PHYSICAL REVIEW A 88, 042301 (2013)

Quantum walks as massless Dirac fermions in curved space-time
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A particular family of time- and space-dependent discrete-time quantum walks (QWs) is considered in one-
dimensional physical space. The continuous limit of these walks is defined through a procedure discussed here
and computed in full detail. In this limit, the walks coincide with the propagation of a massless Dirac fermion
in an arbitrary gravitational field. A QW mimicking the radial propagation of a fermion outside and inside the
event horizon of a Schwarzschild black hole is explicitly constructed and simulated numerically. Thus, the family
of QWs considered in our manuscript provides an analog system to study experimentally coherent quantum

propagation in curved spacetime.
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The first quantum walk (QW) was built by Feynman [1]
as a possible discretization of the standard, massive Dirac
dynamics in flat spacetime. General discrete-time QWs have
then been introduced in the physics literature by Refs. [2,3] and
the continuous-time version first appeared in Ref. [4]. QWs are
the simplest formal analogs of classical random walks and are
important in many fields, ranging from fundamental quantum
physics [5,6] to quantum algorithmics [7,8], solid-state physics
[9-12], and biophysics [13,14].

QWs have been realized experimentally; for example, as
transport of trapped ions [15,16], of photons in wave guide
lattices [6] or optical networks [17] and of atoms in optical
lattices [18]. QW experiments of two photons [19] have
recently been performed, with the possibility of simulating
Bose or Fermi statistics [20], and cavity QED QWs have also
been proposed [21].

Following Feynman'’s idea, several authors have studied the
continuous limit of general QWs. Most publications [22-29]
only envisage QW's with constant coefficients. The continuous
limit of QWs with time- and space-dependent coefficients
has been considered only recently, in Refs. [30-32]. These
references present several families of QWs, in both (1 + 1)
or (14 2) spacetime dimensions, whose continuous limit is
described by a flat spacetime Dirac equation with a generalized
mass term and electromagnetic coupling. The electromagnetic
field is generated by the spacetime dependence of the angles
defining the walks and thus vanishes if these angles are
constant.

The other gauge field which couples naturally to a Dirac
spinor is evidently gravity. Yet, QWs whose continuous
limit are described by Dirac equations in curved spacetime
have remained elusive. This article considers a particular
family of discrete-time QWs with nonconstant angles
in (1+ 1) spacetime dimensions and associates to this
family a continuous limit which is described by a massless
Dirac equation in curved spacetime. This family was not
investigated in Refs. [30-32] and the limit procedure used
in these references cannot be applied to the family discussed
here. The result presented in this article opens the way
to possible laboratory experiments simulating coherent
quantum propagation in relativistic gravitational fields. It also
establishes a connection between general relativity and all the
aforementioned fields where QWs are useful.
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PACS number(s): 03.67.—a, 03.65.—w

We consider QWs defined over discrete time and discrete
one-dimensional (1D) space, driven by time- and space-
dependent quantum coins acting on a two-dimensional (2D)
Hilbert space H. The walks are defined by the following finite
difference equations, valid for all (j,m) € N x Z:
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The index j labels instants and the index m labels spatial
points. For each instant j and each spatial point m, the wave
function W;,, = ¥, by + ¥, bg has two components ¥},
and glf]Rm on the spin basis (by,bg) and these code for the
probability amplitudes of the particle jumping towards the left
or towards the right. Note that the spin basis is interpreted
as being independent of j and m. The total probability 7; =
(¥, 1>+ 1R, %) is independent of j; i.e., conserved by
the walk. The set of angles {6, ,,,(j,m) € N x Z} defines the
walks and is arbitrary.

Consider now, for all (n,j) € N2, the collection W]'f =
(Wi, m)k=njmez- This collection represents the state of the
QW at “time” k = nj. For any given n, the collection §" =
(Wj’f) jeN thus represents the entire history of the QW observed
through a stroboscope of “period” n. The evolution equations
for " are those linking W7, to W} for all j. These can be
deduced from the original evolution equations (1) of the walk,
which also coincide with the evolution equations of S'. In
particular, the evolution equations of S? read
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Vivom = Civtm(Cimt1 ¥y = iSjma¥Vj)
L . R
+Sitim (~Y.j$m—11/fj,m + le,m—le,m_z)s 3)

R . L R
wj+2,m = Sj+1m (lcj,;1z+1¢j,m+2 + Sj,m+1wj,m)
. L R
—Cjt+lm (lSj,m—llﬂj,m - Cj,m—llﬁj,m_z), (4)
where ¢, = cos(0;,,) and s, = sin(6;,,).

To investigate the continuous limit of S”, we first introduce
a time step At and a space step Ax. We then consider
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that W;,, and 0;,, are the values taken by a two-component
wave function ¥ and by a function 6 at the spacetime point
(t; = jAt,x, = mAx). We finally suppose that W and 6 are
at least twice differentiable with respect to both space and
time variables for all sufficiently small values of A¢ and
Ax. The formal continuous limit of S” is defined as the
couple of differential equations obtained from the discrete-
time evolution equations defining S" by letting both At and
Ax tend to zero. Let us therefore introduce a time-scale 7,
a length-scale £, an infinitesimal € and write At = €7 and
Ax = eL. The continuous limit of S can then be investigated
by Taylor expanding in powers of € the discrete equations
defining S”. For the limit to exist, all zeroth-order terms must
identically cancel each other and the differential equation
describing the limit is then obtained by equating to zero the
nonidentically vanishing, lowest-order contribution. Consider
first S!, which is identical to the original walk. It is rather
obvious that zeroth-order terms cancel each other only if the
operator B defining the walk tends to unity as € tends to O (see
Ref. [30] for a detailed discussion of this point). The operator
B defining the family of walks considered in this article does
not depend on € and is different from unity for all values of
. Thus, S! does not admit a continuous limit for the family
of walks defined by Eq. (1). But 52, on the other hand, does.
Indeed, a straightforward computation delivers the following
equation obeyed by the wave function W:

Wy 4 (cosO)PWy = OV, (5)
where the operators P and Q are represented, in the base
(br,br), by the matrices

—cosf isinf
P=\ .. (6)
—isinf cos6
and
oo 0
5107 + 0x(cos 20)]
In Egs. (5) and (7), the subscript T (X) indicates a deriva-
tive with respect to the dimensionless variable 7 =1t/7
(X =x/L).

The operator P is self-adjoint and its eigenvalues are —1
and +1. Two eigenvectors associated with these eigenvalues

are
. 0 . 0
b_=i (cos E) by — <sm 5) bg, ®)

. 0 0
by =i (sm 5) by + <cos E) bg. )

The family (b_,b,) forms an orthonormal basis of the two-
dimensional-spin Hilbert space. Let us now rewrite Eq. (5) in
components, but in this new orthonormal basis. A tedious but
straightforward computation leads to

L6y — Ox(cos 29)]) o

sin 20
Ox 5=

Y — (cosO)yy + ejx(sin Oy~ =0,
J (10)
Y + (cos )Y — jx(sin o)yt =0,

where ¥~ and ¥ are the components of W in the new basis.
This form of the equations makes it easy to check that the
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continuous dynamics conserves the total probability 7 (T) =
[axX|¥(T, X)) = [dX[|[Y (T, X)I* + [y (T, X)P], as it
should.

Suppose now, to make the discussion definite, that cos 6
is strictly positive and introduce in spacetime {(7,X)} the
Lorentzian, possibly curved metric G defined by its covari-
ant components (G ,,) = diag(1, — 1/ cos? #), where (u,v) €
{T,X}?. This metric defines the canonical, scalar “volume”
element DgX = +/—GdX =dX/cosf in physical 1D X
space, where G is the determinant of the metric components
G . Dirac spinors are normalized to unity with respect to
D X, whereas W is normalized to unity with respect to dX.
We thus introduce ® = W+/cos 6 and rewrite the equations of
motion (10) in terms of ®. We obtain

I 1
e [egaﬂdn + Eﬁaﬂ(x/—(;eg)cb} =0, (D

where p € {T,X}, a € {0,1}. The usual 2D gamma matrices

are
o (01 L (0 1 -
V={1 0) YV T\ o)

and the ¢/} are the components of the diad (orthonormal basis)
eo = ey and e; = (cosB)ey on the original coordinate basis
(er,ex). Equation (11) is the standard [33] equation of motion
for a massless Dirac spinor in (1 + 1)-dimensional spacetime
with metric G. The spin basis is (b_,b,).

This result shows that QWs can be used to model quantum
transport in any 2D gravitational field. Indeed, any 2D
Lorentzian metric can be put under the above diagonal form
by a suitable choice of coordinates. The single angle 6(¢,x)
is thus enough to describe any 2D gravitational field. Let us
stress, however, that gravity is very different in 2D and in 4D
since, in particular, all 2D spacetimes are conformally flat [34].
But Eq. (11) can also be used to model quantum transport in
higher-dimensional spacetimes by QWs on the line. As an
example, we now construct a QW on the line which mimics
the radial motion of a Dirac spinor in a spherically symmetric
4D black hole.

A Schwarzschild black hole is a spherically symmetric
solution of Einstein equation in vacuo. The corresponding
4D metric reads, in dimensionless Lemaitre coordinates

(r.0.0.9) [35],

ds® = dr? — r7gdp2 — Q. (13)
where 7(z,p) = r,"[3(p — DI, dQ = d6* + (sin® 0)d¢>.
The event horizon is located at r = ry, i.e., p = T + (2/3)r,,
and the singularity is located at » = 0, i.e., p = 7. The exterior
of the black hole is the domain r > r,.The range of variations
for the Lemaitre coordinatesist > 0, p > 7 [i.e.,r(t,p) = 0],
0070 ¢ <2m.

Because of the spherical symmetry, a point mass which
starts its motion radially will go on moving radially. Radial
motion can be studied by introducing the 2D metric g, also
singular at » = 0, with covariant components g;; = 1, g,, =
—74/7, 8rp = &pr = 0. The null geodesics of g are defined by
dt = =£[r,/r(z,p)]"*dp. Note that the 2D projection of the
horizon on the (7, p) plane coincides with a null geodesics of g.
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FIG. 1. (Color online) Density of the QW vs null geodesics (solid
curves) of the 2D Schwarzschild metric for various values of A [see
text and Eq. (14)]. The singularity is represented by the dotted and
dashed line on the left and the horizon (which is a null geodesic) is
represented by the dashed line. (a), (b) The two branches of the QW
which starts inside the horizon end up on the singularity. The (red)
solid line represents the limit of the definition domain D of the QW.
(c) One branch of a QW which starts on the horizon stays on the
horizon while the other branch ends up on the singularity. (d) One
branch of the QW which starts outside the horizon propagates away
from the black hole, and the other branch ends up on the singularity.

We now identify the dimensionless time 7' with the time
coordinate T and the dimensionless space variable X with
Ap, where A is an arbitrary strictly positive real number (see
Fig. 1). The “radius” r can then be expressed as a function of 7

and X:
2/3
r(T,X) = B (; — T)} r”?, (14)

and the components of g in the coordinate basis associated with
T and X are grr = 1, gxx = —ry/(A*r), grx = gxr = 0.
Note that the condition p > T transcribes into X > AT.

Let D be the domain where —gxyx > 1. This domain
is characterized, in (7,X) coordinates, by the condition
X < AT + %rg. In D the metric g can be identified with the
metric G. This identification defines a angle 6 which depends
on T and X by

r(T,X)

(cos O)(T,X) = A (15)

8

and, by extension, a QW in D.

The condition defining D can be rewritten as r < r, /A2,
The domain D thus includes, for all A, the singularity located
atr =0.For A > 1, rg/)x2 < rg and D is then entirely located
inside the horizon. For A = 1, D coincides with the interior of
the horizon, and D extends outside the horizon for A < 1.
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The spatial density |W(T,X)|*> of the walk defined by
Egs. (1), (2), and (15) is plotted in Fig. 1. All graphs have been
obtained with 7, = 150 and € = 0.5. The initial condition is
W (0,X) = /no(X)(br + ibg) with an initial Gaussian density
ng of variance A Xy = 2.5 centered on Xy = 50.5. In Figs. 1(a)
and 1(b) (in which the right limit of D coincides with the
horizon), both branches of the QW starts their evolution inside
the horizon and end up on the singularity. In Fig. 1(c) the QW
starts exactly on the horizon; the right branch follows it while
the left branch ends up on the singularity. In Fig. 1(d) the QW
starts outside the horizon; its right branch propagates away
from the horizon while the left branch still ends up on the
singularity.

Figure 1 clearly shows that the QW closely follows null
geodesics of the metric, i.e., it behaves as a massless fermion
in the gravitational field of the black hole. The agreement
between the geodesics and the density profile of the walk is
all the more remarkable given that all graphs correspond to
€ = 0.5, which lies well outside of the continuous limit € < 1
envisaged above. Note, however, that the right branch of the
QW lags slightly behind the null geodesic when approaching
the r = 0 singularity [see top of Fig. 1(b)]. The numerical
results thus suggest that the main result of this article can
somehow be extended beyond the continuous limit. This
interesting point will be investigated in future presentations.

In summary, we have considered a particular family of
one-dimensional QWs which does not admit a continuous limit
by the procedure used in Refs. [30-32]. The procedure used
here keeps one time step out of two, and gives a continuous
limit to walks from this family. We have computed this limit
and proven that it coincides with the propagation of a massless
Dirac fermion in an arbitrary gravitational field. Note, however,
that Fig. 1, where all time steps are retained, shows that the
density clearly follows, at all times, the null geodesic predicted
by the continuous limit. We have also constructed explicitly a
QW which mimics the propagation of a fermion outside and
inside the event horizon of a Schwarzschild black hole and
illustrated this construction by numerical simulations.

Let us now discuss the above results. Keeping only one
time step of the QW out of two to build a continuous limit
might appear unnatural and might even look like a purely
mathematical trick. Let us explain now in detail why this is
not so. Consider first, as an instructive example, the sequence
of numbers u ; defined by uo = 1 and

ujr1 = oexplio?)u;, (16)

for j € N;here, w is an arbitrary real number, 7 is a time-scale
and 0 = =1 and does not depend on j. A direct computation
shows that u; = o/ exp(iwt;) with t; = jT. Suppose o =
+1. The sequence u; is then a simple circular function of
the time ;. On the contrary, if 0 = —1, the sequence u; is
then a circular function of the time #; combined with an extra
phase shift of 7 at every time step. The sequence u; admits a
continuous limitif o = +1.But,itdoesnotifo = —1, because
of this extra phase shift. In particular, if 0 = —1, the oscillating
behavior of the sequence u; cannot be recovered by simply
taking the continuous limit of the evolution equation (16). The
best way to recover this oscillating behavior is then to consider
the new sequence vy built out of u; by keeping only one time
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step out of two. Indeed, this new sequence obeys the discrete
evolution equation vy, = exp(2i w7 )vy. This equation admits
a continuous limit, described by the ordinary differential
equation ‘;—lt’ = 2iwv, which clearly reveals the oscillating
behavior in v and, thus, in u#. Naturally, all information on the
extra phase shift of 7 is lost in this procedure. Note, however,
that this extra phase shift does not influence the sequence of
the squared moduli |u  |*.

Let us now compare the preceding example with the QWs
examined in Refs. [30-32] and in this article. The spinor ¥
plays a role similar to # and the evolution equation of the
walk [Eq. (1) for the QWs considered in this article] has the
same status as Eq. (16). The QWs studied in Refs. [30-32]
are equivalent to the sequence u ; obtained with o = +1. They
thus admit a standard continuous limit, which is fully described
in these earlier publications. This limit coincides with the
propagation in flat spacetime of a Dirac fermion possibly
coupled to an electric field. On the other hand, the QWs defined
by Eqgs. (1) and (2) correspond to the sequence u; witho = —1
and they do not admit a continuous limit. But the derived walks
built by keeping only one time step out of two of the original
QWs do admit a continuous limit because the squared matrix
B? =1, just as (—1)*> = 1. Keeping one time step out of two
is thus not a contrived, unphysical procedure. On the contrary,
it is dictated by the very definition of the QWs we study in
this article and it is the only one which delivers a continuous
limit for these walks. The obtained continuous limit coincides
with the physically interesting situation of a massless Dirac
fermion propagating in curved spacetime. Since the retained
limit procedure is itself dictated by the QWs studied in this
article, the geometry appearing in their continuous limit is an
intrinsic property of the walks themselves.
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The explicit construction of a QW mimicking propagation
in and around a black hole shows that it is possible, at
least in principle, to simulate by laboratory experiments the
propagation of quantum systems in interesting relativistic
gravitational fields.

The work presented in this article should naturally be
extended in several directions. One should first investigate
systematically all QWs on the line defined with a quantum
coin acting on a 2D Hilbert space and, for each family of
walks, try and determine if and how a continuous limit can be
obtained. One should also extend the main result of this article
to QWs defined on physical space of higher dimension and/or
defined by quantum coins acting on a higher-dimensional
Hilbert space. A particular goal would be to obtain walks
whose limits are described by a Dirac fermion coupled to both
a gravitational and an electromagnetic field.

As noted earlier, the geometry appearing in the continuous
limit of the QWs studied in this article is an intrinsic property
of these walks and is not to be confused with the geometry the
“real”, “physical” spacetime which might be used to realize
the walk experimentally. Another extension of this work would
therefore be to consider walks defined on curved physical
spaces (graphs) and to investigate how the geometry of the
underlying space (graph) couples to the intrinsic geometry of
the walk. This is not a purely academic problem, since QWs
can model photon transport in networks of algae, which may
have a nontrivial geometry.

The main result of this article also suggests that concepts
from general relativity and differential geometry may play a
key role in understanding the behavior of QWs on graphs and
their use in quantum algorithmics. This role should also be
investigated thoroughly.
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