ≈ 5 and ≈10, when the turbulent spectrum is more
developed, are thus used for the spatiotemporal analysis.

IV. LOOKING FOR NEEDLES IN A HAYSTACK

Instantaneous flow visualization is insufficient to identify
and extract all the waves in a turbulent flow. In particular,
in order to quantify their relevance in the energy cascade,
it is necessary to quantify their amplitudes as a function
of frequency and wave number, i.e., to calculate space-time
resolved spectra. As Kelvin waves are oscillations of the lines
with ρ = 0, we should be able to identify their imprint in
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FIG. 3. (Color online) Space-time resolved mass spectrum,
ρ(k,ω) normalized by ρ(k). (a) The whole spectrum. The dashed
(blue) line indicates the sound wave dispersion relation ωB (k), and
the solid (green) line indicates the Kelvin wave dispersion relation
ωK (k). (b) Close-up for small wave numbers; note the accumulation
of power near the Kelvin wave modes. The range of wave numbers
with strong Kelvin excitations are marked as “inertial range.” (c)
A cut of ρ(k,ω) (also normalized) for k = 32, the marker indicates
the Kelvin wave frequency. At low wave numbers Kelvin waves are
dominant, whereas sound waves become prominent after k ≈ 50. At
very high wave numbers the quantum pressure inside the vortex core
also leaves a trace in the spectrum.

the mass spectrum, and we therefore study it first. Figure 3
shows the mass spectrum ρ(k,ω), along with a close-up for
low wave numbers, as well as a cut of ρ(k,ω) at k = 32.
The dashed line in Fig. 3 corresponds to the Bogoliubov
linear dispersion relation of sound waves [Eq. (5)], while
the solid line corresponds to that of Kelvin waves [Eq. (6)].
Substantial power is concentrated along these curves. At low
wave numbers, Kelvin waves are dominant, whereas sound
waves become prominent as Kelvin waves begin to fade for
k � 50. At very high wave numbers another accumulation of
energy can be seen for ω ≈ 350, which is probably due to
quantum pressure effects inside the vortex core. Indeed, the
spectrum of the quantum pressure also shows a bump at these
wave numbers (not shown), and the frequencies are compatible
with those predicted for axisymmetric oscillations of the vortex
core [44,45]. The presence of Kelvin waves at low wave
numbers is the most striking feature of the flow; these modes
are probably excited by deformation of vortex lines by the
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FIG. 4. (Color online) (a) Space-time resolved compressible ki-
netic energy spectrum, Ec

k (k,ω), normalized by Ec
k (k). (b) Same for

the incompressible kinetic energy spectrum Ei
k(k,ω). The dashed

(blue) line corresponds to ωB (k), and the solid (green) line cor-
responds to ωK (k). The dash-dotted (black) line corresponds to
sweeping, which excites all modes with frequency equal or smaller
than ω = Urmsk. Ec

k (k,ω) is dominated by excitations around the
sound wave dispersion relation while Ei

k(k,ω) shows sweeping and
Kelvin wave excitations. Inset: Decorrelation time τd (k) of individual
Fourier modes, compared with the sweeping time τs (dash-dotted
black line) and the Kelvin wave period τω (solid red line).

large-scale flow and are hard to identify by simple inspection
of the evolution of individual vortex lines. In Appendix B, we
present a benchmark study of the spatiotemporal spectrum of
mass in a flow where only linear Kelvin waves were excited,
to verify the modes identified in Fig. 3 correspond to these
waves.

To independently verify the presence of sound and Kelvin
waves, and to separate the multiple branches of the dispersion
relation, we now consider the spectrum of the compressible
kinetic energy Ec

k(k,ω) and of the incompressible kinetic
energy Ei

k(k,ω) (see Fig. 4). A strong accumulation of energy
around modes satisfying the relation ω = ωB(k) is evident in
the compressible spectrum [Fig. 4(a)]. In the incompressible
spectrum [Fig. 4(b)] these excitations are negligible, but
two new features are found. First, strong excitations can be
observed for all wave numbers at low frequencies. These
excitations are compatible with sweeping of the vortex cores by
the large-scale flow, i.e., the advection of small-scale structures
by the flow with a slow time scale associated with the turnover
time. This is an important effect in classical turbulence where it
is responsible for the temporal decorrelation of modes [18,19].

FIG. 5. (Color online) Spectrum of the incompressible kinetic
energy associated with Kelvin wave modes,

∫
�K

Ei
k(k,ω)dω, where

�K are the modes neighboring ωK (k). The two predictions for the
Kelvin wave spectrum are shown as references. The shaded area
corresponds to the region with strong Kelvin excitations identified as
“inertial range” in Fig. 3(b).

It results in the smearing of the energy for all frequencies ω =
Urmsk and smaller (with rms velocity Urms ≈ 0.5). Superposed
to these excitations, modes compatible with Kelvin waves can
still be observed for small wave numbers. To further verify
this, we calculated the decorrelation time τd of individual
Fourier modes and compared it to the sweeping time τs ∼
1/(Urmsk) and to the wave period τω ∼ 1/ωK (k) (Fig. 4). The
decorrelation time fluctuates between τs and τω for low wave
numbers and converges towards τs for large wave numbers; no
other relevant time scales are observed. Other collective vortex
motions (e.g., Tkachenko waves [46–48]) may also be present
but masked by these two dominant time scales. A weak trace
of these effects is also present in Ec

k(k,ω). Kelvin waves do
not contribute significant energy to the spectrum of classical
turbulence, making the presence of energy in these modes a
signature of quantum turbulence.

The role of Kelvin waves in the dynamics of quantum
turbulence is controversial. While at large scales the interaction
of quantized vortices with the flow results in advection and
reconnection of vortex lines, at scales comparable to the
intervortex distance 	 Kelvin waves are believed to interact
nonlinearly, exciting smaller fluctuations that eventually lose
their energy to phonons. This transfer of energy by nonlinear
interaction of wave modes can be described by wave turbulence
theories, but current predictions differ on the shape of the
energy spectrum [9,10]. The quantification of the amplitude of
all Kelvin waves modes shown in Figs. 3 and 4 can be used
to shed some light on this problem. We thus extract the modes
centered around the dispersion relation given by Eq. (6) with
a width of 2σ from the wave frequency, where the dispersion
σ is estimated by fitting the peaks in ρ(ki,ω) such as the one
shown in Fig. 3(c) with a Gaussian. This subset of modes,
which we call �K , can be used to compute the spectrum of
the incompressible kinetic energy associated with Kelvin wave
modes,

∫
�K

Ei
k(k,ω)dω (Fig. 5). We verified that the shape of

the spectrum is not very sensitive to the width in units of σ

used to define the subset �K , as long as it is not too large so
as to include, e.g., modes associated with sound waves. In this
spectrum, the candidate for an inertial range is observed for
k � k	, and its width is in agreement with the wave numbers
for which we observe Kelvin-like excitations in Fig. 3. As the
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scale separation is limited, we do not attempt to fit the data in
Fig. 5 and only show the two theoretical predictions for the
scaling as references.

V. CONCLUSIONS

Kelvin wave turbulence is an inherently quantum regime of
superfluids. Proper quantification of Kelvin waves is important
to understand the differences between classical and quantum
turbulence. We presented direct evidence of the presence of
Kelvin waves in numerical simulations of quantum turbulence
using the GPE. By looking at the space-time resolved mass
density spectrum, we showed that Kelvin waves play the
dominant role at scales comparable to the intervortex distance,
while sound waves are excited at smaller scales. Furthermore,
the kinetic energy spectrum confirms the presence of both
waves in the flow. The presence of these waves in the spectrum
can be considered a quantum signature that distinguishes this
flow from classical turbulence.

Modes satisfying the wave dispersion relations excite a
continuous region of the spectra, with broadening around
the theoretical dispersion curves. This suggests that waves
interact nonlinearly, as broadening of the dispersion relation
in turbulent flows is often the result of nonlinear coupling
and energy transfer. However, the modes excited are still
close to the linear dispersion relations, an unexpected result
as excitations in the turbulent regime do not necessarily
have small amplitudes. Finally, extraction of the spectrum
of the incompressible kinetic energy of modes along the
dispersion relation of Kelvin waves results in a spectrum that
is compatible with predictions of weak turbulence theories for
superfluids.
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APPENDIX A: PREPARATION OF THE INITIAL
CONDITIONS

The Taylor-Green initial conditions are generated by
preparing a wave function ψ whose associated velocity field
is a Taylor-Green flow [33], given by

vx(x,y,z) = sin(x) cos(y) cos(z),

vy(x,y,z) = − cos(x) sin(y) cos(z),

vz(x,y,z) = 0.

The Taylor-Green flow contained in a periodic box has
properties that mimic the von Kármán flow driven by two
counter-rotating impellers and has been extensively used in
simulations to compare with the experimental flow. The von
Kármán flow is commonly used in the laboratory to study
turbulence, including dynamo experiments with conducting
flows, experiments to study Lagrangian particles, and super-
fluid turbulence [36].

The process to generate the initial wave function is
described in great detail in Ref. [33]. Here we give a brief,
but nonetheless complete, presentation. The Taylor-Green flow
can be described by the Clebsch potentials

λ(x,y,z) = cos(x)
√

2|cos(z)|,
μ(x,y,z) = cos(y)

√
2|cos(z)| sgn[cos(z)],

which verify ∇ · v = ∇λ · ∇μ. Our use for them is that they
can map a point in the (λ,μ) plane to a line in three-dimensional
real space. Now, instead of having to assemble directly a three-
dimensional wave function whose nodal lines match vortex
lines of the velocity field v, we can pick instead the complex
field φ(λ,μ) which has a zero (a defect) at the point (λd,μd ).
Then, the three-dimensional wave function

ϕ(x,y,z) = φ(λ(x,y,z),μ(x,y,z)) (A1)

will be equal to zero along the line(s) defined by λ(x,y,z) = λd

and μ(x,y,z) = μd . This ensures that the defects of ϕ match
the vortex lines of v, as desired.

Our choice for φ is

φ(λ,μ) = φe

(
λ − 1√

2
,μ

)
φe

(
λ,μ − 1√

2

)

×φe

(
λ + 1√

2
,μ

)
φe

(
λ,μ + 1√

2

)
,

with

φe(λ,μ) = (λ + iμ)√
λ2 + μ2

tanh

(√
λ2 + μ2

√
2ξ

)
.

As φe has one simple zero at the origin, φ will have four
simple zeros in the region [0,π ] × [0,π ], resulting in four
nodal lines in three dimensions. But as the circulation of the
velocity v must match the circulation generated by the vortex
lines (whose circulation is in turn quantized and fixed by the
parameters of the simulation), we must change the multiplicity
of the nodal lines to match both values. Using that the total
circulation of v is � = 8, that the quantum of circulation is
4πα (with α = �/2m), and that we want multiples of four
nodal lines, we write

ψ(x,y,z) = ϕ(x,y,z){1/(2πα)}, (A2)

where the brackets {} denote the integer part.
This wave function is then evolved in time for over 30

turnover times under the dynamics of the advective real
Ginzburg-Landau equation (ARGLE),

∂ψ

∂t
= cξ√

2
∇2ψ + c√

2ξ

(
|ψ |2ψ − |ψ |4

2

)

− iv · ∇ψ −
√

2v2

4cξ
ψ. (A3)

This allows us to reduce the acoustic energy present in ψ , as
solutions of the ARGLE converge to states which are solutions
of the GPE with minimal energy in acoustic modes. Also,
evolving the system under the ARGLE improves the matching
of the circulations. The resulting wave function is finally used
as the initial condition for the GPE.
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APPENDIX B: ANALYSIS FOR HELICAL
PERTURBATIONS

As a reference, and for comparison with the spectra
presented in Sec. IV for the Taylor-Green initial conditions,
we present here the space-time resolved spectrum for a
system of only four straight vortices at rest, perturbed with
small helical perturbations so as to excite linear Kelvin
waves. The spatial resolution and parameters of the simulation
are the same as in the simulation in the main text. Initial
conditions were prepared as in Ref. [24], and the vortices were
perturbed with a superposition of small helical displacements
between wave numbers k = 3 and k = 30 (see also Ref. [24]).
The resulting space-time resolved mass density spectrum
is shown in Fig. 6. The perturbation excites strong sound
waves, but modes compatible with the dispersion relation
of Kelvin waves can be identified in the range of wave
numbers excited by the small initial perturbation. Moreover,
the dispersion relation of these modes is compatible with the

0 10 20 30 40 50
k

0

20

40

60

80

100

120

ω

10−16

10−15

10−14

10−13

10−12

FIG. 6. (Color online) Space-time resolved mass density spec-
trum ρ(k,ω) for a simulation with four straight vortices perturbed with
small helical displacements between k = 3 and k = 30. The dashed
(blue) line indicates the sound wave dispersion relation ωB (k), and
the solid (green) line indicates the Kelvin wave dispersion relation
ωK (k).

one observed in the main text for the fully developed turbulent
flow.
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