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Vortex-lattice melting and critical temperature shift in rotating Bose-Einstein condensates
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We investigate a shift in the critical temperature of rotating Bose-Einstein condensates mediated by the
melting of the vortex lattice. Numerical simulations reveal that this temperature exhibits contrasting behavior
depending on the system configuration: a negative shift occurs for fixed trap potentials due to the expansion of the
condensate, while a positive shift is observed for fixed volumes, where vortex-lattice rigidity suppresses thermal
fluctuations. We introduce a vortex-energy model that captures the role of vortex interactions, the positional
energy of the vortex lattice, as well as the phase transition and how the vortex lattice disappears. The findings
provide insights into the thermodynamic properties of rotating condensates and the dynamics of vortex-lattice
melting, offering potential parallels with other quantum systems such as type-II superconductors.
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I. INTRODUCTION

One of the hallmarks of quantum fluids is the existence of
quantized vortices, first theorized by Onsager [1] and Feyn-
man [2]. Since then, quantum vortices have been extensively
studied. Recently, advances in experiments and simulations
have sparked growing interest in rotating Bose-Einstein con-
densates (BECs), as they provide a platform to link quantum
gases and fluids with type-II superconductors and other quan-
tum materials [3]. In these systems, the presence of an external
order field causes vortices to form an array known as the
Abrikosov lattice, which affects the order parameter. For an
infinite gas, Tkachenko demonstrated that the lattice must
be triangular to minimize free energy [4]. Such lattices and
their onset have been observed experimentally [5–7]. Once the
lattice forms, the previously three-dimensional (3D) state of
the system becomes quasi-two-dimensional, and the system’s
behavior near equilibrium is dominated by vortex dynamics,
with waves acting as lattice perturbations [8].

The effect of vortex lattices in a BEC critical tempera-
ture remains largely unexplored. It is evident that increasing
the temperature must imply the disappearance of the lattice,
as eventually there must be no condensate phase remaining.
However, the melting of vortex arrays has been studied in
detail. As quasi-long-range order develops in the vortex crys-
tal, the theory for phase transitions in two-dimensional (2D)
systems developed by Kosterlitz and Thouless [9], as well as
Halperin and Nelson [10], is applicable. Gifford and Baym
[11] studied the dislocation-mediated thermal melting of a
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vortex lattice in a rotating superfluid using elasticity theory.
The process was described meticulously, and the melting tem-
perature was obtained for the homogeneous case.

Experimentally, the melting of 2D vortex lattices in su-
perconductors was studied in [12], revealing hexatic and
smecticlike phases. Additionally, the melting of a vortex ar-
ray through dislocations in a quasi-2D BEC experiment was
recently examined in [13]. Numerically, Monte Carlo simula-
tions have also been employed to investigate vortex behavior
in 3D systems in [14,15]. In [14] a frustrated 3D XY model
was considered, revealing a first-order phase transition for
the melting of unpinned Abrikosov lattices in type-II super-
conductors. In [15] vortices under cylindrical confinement
were studied, showing that fluctuations concentrate near the
condensate borders and that the vortex lattice melts from the
outside in.

In rotating BECs, melting of the vortex lattice always oc-
curs close to or below the Bose-Einstein critical temperature
[11]. As a result, if the vortex lattice can still be observed at
a given temperature, it provides a lower bound to the critical
temperature. This can be qualitatively understood as follows:
In a rotating BEC the lattice appears as the result of the
impossibility of the superfluid phase to rotate as a rigid body.
The lattice requires the spatial long-range order of the con-
densate, and its presence evidences the condensate existence.
Moreover, for rotation frequencies sufficiently below the trap
frequency in elongated traps, the melting temperature is close
to the condensate critical temperature (see details in [11], and
recent results in [13]). Finally, in that regime melting of the
vortex lattice is induced by thermal fluctuations instead of
by quantum fluctuations, which is also the case under typical
experimental conditions [11].

In this paper we study how the critical temperature of a
cylindrically trapped rotating BEC changes under different

2469-9926/2025/111(2)/023304(7) 023304-1 ©2025 American Physical Society

https://orcid.org/0000-0002-1347-573X
https://orcid.org/0000-0002-0618-5806
https://orcid.org/0000-0001-6858-6755
https://ror.org/0081fs513
https://ror.org/03cqe8w59
https://ror.org/05a0dhs15
https://ror.org/02en5vm52
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.111.023304&domain=pdf&date_stamp=2025-02-04
https://doi.org/10.1103/PhysRevA.111.023304


AMETTE ESTRADA, BRACHET, AND MININNI PHYSICAL REVIEW A 111, 023304 (2025)

conditions, and the role of the vortex lattice in this process. We
consider the regimes more relevant for most experiments, with
small enough rotation frequencies and in systems dominated
by thermal fluctuations.

II. ROTATING BOSE-EINSTEIN CONDENSATES
AT FINITE TEMPERATURE

A few methods are available to study the equilibrium and
dynamics of interacting Bose gases at finite temperature, in-
cluding regimes up to the critical temperature to study phase
transitions. These methods can be separated into classical
field methods (as, e.g., the projected or truncated stochastic
Gross-Pitaevskii or Ginzburg-Landau equations, depending
on whether the dynamics or just equilibria are sought for
[16–20]), and full stochastic Gross-Pitaevskii equations of
quantum Boltzmann formulations that can properly describe
quantum fluctuations [21,22] (see [23] for a detailed com-
parison). The former methods assume that the lowest-energy
modes are sufficiently populated to be described classically,
while the latter provide a quantum field description (although,
in practice, most of their numerical implementations are
also limited to classical distributions [23]). Here we use the
Ginzburg-Landau equation to obtain states at zero tempera-
ture, and a truncated stochastic Ginzburg-Landau formulation
to generate classical field states at finite temperature, in all
cases considering the effect of rotation.

The Hamiltonian that describes the order parameter ψ of a
rotating BEC at zero temperature is

H =
∫

d3r

[
h̄2

2m
|∇ψ |2 + g

2
|ψ |4

+V (r)|ψ |2 − ψ∗(� · J)ψ

]
, (1)

where m is the boson mass, g is proportional to the s-wave
scattering length, V (r) is the external potential, � = �ẑ is
the rotation angular velocity, and J is the angular momentum.
Its variation gives the well-known Gross-Pitaevskii equation,
the stationary solutions of which at a given energy can be
obtained from the evolution of the rotating Ginzburg-Landau
equation (RGLE):

∂ψ

∂t
=

[
h̄

2m
∇2 − g

h̄
|ψ |2 − V (r)

h̄
+ � · J

h̄
+ μ

h̄

]
ψ, (2)

where μ is the chemical potential. To obtain finite-temperature
states we follow the same procedure as in [24], and we gener-
alize Eq. (2) as a Langevin equation:

∂ψ

∂t
=

[
h̄

2m
∇2 − g

h̄
|ψ |2 − V (r)

h̄
+ � · J

h̄
+ μ

h̄

]
ψ

+
√

2

V h̄β
ζ (r, t ), (3)

which is the stochastic rotating Ginzburg-Landau equa-
tion (SRGLE) that provides a classical field model [25] in
which ζ (r, t ) is a delta-correlated random process such that
〈ζ (r, t )ζ ∗(r′, t ′)〉 = δ(r − r′)δ(t − t ′), and

√
2/V h̄β controls

the amplitude of fluctuations through a temperature T ≈ 1/β

(V is the system volume). This equation, when written for
a finite number of Fourier modes (i.e., truncated) up to a
cutoff wave number kmax using a Galerkin truncation, is equiv-
alent to a Fokker-Planck equation for the state probability
P [{ψ̂ (k, t ), ψ̂∗(k, t )}], and converges to thermal states in the
grand canonical ensemble. The mass can be fixed instead of
μ (i.e., to obtain canonical ensemble states) by solving an
equation for the chemical potential [24]. In the following we
solve those equations for thermal states, and Eq. (2) for T = 0.

This methodology and similar methods have been used to
study the disappearance of Bose-Einstein condensation un-
der many conditions [16–20,24,26], following the approach
described in [25] to solve finite-temperature dynamics, the
route to condensation, and to find critical temperatures. Also,
they have been used to study the process of nonequilibrium
condensation [16,19], and in particular, to determine the shift
on critical temperature in condensates comparing successfully
with experiments and showing better agreement than other
mean-field theories [18]. A review of these methods and of
their advantages and disadvantages can be found in [23].

To solve these equations we use an axisymmetric potential
V (r) = mω2

⊥(x2 + y2)/2. The presence of rotation imposes a
preferred direction in the system, and translation symmetry
along z. Note that to disentangle its effects from those associ-
ated with the shape of the cloud along the vertical direction,
we consider the limit of an infinitely elongated cigar trap, by
taking periodic boundary conditions in z with trap frequency
ωz = 0 along that direction. Although this is convenient for
theoretical reasons, it should be kept in mind if the results are
in the future compared against potential experiments.

The system is integrated in a cubic domain of dimensions
[−π, π ]L × [−π, π ]L × [−π, π ]L, using a Fourier-based
pseudospectral method with a spatial grid of N3 = 1283 grid
points. The 2/3 rule is used to control aliasing instabili-
ties, and an implicit first-order Runge-Kutta method is used
for time integration with the GHOST parallel code, which is
publicly available [27]. The nonperiodic potential in x and
y, and the angular momentum operator, are computed us-
ing the methods described in [28]. Results are presented in
units of a characteristic speed U , the unit length L (pro-
portional to the condensate mean radius), and a unit total
mass M. All parameters are fixed by setting the speed
of sound as c = (gρ0/m2)1/2 = 2U , the condensate healing
length as ξ = h̄/(2ρ0g)1/2 = 0.003 53 L (these two relations
are strictly valid for uniform density condensates, so here
they apply locally), the reference trapping frequency to ω0

⊥ =
1.85U/L, and the unit density as ρ0 = 1 M/L3. Quantities can
then be scaled by setting dimensional values for U, L, and
M. In experiments, typical values are L ≈ 5 × 10−5 m and
c ≈ 1 × 10−3 m/s [5,29]. This results in ξ ≈ 2.8 × 10−7 m
and a trap frequency ω0

⊥ ≈ 116 Hz. Particle densities in exper-
iments with Na atoms are ≈1014 cm−3 atoms using 5 × 107

atoms [5], and a total mass to maximum density ratio of
5 × 10−13 m3; in our simulations this ratio is 1.4 × 10−14 m3.

III. NUMERICAL SIMULATIONS

To study the effect of rotation on the critical tempera-
ture of the BEC and on lattice melting we must consider
two scenarios: the case in which the trap frequency is kept
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FIG. 1. Density in real space for the BEC at zero temperature
for different rotation speeds. Top panels show ρ(z, y, z = 0). The
other rows show ρ(x, y = 0, z = 0)/ρ0

c , where ρ0
c is the density in

the center when � = T = 0, for fixed potential (middle panels),
and fixed volume (bottom panels). The gray dashed horizontal line
indicates ρ0

c , the red dashed line indicates the mean density near the
trap center 〈ρc〉, and the orange solid line indicates the average mass
density in the full domain ρm.

constant, and the case with constant volume. In the former,
as � increases the condensate expands (and its volume thus
increases) as a result of the centrifugal force. In the latter, the
trap frequency must be increased with � in such a way that
the Thomas-Fermi radius of the BEC remains fixed, and thus
the volume remains unchanged. Note that this behavior results
from the fact that rotation produces a change in the effective
trap frequency: The third term and part of the fourth term on
the right-hand side of Eq. (1) can be rewritten using an ef-
fective confining potential [30] of the form m(ω2

⊥ − �2)r2
⊥/2

(with r2
⊥ = x2 + y2), and thus we can adjust ω⊥ to keep the

effective external potential felt by the condensate the same.
As a reference, the minimum value used in all cases when
adjusting ω⊥ is ≈0.65 ω0

⊥, and the maximum is ω0
⊥. Both for

constant ω⊥ and for constant volume, the total mass of the
condensate is kept constant.

Figure 1 shows the density of the BEC in real space at
zero temperature, for different rotation rates. The top three
panels display the density in the midplane perpendicular to
the rotation axis, for different values of � with a fixed trap
frequency. As rotation increases, a larger vortex lattice is
generated. The two lower rows present ρ(x, y = 0, z = 0)/ρ0

c
for constant trap frequency (top row), and for constant volume
(bottom row), where ρ0

c is defined as the density in the center
of the trap when � = T = 0. For constant trap frequency,
the central density decreases as the condensate radius grows
with increasing �. Conversely, with constant volume, the cen-
tral density remains approximately the same, with variations
caused by the vortex lattice.

Figure 1 also illustrates two other mean densities that are
used in the following analysis. For any value of � and T ,
the mean density near the center of the trap, 〈ρc〉, is defined as
the average of ρ over an area around the center of the xy plane
with a radius of 1/16 of the side of the entire domain, aver-
aging also over all values of z and for different times. Finally,

FIG. 2. Density at the center of the trap minus the mean density
in the trap, normalized by their values at T = 0, for various rotating
speeds (see labels in the insets) as a function of T/T �=0

c . From top to
bottom, the cases with fixed potential and fixed condensate volume
are shown. The vertical dashed lines indicate the estimated critical
temperature in the nonrotating case. Error bars represent 99.7%
confidence intervals of the mean density standard error.

the average mass density ρm corresponds to the average over
the entire domain and for different times.

Figure 2 shows the mean density around the trap center,
〈ρc〉, minus the average mass density in the whole domain,
ρm, normalized by their corresponding values at T = 0, for
different � and as a function of the temperature normalized by
the critical temperature of the BEC without rotation, T/T �=0

c .
Note that the critical temperature Tc is determined as the
inflection point of the curves in Fig. 2. In the laboratory
the local (or optical) central density has been used before to
estimate the condensed fraction [31,32]. In homogeneous con-
densates in numerical simulations, the lowest Fourier modes
of the momentum can be also used to identify the fraction of
particles in the condensate (see, e.g., [20]). In the presence
of a trap, correlation functions are also used [17], as well
as the spectrum of momentum [28]. We verified that these
methods yield similar values for Tc, and in the following use
the local central density to allow for more direct comparisons
with experiments (see also [33] for a discussion).

In all cases in Fig. 2 the condensate density decreases
with T until it reaches the phase transition. The two afore-
mentioned cases are shown in this figure: the case with fixed
trap frequency, and the case with fixed condensate radius.
Opposites results are obtained: In the former case a negative
shift in Tc is seen for increasing �, while in the latter case
Tc increases as � increases. To understand these differences
we must first note that volume, temperature, total mass, and
rotation speed are the four relevant thermodynamic quantities.
In the first case two thermodynamic variables change, while
in the second case only one changes. The decrease of Tc with
� observed in the first case with fixed potential can then be
explained considering the growth of the condensate radius
as � increases, leading to a reduction in the central peak
density (see Fig. 1). Lower densities in condensates cause a
negative shift in Tc. In the second case with constant volume,
rotation promotes order and gives the condensate additional
resilience to fluctuations, with the vortex lattice seeming to
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FIG. 3. Top: ρ(x, y, z = 0) with increasing temperature (�/ω0
⊥ = 0.68). Middle: Phase of ψ , averaged along the rotation axis, for the same

configurations. Blue corresponds to −π and red corresponds to π . Phase shifts are caused by quantized vortices. Bottom: Vortex-energy model
with increasing T . Blue vortices are parallel to the rotation axis, and red vortices are antiparallel.

play a crucial role. The two cases share similarities with the
behavior observed in trapped condensates with increasing re-
pulsive interaction parameter g, where a reduction in Tc results
from cloud broadening, while increased interaction at constant
density leads to a positive shift in Tc [34].

It could be argued that in the former case, at constant radius
(and constant density), the change in Tc can be the result of
the change in the trap potential ω⊥ used to keep the radius
constant (even though the effective potential corrected by the
centrifugal potential remains the same). We verified that under
constant density and for � = 0, the effect of increasing the
potential is actually the opposite to that seen in the bottom
panel of Fig. 2. It results in a small decrease on Tc (see the
Appendix for details). Therefore, the change in the critical
temperature must be associated with the rotation. One then
may ask the following: Through which mechanism does ro-
tation affect Tc? And what happens to the vortex lattice as T
grows?

To answer these questions, we first study the effect of
temperature on the lattice. Figure 3 shows the condensate for
�/ω0

⊥ = 0.68 at increasing T . The top row shows the mass
density in SRGLE simulations, in the midplane perpendicular
to the rotation axis. As temperature increases, fluctuations
cause vortex positions in the lattice to shift. This is evident
by the blurring of the vortices, starting from the borders as
T increases (see similar behavior in [15]). Additionally, the
condensate shape becomes less defined, making individual
vortex identification challenging. The borders of the cloud
are the first to deform, whereas the center of the condensate

maintains it shape. At large temperatures this behavior can
be better appreciated by looking at the phases of ψ , which
are shown (averaged over the vertical direction) in the middle
row of Fig. 3. Vortices correspond to points where the phase
around them shifts by 2π (i.e., the radial origin of blue and red
stripes). Note that indeed the border of the lattice melts first
as T increases, with the vortices in the center remaining with
increasing disorder.

The melting of the lattice as T increases can be further
confirmed by studying the number of vortices corotating with
the condensate as a function of the temperature (see Fig. 4, top
panel). As T approaches Tc, the lattice disappears. Moreover,
an overshoot in the number of vortices is seen at small T in
many cases. This is caused by fluctuations induced by temper-
ature, which make new states with a larger number of vortices
available with more available energy. Finally, the number of
vortices near T �=0

c also increases with �. Thus, the lattice
persistence, and in particular the need for the condensed phase
to maintain this structure in the rotating case, appear to shield
the condensate as T increases, effectively raising Tc. Fluctu-
ations then concentrate at the edges of the lattice, where the
condensate density is lower, and vortices in that region are the
first to disappear.

IV. VORTEX-ENERGY MODEL

The vortex array enhances the coherence of the condensate,
allowing it to persist at higher temperatures. This leads to
the following question: Can this effect be attributed solely to
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FIG. 4. Net number of positive vortices (i.e., aligned with the
axis of rotation), normalized by the same number at T = 0, in SR-
GLE simulations with constant volume (top) and in the vortex-energy
model (bottom), as a function of T and for different �. Temperatures
in both cases are normalized by the same value of T �=0

c . Error bars
indicate 95% confidence intervals of the standard error.

interactions between vortices within the array? To explore this
we construct an Ising-like model for the system, taking into
account vortex interactions. In our vortex-energy model we
assume an underlying triangular Abrikosov lattice of vortices
is present, and define the Hamiltonian of our vortex-energy
model as

HT = − 1

2π
�2

0

∑

i j�

σiσ j ln(ri j ) − αhNc�
∑

i

σi

+
∑

i

|σi|[ε0 + V (ri )], (4)

where �0 is the quantum of circulation; σi = 0,±1 corre-
sponds to no-vortex, a vortex, or an antivortex in the ith
position of the lattice; ri j is the distance between the ith and
jth vortices; ε0 is the energy required to generate a vortex or
antivortex in the bulk of the condensate; V (ri ) is the trapping
quadratic potential; and Nc is the number of particles per cell.

The first term of the Hamiltonian corresponds to the inter-
action between vortices in two dimensions [1] (which are of
long range in this problem [11]). The notation 〈〈i j〉〉 indicates
that the sum is computed up to the fifth neighbors. This is
done to avoid computing excessive long-range interactions,
but is also justified by the fact that we are interested in the
role of defects in an already established lattice. The sec-
ond term is the rotation energy, as hNc is approximately the
angular momentum of a vortex. The parameter α accounts
for the coupling of the vortices with the long-range field
generated by the remaining far away vortices. In the Bethe
mean-field approximation, the total order field is effectively
� + �′, where �′ is generated by those neglected long-range
interactions such that α� ≈ � + �′. In other words, in the
Bethe mean-field approximation, interactions with the closest
neighbors are considered explicitly, while other interactions
are considered through an effective order field generated by
the remaining sites in the lattice. For vortices in two dimen-
sions, the interaction is logarithmic and thus long range, and
the effect of the vortex lattice is indeed to generate (through

the Biot-Savart law) a velocity field equivalent to that of a
rigid body rotation. These neglected interactions are therefore
considered through the correction to the order field. These co-
efficients are kept constant when varying �, as the interaction
of the BEC with the external field must be proportional to the
angular momentum per vortex Jz ∼ M�/Nv (where M is the
total condensate mass). Note that as the number of vortices Nv

grows linearly with the rotation speed, the coupling remains
the same. Finally, the last term in Eq. (4) corresponds to the
energy required to pin a vortex in the system at a given point
(including the vortex energy plus the trap potential energy).
This Hamiltonian will be solved to obtain equilibria. Even
though in the dynamical case (e.g., solving RGLE or SRGLE,
or the Gross-Pitaevskii equation) vortices first appear near the
border of the condensate, as time evolves they move inwards
and in the equilibrium they remain at the center. We will thus
only compare states generated by this model with steady-state
equilibria reached by SRGLE.

To obtain equilibrium states of the Hamiltonian in the
canonical ensemble at a given T we use the Metropolis-
Hastings algorithm [35]. To reproduce the case of constant
volume we vary the trapping potential with � in the same
proportion as in the SRGLE simulations. For the vortex
separation length, a representative value that corresponds to
�/ω0

⊥ = 0.54 was chosen (small changes in this value do not
affect the results as the dependence with ri j is logarithmic).
The bottom row of Fig. 3 shows the vortex lattice in the model
for a given � and for increasing T , where white, blue, and
red dots represent no-vortex, corotating, and counter-rotating
vortices respectively. Despite the fact that the number of vor-
tices in the model is larger than in the SRGLE simulations,
the way the lattice melts and disorder increases is reminiscent
of the numerical simulations: the borders become increasingly
disordered and the coherence length is lost from the borders
to the center.

The bottom panel in Fig. 4 shows the net number of
corotating vortices in Monte Carlo simulations of the vortex-
energy model under “constant volume.” The model, that takes
into account only vortex interactions and positional ener-
gies in the lattice, captures qualitatively features seen in the
SRGLE simulations (Fig. 4, top panel). For increasing � in-
deed more vortices remain at a fixed T , even for temperatures
close to T �=0, resulting in a positive shift in Tc (note that,
even though we are studying melting with the model, a shift
to higher temperatures of the melting temperature implies
a shift to higher temperatures of the Bose-Einstein critical
temperature, and under our conditions both temperatures are
similar [11]). Also, the overshooting in the number of vortices
for low T is captured by the model and, as in SRGLE runs,
the effect is stronger for small �. The latter effect arises here
in the same way as in SRGLE: Thermal fluctuations provide
enough energy to facilitate the excitation of new vortices in
the condensate, especially near the border and near the critical
value of � to create the first vortex. This, as in SRGLE simula-
tions, makes new vortex states in phase space available for the
system to explore as T increases. The overshooting suggests
that the increase in the vortex number could be associated to a
less energetic state for zero temperature which was separated
from the original by some energy barrier that the system could
not overcome.
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FIG. 5. Solid lines: Angular momentum in the z direction nor-
malized by its value at T = 0, as a function of T for different values
of � in SRGLE simulations. Dashed lines: Estimated angular mo-
mentum of quantized vortices, normalized by Jz(T = 0). The vertical
dashed line indicates T �=0

c . The colored shaded area indicates 95%
confidence levels.

V. ANGULAR MOMENTUM

At this point features of the array melting process seem
to be captured by the vortex-energy model, but other as-
pects of the transition remain elusive. Moreover, the mere
disappearance of vortices only partially addresses our ques-
tions. Are vortices truly disappearing, or are they engulfed
by thermal noise? How does the system as a whole respond
as T increases, and what role does the noncondensed gas
play? To investigate these questions we study the angular
momentum Jz in the SRGLE simulations. This quantity de-
pends on the spatial mass distribution in the condensed and
thermalized phases, as well as on their respective velocity
fields, allowing us to consider the whole system. Figure 5
shows in solid lines the total Jz as a function of T for var-
ious � in the constant volume case, and in dashed lines
the estimated contribution to Jz from quantized vortices (i.e.,
only from the condensate), both normalized by Jz at T = 0.
The angular momentum of quantized vortices is computed by
multiplying the angular momentum per vortex in the funda-
mental state by the total number of vortices in each state.
For rapid rotation and in the Thomas-Fermi approximation,
the angular momentum per vortex is constant, independent
of �, and ≈2Nh̄/7 (where N is the total number of par-
ticles in the condensate). The theoretical value and other
estimations from the simulations are close to each other, so
we consider this to be a good approximation of Jz in the
ondensed phase.

At low T , all angular momentum is in the lattice. For
low rotation speeds, total Jz increases with T due to the
rising fraction of normal fluid. Fluctuations are more signif-
icant at the periphery of the condensate, where the normal
fluid accumulates, leading also to an expansion of the system
radius. Additionally, this region experiences greater inertial
forces, causing the normal fluid to rotate, and resulting in the
observed increase in total Jz with T . Note that the thermal-
ized gas can contribute angular momentum without the need
for additional vortices in the lattice, and can even outweigh
the loss of Jz in the condensate due to their disappearance.
This effect is evident in the slow rotating cases, such as

FIG. 6. Density at the center of the trap minus the mean den-
sity in the trap, normalized by their values at T = 0, and as a
function of the temperature. Three cases are shown with � = 0:
ωmin

⊥ corresponds to the minimum trap frequency used in this pa-
per, ωmax

⊥ is the maximum frequency used (with the same total
mass in the trap as when using ωmin

⊥ ), and ωmax
⊥ (constant den-

sity) corresponds to a case in which the density was kept the
same. Temperatures are normalized by the critical temperature
for ωmax

⊥ .

�/ω0
⊥ = 0.27 and 0.54, where total Jz grows almost lin-

early with T , while the amount of vortices and of Jz in the
condensate drop dramatically. As the critical temperature is
approached, temperature fluctuations become so pronounced
that they decorrelate any other effects, causing Jz to drop
rapidly. At larger � the behavior becomes less pronounced:
at �/ω0

⊥ = 0.68 total Jz is almost constant for T < T �=0
c ,

meaning that the loss of Jz from vortices is compensated by
the normal fluid, while at �/ω0

⊥ = 0.81 it only decreases.
This can be explained by the ability of the condensate to
move vortices from the core of the condensate towards the
periphery for large �, impairing the normal fluid of generat-
ing angular momentum. This is particularly noticeable up to
T/T �=0

c ≈ 0.3 where angular momentum due to the vortices
and the total Jz are close to each other. Afterwards, the number
of vortices decreases and there is enough space for the normal
fluid to generate Jz. Note also that as the vortex-energy model
reproduces the behavior of the number of vortices, it also
reproduces the general behavior of Jz from the condensate
seen in Fig. 5.

VI. CONCLUSIONS

We showed that rotation induces a positive shift in the
critical temperature of a BEC, provided that the volume of
the condensate remains constant. When this is not the case
(with fixed potential) the broadening of the condensate cloud
leads to a decrease of mass density, outweighing the positive
effect of rotation, and leading to a net negative shift of the
critical temperature. Second, we introduced a vortex-energy
model that accurately reproduced the critical temperature be-
havior in the fixed-volume case, indicating that this shift is
driven by interactions between vortices and their positional
energy. Thus, the rigidity of the vortex lattice provides a
long-range order that allows the condensate to persist at higher
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temperatures. We also studied the vortex-lattice melting pro-
cess, which occurs from the edge inward, accompanied
by cloud broadening—an effect consistent with our model.
Finally, we showed that the relationship between angular mo-
mentum and temperature is highly dependent on the rotation
rate, and related it with the vortex number and the appearance
of thermalized fluid.

The proposed model could be further utilized to understand
the transition of the condensate to a normal fluid through a
twofold perspective: a typical BEC transition coupled with the
two-dimensional melting of a quantum vortex lattice. While
the former has been extensively studied, the latter has received
less attention, and further investigation through simulations
in elongated traps could provide deeper insights into this
transition.
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APPENDIX: EFFECT OF VARYING
THE EXTERNAL POTENTIAL IN Tc

For a nonrotating case, three temperature scans were per-
formed using the SRGLE with � = 0: the first using the
smaller trapping frequency considered in this paper (ωmin

⊥ ≈
0.65 ω0

⊥), the second with the same total mass but the largest
frequency considered (ωmax

⊥ = ω0
⊥), and a third with the

largest frequency but modifying the total mass so that the
mean density in the condensate remained the same (within
1.3% accuracy). The mean density was computed using the
radius of the condensate that follows from the Thomas-Fermi
approximation, and also taking the distance from the origin
at which the mass dropped below a fixed threshold, and in
both cases we obtained similar estimations for the density.
The results of the three temperature scans are shown in Fig. 6.
Increasing the trap frequency without any other constraint
results in an increase of the critical temperature, but increasing
the trap frequency while maintaining the same density results
in a small decrease of the critical temperature. The effect is the
opposite of the change in Tc observed when changing rotation
while increasing the trap frequency at a constant density.
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