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Developing numerical methods to simulate efficiently nonlinear fluid dynamics on universal quantum com-
puters is a challenging problem. In this paper, a generalization of the Madelung transform is defined to
solve quantum relativistic charged fluid equations interacting with external electromagnetic forces via the
Dirac equation. The Dirac equation is discretized into discrete-time quantum walks which can be efficiently
implemented on universal quantum computers. A variant of this algorithm is proposed to implement simulations
using current noisy intermediate scale quantum (NISQ) devices in the case of homogeneous external forces. High
resolution (up to N = 217 grid points) numerical simulations of relativistic and nonrelativistic hydrodynamical
shocks on current IBM NISQs are performed with this algorithm. This paper demonstrates that fluid dynamics
can be simulated on NISQs, and opens the door to simulating other fluids, including plasmas, with more general
quantum walks and quantum automata.
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I. INTRODUCTION

The so-called second quantum revolution is possibly one
of the greatest scientific and technological challenges of the
21st century. One of the cornerstones of that revolution is
quantum computing, i.e., the possibility of using quantum
properties of matter to outperform current classical com-
puters, at least for several standard computations. Quantum
simulation originated with Feynman [1], who suggested using
quantum systems to simulate efficiently other, more complex,
quantum, and possibly also classical, systems.

Efficiently simulating the dynamics of both classical and
quantum fluids, be they relativistic or not, is a long-standing
problem in applied mathematics and the applications in en-
gineering and fundamental science cannot be overestimated.
For example, nonquantum nonrelativistic hydrodynamics is
necessary in studying pipe flows and porous materials (in-
cluding the earth, with applications in, e.g., oil prospecting),
as well as aerodynamics (with applications in the transport
industry). Traditional quantum hydrodynamics is necessary to
describe superfluids and Bose condensates [2–4]. Relativistic
(nonquantum) magnetohydrodynamics is useful to the study
of plasmas, both earth- and space-bound—for example, to
describe accretion around a black hole [5]. Finally, relativistic
quantum magnetohydrodynamics is useful in all situations
where extreme plasmas come into play, for example, in as-
trophysical relativistic compact objects like neutron stars [6].

The difficulty encountered in trying to simulate hydrody-
namics on classical computers is perhaps best illustrated by
the fundamental classical, nonquantum, and nonrelativistic
problem of fully developed incompressible turbulence. In this
case, the Reynolds number R is the single relevant dimen-

sionless number and the unknown turbulent statistical laws
one is interested in occur in the asymptotic regime R → ∞,
see, for example, Ref. [7]. It can be shown (see Chap. 7 of
Ref. [7]) that the typical amount of computer memory needed
for the classical simulation grows as O(R9/4) and that the total
computational work needed to integrate the equations for a
fixed number of large eddies turnover times grows as O(R3).
These scaling laws clearly illustrate the difficulties encoun-
tered when one tries to understand the practical important
problem of fully developed turbulence through classical sim-
ulations. To have an idea of the current state-of-the-art on
classical computers see, e.g., Ref. [8].

In more complex hydrodynamical problems, other di-
mensionless numbers are present, for example, the Mach
number for compressible turbulence, and/or the magnetic
Reynolds number for Magnetohydrodynamic (MHD) tur-
bulence, thereby contributing to an even more challenging
computational problem.

It is therefore not surprising that the possibility of
performing quantum simulations of fluid and plasma dy-
namics has already attracted considerable attention [9–19].
In essence, the methods investigated so far include (i) the
quantum amplitude estimation algorithm to solve a discretized
Navier-Stokes equation [9], (ii) standard form encoding com-
bined with quantum walks to simulate a lattice Boltzmann
approach [10], (iii) the quantum Fourier transform to im-
plement vortex-in-cell methods [11–13], (iv) working with
multiple copies of each state to implement nonlinearity
[14], (v) truncation and linearization methods to simplify
nonlinear terms [15–17], and (vi) extending configuration
space [18].
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The aim of this paper is to present a manner of simulating
both relativistic and nonrelativistic quantum fluids on existing
and future quantum computers.

The Dirac equation [20] plays a pivotal role in this ap-
proach. On one hand, the Dirac equation can be mapped
into relativistic hydrodynamics by a generalization of the so-
called Madelung transformation initially developed for the
Schrödinger equation [21,22] and later extended to the Klein-
Gordon (KG) equation [23–25] and quaternionic quantum
mechanics [26]. On the other hand, quantum walks, which can
be viewed as a quantum generalization of classical random
walks [27–30], are a universal quantum primitive [31,32];
every quantum algorithm can be expressed as a quantum walk,
and several quantum walks, usually called Dirac quantum
walks, admit the Dirac equation as continuous limit [33,34].
The Dirac equation can therefore be used as a bridge connect-
ing relativistic fluid dynamics to quantum walks and, thus, to
quantum simulation and quantum computing.

To make the presentation definite and keep it as simple
as possible, we restrict ourselves to fluids moving in (1 + 1)
dimensional space-time. Having future applications to ex-
treme,i.e., both relativistic and quantum plasmas in mind,
we allow the fluid to be charged and experience an imposed
but not necessarily constant or uniform electric field [there
is no magnetic field in (1 + 1) dimensions]. We therefore
introduce a generalization of the Madelung transformation
which maps the charged Dirac equation unto the hydrody-
namics of a charged relativistic quantum fluid, focusing on
the conserved quantities,i.e., charge and energy momentum.
Simulating quantum relativistic flows of this fluid can then be
carried out by simulating the Dirac dynamics through Dirac
quantum walks.

In practice, the quantum walks are defined at all times
of interest on a spatial grid of N points and are composed
of two steps per time: a shift operation and a mix opera-
tion. It is convenient to work in Fourier space where the
shift operation is easier to implement. Performing a Fourier
transform on a set of N = 2n data requires O(N log N ) oper-
ations using the fast Fourier transform (FFT) algorithm [35],
which poses exponential-in-n requirements on the amount of
classical memory needed to perform the computation. On a
quantum computer, the data can be stored in n qubits and
the Fourier transform can be efficiently implemented using
the quantum Fourier transform (QFT) algorithm, which needs
only O(n2) operations [36,37] (the QFT can even be ap-
proximately implemented using O(n log n) operations [38]).
Indeed, a quantum circuit on n qubits can be said efficient
when the total number of primitive quantum gates to ap-
proach a given unitary Û with precision ε scales at worst as
O(poly(n, 1

ε
)). Basic quantum walks can be efficiently im-

plemented on a universal quantum computer since the mix
operation corresponds to a single quantum gate [39].

Unfortunately, full-fledged circuit-based quantum comput-
ers do not exist, yet so no direct quantum numerical simulation
of quantum relativistic fluids can be performed today. We
nevertheless present, as an illustration, classical and NISQ-
based hybrid simulations in the simple situation where the
electric field E is uniform, using the gauge where E is en-
tirely encoded in the time dependence of the vector potential.
The different Fourier components then evolve independently

of each other. It is then possible to quantum simulate each
wave number separately on the maximum number of qubits
which allow us to perform fault-tolerant computations. The
simulation is hybrid because the Fourier transform is carried
out classically.

Both the classical and NISQ simulations that we present
here are focused on shocks. There are several reasons for this.
First, shocks correspond to (near) discontinuities appearing in
the velocity field, and are thus notoriously difficult to simu-
late. Also, the precise, so-called internal structure of shocks
is an important topic in theoretical hydrodynamics and sta-
tistical physics, especially in the relativistic context (see, for
example, Refs. [40,41] for an introduction to this and related
topics). Third, shocks are very important in practice. They are
generated, for example by, supersonic flight and are also the
seed for important astrophysical phenomena [42].

The final section sums up our results and discusses possible
extensions to other fluids, both classical and quantum, with
possible coupling to arbitrary Yang-Mills and gravitational
fields. Applications include, in particular, electromagnetic and
quark-gluon plasma dynamics, both for earth-based and as-
trophysical problems. The nonrelativistic limit of our results
is discussed in the Appendix. The general conclusion of this
paper is that quantum walks can be used to simulate nonlinear
hydrodynamics on future quantum computers.

II. CHARGED DIRAC FLUID

It is well-known that the Schrödinger equation can be cast
into a hydrodynamic form through the so-called Madelung
transformation [21,22]. The Dirac equation admits a charge
current and a stress-energy tensor, as all charged fluids do. The
Madelung transformation for the Dirac equation is best ob-
tained by rewriting the Dirac charge current and stress-energy
tensor in terms of standard fluid variables. The Madelung
transformation for the (1 + 1)D Dirac equation without elec-
tric field has been presented in Ref. [43]. We now demonstrate
how those results can be extended to situations where the
charged (1 + 1)D Dirac field is coupled to a nonvanishing
electric field.

A. Dirac equation

In (1 + 1)D flat space-time, the Dirac equation obeyed by
the two component wave function ψ = (ψL, ψR)T of a spin
1/2 field can be written in the form

(iγ 0D0 + iγ 1D1)ψ − mψ = 0, (1)

where D0 = ∂t + iqA0, D1 = ∂x + iqA1 and γ 0 = σX =
(0 1
1 0,), γ 1 = iσY = ( 0 1

−1 0). The mass of the field is m, its
charge is q, and (A0, A1) are the two components (in units
c = 1, h̄ = 1) of the vector potential acting on the field. Since
we are working in (1 + 1)D space-time, there is no magnetic
field and the electric field is simply E = −∂xA0 + ∂t A1.

B. Charge current

The expressions for D0 and D1 entering the Dirac equa-
tion above make clear that, geometrically speaking, the
potential Aμ, with μ = 0, 1, is a connection ensuring the
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invariance of the Dirac equation under arbitrary local phase
translations. More precisely, Eq. (1) is invariant under
the transformation ψ (t, x) → exp(iqα)ψ (t, x), A0(t, x) →
A0(t, x) − ∂tα, and A1(t, x) → A1(t, x) − ∂xα, where α(t, x)
is an arbitrary function of time and space. This invariance
implies, through Noether’s theorem, the conservation equa-
tion for the charge current J with components J0 = qψ̄γ 0ψ

and J1 = qψ̄γ 1ψ , where ψ̄ = ψ†γ 0, which reads

∂t J
0 + ∂xJ1 = 0. (2)

According to standard relativistic hydrodynamics, the
charge current J can be expressed in terms of the scalar
density n and the two-velocity of the fluid by the simple
relation J = qnu or, equivalently, nu = J/q = j. Since u is
normalized to unity, this relation translates into n = ( j. j)1/2

and u = j/( j. j)1/2 where a dot denotes the Minkovski scalar
product. In an arbitrary reference frame, the current j decom-
poses into the fluid density ρ = j0 in that frame, and into the
spatial current density ρv = j1 in the same frame. The density
ρ in the proper frame of the space-time grid on which the walk
is defined thus coincides, as it should, with |ψL|2 + |ψR|2.
Note that ρ coincides with n in the local proper frame of the
fluid/Dirac field.

C. Energy momentum

The energy-momentum distribution of the (1 + 1)D Dirac
field in the presence of the electromagnetic field A is de-
scribed by its stress-energy tensor T , which reads T μν =
i
4 (ψ̄γ μ∂νψ − ∂νψ̄γ μψ ) − 1

2 AμJν + (μ ↔ ν) where J is the
conserved charge current. The stress-energy tensor T obeys

∂μT μν = F ν
μJμ, (3)

where F ν
μ = ∂νAμ − ∂μAν is the electromagnetic tensor. The

energy momentum of the Dirac field is not conserved because
the fluid experiences the force created by the electromagnetic
field, and F ν

μJμ is indeed the density of the Lorentz two-
force. In particular F 1

μJμ = qρE represents the density of the
electric force exerted by the electric field on the Dirac field,
and F 0

μJμ represents the power density of this force.
The other main thermodynamical variable entering the

macroscopic description of a relativistic fluid is the scalar
enthalpy density w. Identifying w in terms of wave-function
variables is not straightforward. The density w makes the
contribution wuμuν to the stress-energy tensor T μν of a per-
fect fluid. Considering the stress-energy tensor of the Dirac
field leads to the identification w = mn cos(φ−), where φ− =
φL − φR is the difference between the phases of ψL and ψR.
Using the Dirac equation, the stress energy tensor can then be
written as

T μν = wuμuν + n

4

[(
uμενα + uνεμα

)
∂αφ−

+ (
εμα∂νφ− + ενα∂μφ−

)
uα

]
, (4)

where εμν is the Levi-Civita completely antisymmetric tensor
of rank 2, with the convention ε01 = +1. The first contribution
on the right-hand side is standard for relativistic perfect fluids.
The other ones involve derivatives of φ−. Because of the

relation between φ− and the enthalpy per particle w/n, one
can write

dφ− = σ
1

m

(
1 − w

mn

)−1/2
d
(w

n

)
, (5)

where σ is the sign of φ−. Thus, derivatives of φ− can be
rewritten as derivatives of the enthalpy per particle and all the
terms which follow the perfect fluid part wuμuν in the ex-
pression of the stress-energy tensor are therefore generalized
quantum pressure terms, whose appearance is expected in the
description of quantum fluids [3,21,22].

D. Equations of motion

The Dirac equation can be transcribed in terms of the
hydrodynamical variables. One obtains

∂μ(qnuμ) = 0, (6)

w

n
uμ = −1

2

(
∂μφ+ + σεμν 1

m

(
1 − w

mn

)−1/2

∂ν

(
w

n

))
− qAμ,

(7)

εμ
α∂μ(nuα ) = 2mn sin(φ−), (8)

where φ+ = φL + φR. The first equation is the continuity
equation expressing charge conservation. The second equa-
tion is a generalization of the standard definition of potential
flows for relativistic charged fluids in the presence of an
electromagnetic potential A. The phase φ+/2 plays the role of
the standard relativistic velocity potential but there is an extra
term involving the derivatives of φ−, which can be expressed
in terms of w/n and which actually prevents the flow from
being potential. The last equation has no easy interpretation
but is needed to form a set of four independent equations for
the four independent hydrodynamical variables n, u1 related
to u0 via u0 =

√
1 + (u1)2, w, and the potential φ+.

III. NONRELATIVISTIC FLOWS

In this section, the Planck’s constant and the velocity of
light are not equal to unity, i.e., h̄ �= 1, c �= 1, to see more
clearly the quantum and relativistic part of the hydrodynamic
equations.

The nonrelativistic limit corresponds to a situation where
the velocity v of the fluid is much smaller than the velocity
of light c, implying that the energy of the particle is al-
most equal to the remaining mass energy: E = E ′ + mc2 with
E ′ � mc2. The relativistic part of the wave function has to
be extracted by writing φ+

2 = φ − mc2t , where we will see
that φ is the nonrelativistic velocity potential. More details
on the limiting procedure can be found in the Appendix. In
the nonrelativistic regime, the two components of the wave
function become identical and the (1+1)D Dirac equation de-
generates into a single, one-component Schrödinger equation.
Then the relativistic fluid variables and equations defined
in the previous section become the usual Madelung trans-
formation of the Schrödinger equation in the presence of
electromagnetic fields. The fluid density becomes n = 2r2

with r = |ψL| = |ψR|, while the fluid velocity u1 becomes the
usual generalized velocity u1 = v = 1

m (∂xφ + qA1). Then the
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set of four independent relativistic fluid equations Eqs. (6)–
(8) degenerate into a set of two independent fluid equations:
one expressing the conservation of matter (or charge) and
another the generalization of Bernoulli equation for a potential
fluid in an electromagnetic potential V = cA0 and a quantum
(Bohm) potential Q = − h̄2

2m
1√
n

∂2√n
∂x2 , (which vanishes in the

classical limit h̄ → 0):

∂t n + ∂x(nv) = 0, (9)

∂tφ + 1
2 mv2 + qV + Q = 0. (10)

The gradient of this Bernoulli equation leads to the inviscid
Burgers’ equation for a charged fluid in an electric field E =
−∂xV + ∂t A1 and a quantum pressure force FQ = −∂xQ:

m(∂tv + v∂xv) = qE + FQ. (11)

IV. QUANTUM WALKS AS DISCRETIZATIONS
OF THE DIRAC EQUATION

DTQWs are defined in discrete space and discrete time
and have an internal degree of freedom usually called the
coin. In this paper, we focus on DTQWs defined in dis-
crete 1D space. Having spectral simulations in mind, we
also take space to be N periodic, where N is a power of 2
and we label the grid points by p ∈ Np = {−N/2,−N/2 +
1, . . . , N/2 − 1}. Discrete instants are labeled by l ∈ N. We
also choose the coin space to be 2D and denote by (|L〉, |R〉)
an arbitrary fixed orthonormal basis in that space. With these
conventions, the state of the walk at time l can be writ-
ten as |ψ〉l = ∑

p ψL
l,p|p〉|L〉 + ψR

l,p|p〉|R〉, where the set of
complex numbers {ψL

l,p, ψ
R
l,p} with p ∈ Np represents the two-

component wave function of the walk at time l . At each
time step, the walk is advanced through the successive action
of two unitary operators, one which acts in position space
and one which acts in coin space. The operator Ŝ acts in
position space and is usually called the shift operator; it is
defined by Ŝ = |L〉〈L|∑p |p − 1〉〈p| + |R〉〈R|∑p |p + 1〉〈p|.
The shift operator is thus a coin-conditioned spatial trans-
lation which moves every ψL

l,p to the left by one unit and

every ψR
l,p to the right, also by one unit. The operator Ĉl

acting in coin space is allowed to depend on time l and, at
each point p, mixes the L and R components in a unitary
manner. This operator is defined by Ĉl = ∑

p Ĉl,p|p〉〈p| with
Ĉl,p = e−iεq(A0 )l,pRX (2εm)RZ (−2εq(A1)l,p), where RX (θ ) =
( cos (θ/2) −i sin (θ/2)
−i sin (θ/2) cos (θ/2) ) and RZ (θ ) = (e−iθ/2 0

0 eiθ/2 ) are primitive
single qubit operations [36]. The potential vector A0 and A1

are arbitrary real numbers, as are the two real positive param-
eters ε and m. It is useful to introduce the notation Ûl = Ĉl Ŝ,
which makes it possible to write the evolution equation of
the quantum walks in the compact form |ψ〉l+1 = Ûl |ψ〉l .
The interpretation of these quantities becomes clear in the
continuum limit. The continuum limit can be investigated by
introducing the space-time coordinates xp = εp, tl = εl and
letting ε tend to zero [33]. The wave function of the walk then
becomes a continuous function of x and t which obeys the
Dirac equation introduced earlier.

The current j can be determined from the wave function
of the DTQW using the formula ( j0)l,p = |ψR

l,p|2 + |ψL
l,p|2

and ( j1)l,p = |ψR
l,p|2 − |ψL

l,p|2 where l denotes a discrete time
coordinate and p a discrete space coordinate. Thus, the fluid

density reads nl,p =
√

( j0)2
l,p − ( j1)2

l,p = 2|ψL
l,p||ψR

l,p| and the

fluid velocity normalized to the speed of light c reads ( u1

u0
)l,p =

( j1 )l,p

( j0 )l,p
.

V. SIMULATIONS OF DIRAC FLOWS FOR UNIFORM
ELECTRIC FIELDS

A. Spectral formulation of the quantum walks

Let E be the constant uniform value of the electric field.
To make the computation simpler, we choose the gauge A0 =
0, (A1)l = Elε, where the vector potential depends only on
the discrete time l and so the coin operator Ĉl,p = Ĉl . The
classical and NISQ simulations are accomplished in Fourier
space where the shift operator entering the definition of the
walks amounts to a coin-controlled multiplication by a phase
factor. More precisely, let ψ̃l,k = 1√

N

∑N/2−1
p=−N/2 ψl,pe−2iπkp/N

be the discrete Fourier transform of a function defined on the
discrete space-time grid. In Fourier space, the equations of the
walk, ∀l, k ∈ N × Np, read(

ψ̃L
l+1,k

ψ̃R
l+1,k

)
= Ĉl

(
e2iπk/N 0

0 e−2iπk/N

)(
ψ̃L

l,k

ψ̃R
l,k

)
, (12)

where the absence of spatial convolution is due to the choice
of gauge.

B. The full-quantum algorithm

In recent years, several circuit-based implementation
schemes for DTQW have been devised and experimentally re-
alized. A recent implementation has been made on a five-qubit
trapped-ion quantum processor [44]. In most cases, DTQWs
are implemented by blocks of multicontrolled Toffoli gates,
typically of size O(n3) and depth O(n2) [45], where n is the
number of qubits. Quite interesting is the recent scheme pro-
posed by Shakeel [39], where the basic QWs are formulated
in terms of a simple QFT-based circuit [37], polynomially
improving the previous results in terms of complexity. Indeed,
it yields a highly efficient and scalable, quadratic size, linear
depth circuit for the basic DTQW. This algorithm gives the
full-quantum circuit needed to perform the simulations on
n + 1 qubits with a coin operator Ĉl . We also suppose that the
initial state ψ0 = ∑

p∈Np
ψR

0,p|p〉|R〉 + ψL
0,p|p〉|L〉 can be effi-

ciently implemented on the n + 1 qubits following methods
developed in Refs. [46–48]. In this full-quantum algorithm,
the quantum advantage is lost if one wants to determine the
entire final state after T steps. One can still efficiently measure
a finite number (small when compared to 2n) of averaged
values of local and global observables [49–51] such as the
energy, the momentum, or the density.

However, this full-quantum algorithm is not NISQ compat-
ible since the performances of the current quantum processors
do not allow us to perform a large amount of quantum gates
on entangled qubits without too many errors. For instance,
recent implementations of quantum walks on NISQ quantum
processors have shown significant results for only a very few
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FIG. 1. Quantum part of the NISQ algorithm for DTQW to com-
pute every |k〉T .

number of qubits (less than five) and a very few number of
steps (less than five) [39,52,53].

C. The NISQ algorithm

We now present a hybrid quantum-classical algorithm
based on a discrete time quantum walk (DTQW) discretiza-
tion of the charged Dirac fluid tailor-made for NISQ devices.

The main idea is to split the quantum operations on sets
of qubits which allow us to perform fault-tolerant compu-
tations. The minimum number of qubits needed to perform
this scheme is two, but it can be increased depending on the
performance of the NISQ devices, at the same time increasing
the quantum advantage of this method. In the following, we
choose to develop the numerical scheme in the limit of sets of
two qubits where the errors are small enough to get meaning-
ful results.

The algorithm is composed of two distinct parts. In
the first one, we perform the FFT on the initial classical
state ψ0,p, where p refers to the discrete space p ∈ Np =
{−N/2,−N/2 + 1, . . . , N/2 − 1} with N a power of 2 to get
the Fourier-transformed ψ̃0,k with k ∈ Np. In Fourier space,
each ψ̃l,k , with l ∈ N the discrete-time coordinate, evolves
independently from the others, allowing us to parallelize the
computations of each mode on the different sets of qubits.
Moreover, ∀k, we need to memorize the normalization factor

n(k) =
√

|ψ̃L
0,k|2 + |ψ̃R

0,k|2 and the global phase 
+
k for further

steps of the algorithm. To apply the quantum circuit, we need
to encode the above classical information in a quantum state;
this can be done efficiently, as follows. At the beginning, for
each mode, the quantum state, represented by a qubit, is set
to |0〉 in the canonical basis. Then, we perform a quantum
rotation in the Bloch sphere,

|k〉0 = U (α0,k,

−
0,k )|0〉, (13)

where

U (α0,k,

−
0,k ) =

(
cos(α0,k/2) − sin(α0,k/2)

sin(α0,k/2)ei
−
0,k cos(α0,k/2)ei
−

0,k

)
.

The encoded initial quantum state finally reads

ψ̃0,k = n(k)ei
+
0,k |k〉0. (14)

As we show in Fig. 1, the total evolution of the walker is
achieved by the quantum subroutine (a) by performing one
quantum rotation Cl,k on each |k〉0 [see Eq. (12)]. After T such
rotations, the final qubit reads

|k〉T = ei
+
T,k

(
cos(αT,k/2)

sin(αT,k/2)ei
−
T,k

)
. (15)

FIG. 2. Profiles of density n (left) and velocity u1/u0 (right) at
different times as functions of the position x, for an electric field
E = 16, charge q = −1, mass m = 64, and initial maximum velocity
umax = 0.55. The mesh size is N = 4096, ε = 2π/N , T is an arbitrary
time unit and L is an arbitrary length unit.

Finally, the state is successively measured into the x, y, z
basis by choosing R0 = H, S†

1H, I2, with H = 1√
2
(1 1
1 −1) and

S1 = (1 0
0 i ) and by repeating the procedure until one gets

enough statistics to determine the coefficients αT,k and 
−
T,k .

However, to implement the very last step of the algorithm,
namely, the inverse FFT, one also needs the global phase

+

T,k . This can be done using the quantum circuit (b), where a
single qubit controls the Cl,k rotations, allowing us in the end
to measure the global phase by choosing R1 = H, S†

1H and
R2 = I2. Finally, we can perform the classical inverse FFT on

ψ̃T,k = n(k)ei(
+
0,k+
+

T,k )

(
cos(αT,k/2)

sin(αT,k/2)ei
−
T,k

)
(16)

to obtain the final state of the quantum walk ψT,p.

D. Simulations on IBM quantum processors

Simulations have been performed on classical processors
(Figs. 2 and 3) and on IBM’s publicly available quantum pro-
cessors (Figs. 4 and 5). The initial condition of the quantum
walk is chosen such as to obtain hydrodynamical shocks: the
initial fluid density n is constant, while the initial fluid velocity
u1/u0 is antisymmetric with respect to x = 0.

More precisely, let us note ψ (x, t ) = eiφ+/2( |ψL |eiφ−/2

|ψR|e−iφ−/2 ) with

|ψL| = 1√
2

√
j0 − j1 and |ψR| = 1√

2

√
j0 + j1. To get a shock

we need an anti-symmetric initial velocity u1/u0, thus we
choose a global phase φ+ = 2mumax cos(x) with max a pos-
itive number and a relative phase φ− = 0. Equation (7)
implies that j1 = −numax sin(x), and so u1 = −umax sin(x).
Then j0 = +

√
n2 + ( j1)2 = n

√
1 + (umax sin(x))2 and, fi-

nally, u1/u0 = j1/ j0 is antisymmetric. The fluid density can
be an arbitrarily chosen constant; we set n = 1. This initial
condition is inspired by similar choices used to simulate
the dynamics of a nonquantum cosmological fluid [54],
Bose-Einstein condensates of axions [55], and quantum walk
hydrodynamics [43].

In Fig. 2, the fluid density and velocity are displayed at
three different times. The shock is characterized by a peak in
the fluid density n and a small region with a large gradient
in the fluid velocity u1/u0 at t = 2.2. After the impact, the
front of the shock propagates to the left due to the external
electric field, yielding a nontrivial shock structure at t = 4.8.
Figure 3 shows the fluid density and velocity with respect
to space and time for several values of the electric field.
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FIG. 3. Evolution of the shock’s density n (left) and velocity
u1/u0 (right) as functions of the position x and time for differ-
ent values of the electric field E = 0, 6, 12, charge q = −1, mass
m = 64, and initial maximum velocity umax = 0.55. The mesh size
is N = 4096, ε = 2π/N , T is an arbitrary time unit, and L is an
arbitrary length unit.

FIG. 4. Shock’s profiles of fluid density n (upper left) and fluid
velocity u1/u0 (upper right) as functions of position x computed on
different IBM’s quantum processors, ibm_qasm_simulator and a
classical computer, at t = 1.96 (arbitrary unit). The lower panels
show relative errors (lower left) and absolute error (lower right)
between the ideal results obtained on the classical computer and
the results obtained on the quantum processors and simulator. The
simulation parameters are electric field E = 0.6, charge q = −1,
mass m = 6, and initial maximum velocity umax = 0.92. The mesh
size is N = 32, ε = 2π/N , and L is an arbitrary length unit.

FIG. 5. High-resolution shock’s profiles of fluid density n (up-
per left) and fluid velocity u1/u0 (upper right) computed on
ibmq_manila quantum processor, ibm_qasm_simulator, and clas-
sical computer at t = 2.5 (arbitrary unit), with N = 217 grid points,
an electric field E = 2, a charge q = −1, a mass m = 6, an initial
maximum velocity umax = 0.92, ε = 2π/N , L an arbitrary length
unit, relative errors (lower left), and absolute error (lower right)
between the ideal results obtained on a classical computer and the
results obtained on quantum processors and simulator as functions
of the position x.

The shocks are perfectly symmetric around x = 0 in the ab-
sence of electric field. For nonvanishing electric fields, the
shocks are accelerated in the direction of the field. These re-
sults have been successfully recovered using IBM’s quantum
processors. Figure 4 shows the first simulations of hydro-
dynamical shocks using NISQ devices on a line of N = 32
nodes. The same simulation has been performed on three dif-
ferent quantum processors (ibmq_santiago, ibmq_manila,
ibmq_lima) and the results are compared with a simulator
of quantum devices (ibm_qasm_simulator) and a classical
computer. The performances of the different IBM’s quantum
processors are compared with the relative error defined as

e1 = 100

√∣∣ψL
x,q − ψL

x,c

∣∣2 + ∣∣ψR
x,q − ψR

x,c

∣∣2

√∣∣ψL
x,c

∣∣2 + ∣∣ψR
x,c

∣∣2
, (17)

and the absolute error defined as

e2 =
√∣∣ψL

x,q − ψL
x,c

∣∣2 + ∣∣ψR
x,q − ψR

x,c

∣∣2
, (18)

where q refers to the quantum devices and simulator and c
to the classical computer. Even if the relative errors range
from 3% to 24%, the results on the fluid density and velocity
are qualitatively accurate, showing the expected shock. The
finite number of measurements M = 8096 leads to statistical
errors of the order of 3% as shown by the relative errors of
ibm_qasm_simulator. Figure 5 shows the results obtained
on a grid of N = 217 points with the ibmq_manila quantum
processor showing first that this hybrid algorithm allows us
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to perform large simulations on NISQ devices. The velocity
almost reaches the speed of light u1/u0 ≈ 0.9993 at x ≈ − 3π

24
where the density n almost vanishes, proving ultrarelativistic
behavior in the shocks.

Let us conclude this section with two remarks. Before
any computation on its quantum processors, IBM automati-
cally transpiles the quantum circuit to reduce the number of
primitive quantum operations and the errors. However, the
transpiler does not perform efficiently in the case of circuit
(b) presented Fig. 1, giving completely noisy results. We
found that this difficulty can be overcome if we transpile the
quantum circuit (a) before transpiling the control-circuit (a)
which is contained in circuit (b).

The second remark relates to Fig. 5. The simulation on
a grid of N = 217 points has been successfully performed
thanks to a compression of the wave function in Fourier space.
Indeed, the momentum is bounded by the quantity mumax

and the Fourier space is discretized with a step �k = 2π
N�x .

By choosing �x = 2π
N , then �k = 1 and most of the Fourier

components of the DTQW vanishes for k > kmax = mumax

(h̄ = 1, c = 1), reducing drastically the computations.

VI. SUMMARY AND DISCUSSION

A. Summary

We have shown that present-day IBM’s NISQ devices
can simulate quantum-relativistic-charged fluids in an electric
field. Our approach is based on a hybrid classical-quantum
algorithm using DTQW with continuous-limit Dirac equa-
tion mapped into relativistic hydrodynamics by a generaliza-
tion of the Madelung transformation. We have also discussed
several extensions which may reasonably be carried out with
success in the near future. These include nonquantum fluids
and fluids coupled to arbitrary gauge fields. All in all, this
paper opens the door to more efficient quantum simulation
of quantum and classical hydrodynamics [56,57], with nat-
ural applications to quantum, possibly relativistic plasmas
[58–60].

B. Discussion

Let us now discuss the results presented in this paper,
focusing in particular on possible extensions.

All the results presented above address hydrodynamics in
(1 + 1) space-time dimensions, and should therefore be ex-
tended to higher dimensions. We believe this extension should
be possible but is non-trivial either because (i) the number
of spinor components depends on the space-time dimension
(e.g,. a spinor in (1 + 3) dimensions), and (ii) the Madelung
transformation for a non-charged Dirac fluid is much simpler
in (1 + 1) dimensions than in higher dimensions.

In higher dimensions, a charged fluid can be coupled not
only to electric fields but also to magnetic ones. Moreover,
these fields may not be uniform and constant, as is the electric
field considered in this paper. More generally, Dirac parti-
cles and their discrete counterparts,i.e., DTQWs, can also
be coupled to arbitrary Yang-Mills gauge field [61,62] and
relativistic gravitational fields [63–65]. Extending the above
results in these directions would, for example, open up the
possibility of simulating quark-gluon plasmas and extreme

astrophysical plasmas on hybrid quantum-classical comput-
ers. DTQWs can also be used as a basis to build full-fledged
discrete gauge theories. Can the hybrid algorithm presented
above be extended to simulate these discrete gauge theories? If
so, the extension would make it possible to simulate not only
fluids in external, imposed gauge fields but also self-consistent
problems where the dynamics of the gauge fields and the
fluids are fully coupled, as in self-consistent plasma dynamics.

Finally, the hybrid algorithm we propose should be ex-
tended to quantum and classical fluids with other equations of
state. The key is to consider more general quantum walks
and quantum automata. Self-interacting walks and automata
[66–68] are of particular interest because they are a relatively
easy tool to model arbitrary equations of state and because
several implementations of QCAs have been suggested, in-
cluding Rydberg states [69]. Also, general equations of state
can, in principle, be implemented by using a quantum infor-
mation device as a quantum system with effective nonlinear
dynamics like Bose condensates [70,71].
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APPENDIX: NONRELATIVISTIC LIMIT

1. Dirac equation

The Dirac equation iγ μDμψ − mψ = 0 reads, in compo-
nent terms and in units where h̄ �= 1 c �= 1:

1

c

(
∂t + i

qV

h̄

)
�L −

(
∂x + i

qA1

h̄

)
�L = −i

mc

h̄
�R,

1

c

(
∂t + i

qV

h̄

)
�R +

(
∂x + i

qA1

h̄

)
�R = −i

mc

h̄
�L. (A1)

Each component obeys the same KG equation,

1

c2
Dtt�

L/R − Dxx�
L/R = −m2c2

h̄2 �L/R, (A2)

where Dtt = (Dt )2 = (∂t + i qV
h̄ )2 and Dxx = (Dx )2 = (∂x +

i qA1

h̄ )2.
To determine the nonrelativistic limit, we have to extract

out the relativistic part of the wave function as �L/R =
�̄L/R exp(−i mc2

h̄ t ) and consider �̄L/R as the wave function
of the particle in the nonrelativistic limit. The nonrelativis-
tic energy of the particle is E ′ = E − mc2 with E ′ � mc2.
We therefore expect that | ∂�̄L/R

∂t | ∼ |E ′
h̄ �̄L/R| � mc2

h̄ |�̄L/R|,
| ∂�̄L/R

∂x | ∼ |k�̄L/R| = | p
h̄ �̄L/R| � mc

h̄ |�̄L/R|. The limit only
works if the potential Aμ is weak,i.e., |qAμ| � mc for μ =
0, 1. We define the dimensionless slow variables X = ν( mc

h̄ )x

and T = ν2( mc2

h̄ )t , where ν is a positive real number. The
nonrelativistic limit is recovered by letting ν tend to zero
while keeping ∂X �̄L/R = O(1), ∂T �̄L/R = O(1), V

ν2 = O(1),
and A1

ν
= O(1).

032408-7



JULIEN ZYLBERMAN et al. PHYSICAL REVIEW A 106, 032408 (2022)

Injecting the above scaling in the KG equation for �̄L/R

shows that �̄L/R both obey the Schrödinger equation with
electromagnetic fields when ν goes to zero. We now also
compute for future use the lowest order terms in the difference
�̄L − �̄R. The Dirac equation can be rewritten as

�̄R = �̄L − iνDX �̄L + iν2DT �̄L + O(ν3),

�̄L = �̄R + iνDX �̄R + iν2DT �̄R + O(ν3), (A3)

with DX = ∂X + i qA1

mcν and DT = ∂T + i qV
mc2ν2 .

Using the Schrödinger equation to replace the temporal
derivatives by spatial derivatives leads to

�̄R = �̄L − iνDX �̄L − ν2

2
DXX �̄L + O(ν3),

�̄L = �̄R + iνDX �̄R − ν2

2
DXX �̄R + O(ν3). (A4)

Let us start the discussion by keeping only the terms of
order ν in Eq. (A4). The two wave-function components are
equal at order 0 in ν and thus, at this order, have the same
moduli and phases. We want to compute the differences be-
tween the moduli and the differences between the phases at
first order in ν. This is best done in the following way.

Write �̄L = r exp( i
h̄φ) and �̄R = (r + δr) exp( i

h̄ (φ +
δφ)). Inserting this into Eq. (A4) and keeping only first-order
terms leads to

r exp(
i

h̄
φ)

(
i

h̄
δφ + δr

r

)
= −iνDX �̄L, (A5)

from which one gets

δφ = − h̄

2r2
ν(�̄∗

LDX �̄L + (DX �̄L )∗�̄L ). (A6)

The difference δr can be obtained in the same manner:

δr

r
= i

2r2
ν(�̄∗

LDX �̄L − (DX �̄L )∗�̄L ). (A7)

This transcribes into

δφ = −ν
h̄

r

∂r

∂X
(A8)

and

δr

r
= νπ, (A9)

with π = 1
h̄

∂φ

∂X + qA1

mcν .
It is straightforward (but tedious) to compute in the same

manner the differences in moduli and phases at second order
in ν. One finds

δφ = −ν
h̄

r

∂r

∂X
− h̄

2
ν2 ∂π

∂X
(A10)

and

δr

r
= νπ + 1

2
ν2

(
π2 + 1

r2

((
∂r

∂X

)2

− r
∂2r

∂X 2

))
.

2. Hydrodynamical variables

In the main text, the Dirac wave function is defined as

ψ = 1√
2

e
i
h̄ φ+/2

( √
j0 − j1e

i
h̄ φ−/2√

j0 + j1e− i
h̄ φ−/2

)
. (A11)

Thus, the definitions above lead to φ+ = 2φ + δφ − 2mc2t
and φ− = −δφ.

At second order in ν, the hydrodynamical variables defined
in the main text read

n = 2r2 + 2r2νπ + ν2r2π2 + ν2

((
∂r

∂X

)2

− r
∂2r

∂X 2

)
,

(A12)

u0 = c

(
1 + 1

2
ν2π2

)
, (A13)

u1 = c

(
νπ + 1

2r2
ν2

((
∂r

∂X

)2

− r
∂2r

∂X 2

))
, (A14)

w = mc2

(
2r2 + 2r2νπ + ν2

(
r2π2 − r

∂2r

∂X 2

))
. (A15)

3. Hydrodynamical equations

In units where h̄ �= 1 and c �= 1, the relativistic fluid equa-
tions can be written as

1

c
∂t (nu0) + ∂x(nu1) = 0, (A16)

w

nc
u0 = − h̄c

2

(
1

c
∂tφ+ + ∂x(φ−)

)
− qV, (A17)

w

nc
u1 = h̄c

2

(
∂xφ+ + 1

c
∂t (φ−)

)
+ qA1c, (A18)

1

c
∂t (nu1) + ∂x(nu0) = −2

mc2

h̄
n sin(φ−). (A19)

By injecting the previous hydrodynamical variables in
these equations, one can determine their nonrelativistic limit.
The set of four independent hydrodynamical relativistic equa-
tions become a set of two independent equations in the
nonrelativistic limit at second order in ν:

∂

∂T
(2r2) + ∂

∂X
(2r2π ) = 0, (A20)

1

h̄

∂φ

∂T
+ 1

2
π2 + qV

mc2ν2
− 1

2
√

2r2

∂2
√

2r2

∂X 2
= 0. (A21)

Then, in the normal x and t variables, one gets the con-
tinuity equation and the Bernoulli equation of an inviscid
fluid of density n = 2r2 and velocity v = 1

m (∂xφ + qA1) in
an electromagnetic potential V and a quantum potential
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Q = − h̄2

2m
1√
n

∂2√n
∂x2 called the Bohm potential, which vanishes

in the nonquantum limit h̄ → 0:

∂t (n) + ∂x(nv) = 0, (A22)

∂t (φ) + 1
2 mv2 + qV + Q = 0. (A23)

The gradient of this Bernoulli equation leads to the nonlin-
ear inviscid Burger equation for a charged fluid in an electric
field E = −∂xV + ∂t A1 and a quantum pressure force FQ =
−∂xQ:

m(∂tv + v∂xv) = qE + FQ. (A24)
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