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Abstract

Simple explicit expressions describing stationary superflows around a circular disk are found by solving the Gross–P
equation at low Mach numbers in the boundary layer approximation. The expression for the velocity potential presen
short-range layer and a long-range term that is interpreted as stemming from a renormalization of the size of the disTo cite
this article: C.-T. Pham et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Couches limites dans un écoulement superfluide autour d’un disque décrit par l’équation de Gross–Pitaevskii.Les
solutions stationnaires décrivant les couches limites d’un écoulement superfluide autour d’un disque sont explicitemen
de l’équation de Gross–Pitaevskii à faibles nombres de Mach. L’expression du potentiel des vitesses présente un terme
limite à courte portée et un terme à longue portée qui est interprété physiquement comme une renormalisation de l
disque.Pour citer cet article : C.-T. Pham et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Since the first experimental observations of Bose–Einstein condensation in trapped dilute gases [1–3], the fi
rapid evolution. Recent results include the production and detection of an isolated quantized vortex [4,5], the nu
of several vortices [6] and details of vortex dynamics [7]. The dynamics of these compressible nonlinear quantum
accurately described by the Gross–Pitaevskii equation (GPE) [8–10] allowing direct quantitative comparison betwee
and experiment [11]. While the nucleation of a vortex in a rotating Bose–Einstein condensate is quite well understood
the mechanism for vortex production behind a detuned laser [15] is still an open problem. This experiment correspo
superflow around a disk.

A mathematical model of superfluid4He, valid at temperatures low enough for the normal fluid to be negligible, is
GPE, also called the nonlinear Schrödinger equation [16]. A recent experiment [17] in4He performed at temperatures less th
130 mK has used an oscillating grid to probe the flow properties. It was observed that, with increasing oscillation am
the superflow abruptly changes: the frequency response becomes nonlinear and is shifted towards a decreasing reso
A further increase yields a transition to turbulence.
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The superflow around a 2D cylinder using numerical simulations of the GPE was first studied by Frisch, Pom
Rica [18]. They observed a transition to a dissipative regime characterized by vortex nucleation that they interpreted
of a saddle-node bifurcation of the stationary solutions of the GPE. Using numerical continuation techniques, Hu
Brachet [19,20] obtained the complete bifurcation diagram in which the stable and unstable branches are connected
saddle-node bifurcation. The dynamics around an obstacle is governed by two non-dimensional parameters: the Mac
M = |v|/c (wherev is the flow velocity andc the sound speed) and the ratio of the healing lengthξ to the diameter of the
diskD. The healing length determines the vortex core radius and also the thickness of the healing layer connecting th
at infinity with the vanishing solution on the obstacle. Huepe and Brachet [20] have variedξ/D and found that the critical Mac
numberMc converges forξ/D → 0 to an Eulerian value that Rica [21] computed using an asymptotic expansion in
number. Note that this Eulerian computation did not take into account dispersive effects due to the so-called quantum

The main purpose of this paper is to present stationary solutions at low Mach numbers including quantum pressure d
effects. The boundary layer approximations are obtained from a closed-form integral representation of the solutions, e
in the Madelung variables: the fluid density and the velocity potential. We show that Eulerian solutions are recov
ξ/D = 0 and that asymptotic solutions forξ/D → 0 consist in two parts: an internal boundary layer structure that mat
smoothly to an external mainstream flow. Our results can be interpreted in terms of a renormalization of the obstac
The outline of the paper is organized as follows: in Section 2, the general problem is formulated, along with the M
transformation; in Section 3, the integral representation of the stationary solutions is derived and the boundary layer
obtained. Section 4 is our conclusion.

2. Governing equations

In this section, we present the hydrodynamic form of the Gross–Pitaevskii equation (GPE) that models the effect of
radiusr0 = 1 (D = 2 is its diameter), moving at constant speedv = vex in a two-dimensional superfluid at rest. In the frame
the disk, the system is equivalent to a superflow around a disk, with constant speed−v at infinity. The system can be describ
with the following action functional

A[ψ, ψ̄] =
∫

dt

{√
2cξ

∫
�

d2x
i

2
[ψ̄∂tψ −ψ∂t ψ̄] −F

}
, (1)

whereψ is a complex field,ψ̄ its conjugate. The speed of soundc and the so-called healing lengthξ are the physical paramete
of the system.F is the energy of the system that can be written

F[ψ, ψ̄] = E − v ·P (2)

with

E [ψ, ψ̄] = c2
∫
�

d2x

[
ξ2|∇ψ |2 + 1

2

(|ψ |2 − 1
)2

]
, (3)

P[ψ, ψ̄] = √
2cξ

∫
�

d2x
i

2

[
(ψ − 1)∇ψ̄ − (ψ̄ − 1)∇ψ]

. (4)

The Euler–Lagrange equation corresponding to (1) provides the GPE

i∂tψ = c√
2ξ

[−ξ2�ψ −ψ + |ψ |2ψ] + iv · ∇ψ. (5)

Boundary conditions areψ = 0 at the border of the disk.
This equation can be mapped into two hydrodynamical equations by applying Madelung’s transformation [16]

ψ = √
ρ exp

(
iφ√
2cξ

)
. (6)

The real and imaginary parts of GPE give for a fluid of densityρ and velocity

U = ∇φ − v (7)

the following equations of motion
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he
∂tρ + ∇ · (ρU)= 0, (8)

∂tφ = −1

2
(∇φ)2 + c2(1− ρ)+ c2ξ2�

√
ρ√
ρ

+ v · ∇φ. (9)

These equations correspond to the continuity equation and the Bernoulli equation with a supplementary quantum pres
for a barotropic compressible and irrotational flow. Note that in the limitξ/D→ 0, the quantum pressure term vanishes and
recover the system of equations describing an Eulerian flow.

We now proceed to another change of variables, defining (if the speedv is nonzero)

M= |v|/c, (10)

ϕ = −(φ − vr cosθ)/v. (11)

The Bernoulli and continuity equations then can be written

0 = ξ2�
√
ρ√
ρ

− ρ + 1+ M2

2

[
1− (∇ϕ)2]

, (12)

0 =�ϕ + ∇ρ · ∇ϕ. (13)

The boundary conditions on the disk become

ρ|r=r0 = 0,

∂rϕ|r=r0 = 0.

We now study the case of finite but small Mach number and expandρ andϕ as

ρ = ρ〈0〉 +M2ρ〈1〉 + · · · +M2kρ〈k〉 + · · · , (14)

ϕ = ϕ〈0〉 +M2ϕ〈1〉 + · · · +M2kϕ〈k〉 + · · · . (15)

Note that if one knowsϕ at orderM2k , one can formally deduceρ at orderM2(k+1) by solving (12). Potentialϕ can then be
computed at orderM2(k+1) by solving (13).

3. Boundary layer solutions

We now proceed to the computation of the boundary layer stationary solutions, using polar coordinatex = r cosθ and
y = r sinθ .

3.1. Density boundary layer

First, note that when the Mach number is zero,ϕ = 0 is solution of the stationary equations andρ satisfies

ξ2�
√
ρ√
ρ

− ρ + 1 = 0. (16)

Writing ρ(r, θ)= R2(r) yields the equation

ξ2�R +R −R3 = ξ2
(
∂rr + 1

r
∂r

)
R +R −R3 = 0 (17)

with boundary conditionsR(r0 = 1)= 0. An approximation for the solution of this equation, valid up to orderξ , is to neglect
the term(ξ2/r)∂r ρ, for small values ofξ , so that the approximateρ can be identified with the stationary solution in t
one-dimensional case

ρ〈0〉 = tanh2
(
r − 1√

2ξ

)
. (18)
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Fig. 1. Upperleft part: densityρ〈0〉 (see Eq. (18)). Upperright part:ϕ̃〈0〉 (see Eq. (23)). Lower part:ϕloc
ξ (sin) (see Eq. (30)). All the figures ar

plotted withξ = 0.1.

3.2. Velocity potential boundary layer

The velocity potentialϕ〈0〉 satisfies

�ϕ〈0〉 = −∇ρ〈0〉 · ∇ϕ〈0〉. (19)

We writeϕ = ϕ
〈0〉
Euler+ ϕ̃〈0〉 whereϕ〈0〉

Euler= (r + 1/r)cosθ is the solution at order 0 inM2 of the Eulerian flow. Eq. (19) give

the following equation for̃ϕ〈0〉

�ϕ̃〈0〉 = −∇ρ〈0〉 · ∇(
ϕ

〈0〉
Euler+ ϕ̃〈0〉). (20)

In the right-hand side of equation (20), one can keep at order of our computations∇ϕ〈0〉
Euler and drop the term∇ϕ̃〈0〉. We will

check the validity of this approximation in the discussion (see below). We now have to solve

�ϕ̃〈0〉 = −∇ρ〈0〉 · ∇ϕ〈0〉
Euler= RHS (21)

with

RHS= −
√

2(r2 − 1)cosθ sech2((r − 1)/(
√

2ξ)) tanh((r − 1)/(
√

2ξ))

ξr2
. (22)

Eq. (21) can be explicitly solved using the method of parameter variation, so that the solutionϕ̃〈0〉 can be written as

ϕ̃〈0〉 = ϕξ cosθ, (23)

whereϕξ is the sum of two terms

ϕξ (r)= 1

r
ϕfar
ξ + ϕloc

ξ (r) (24)

with
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ϕfar
ξ = 1

2
√

2ξ

+∞∫
1

[
f1(x)− f2(x)

]
dx, (25)

ϕloc
ξ (r)= 1

2
√

2ξ

{
−1

r

+∞∫
r

f1(x)dx − r

+∞∫
r

f2(x)dx

}
(26)

and

f1(x)= 2(x2 − 1)sech2
x − 1√

2ξ
tanh

x − 1√
2ξ
, (27)

f2(x)= 2

(
1

x2
− 1

)
sech2

x − 1√
2ξ

tanh
x − 1√

2ξ
. (28)

In the limit ξ/D→ 0, after successive integrations by parts and lettingr ber = 1+ √
2ξsin, one finds at orderξ2

ϕfar
ξ = 2

√
2ξ − 4ξ2 log 2+O

(
ξ3)

, (29)

ϕloc
ξ (sin)= 4ξ2sin[tanhsin − 1] − 8ξ2[log 2+ log coshsin − sin] +O

(
ξ3)

. (30)

4. Discussion and conclusions

The standard inner and outer solutions of boundary layer theory [22] are defined by:

ϕin
ξ (sin)= ϕξ (1+ √

2ξsin), (31)

ϕout
ξ (r)= ϕξ (r). (32)

Recasting our main result (24) in this form, together with the expressions (29) and (30), yields

ϕin
ξ (sin)= 2

√
2ξ + ξ2[−12 log 2+ 4sin tanhsin − 8 log coshsin] (33)

and

ϕout
ξ (r)= 2

√
2ξ − 4ξ2 log 2

r
. (34)

Note that the outer expression stems only from the long-range term. In contrast, the inner expression (33) mixes con
from the local and also the long-range term. Similar results were obtained directly, using matched expansions, for a
obstacle in [23]. This reference also includes the governing matched expansion equations for the case of a 2D disk;
the authors did not give the solution to these equations.

In order to check out global validity of our solution, we have estimated the difference between RHS and�ϕ̃〈0〉 using the
expressions (29) and (30). The relative error on the right-hand side of (20) is found to be of orderξ2 which is consistent with
the order of theρ〈0〉 approximation.

The long-range term in the velocity potential can be physically interpreted as a renormalization of the diameter of
Indeed, the compressible Eulerian flow around a disk of radiusr0 admits at order zero inM2 the following solution:

ϕ
〈0〉
Euler,r0

= r cosθ + r20 cosθ

r
(35)

in order to satisfy the boundary condition∂rϕ
〈0〉
Euler,r0

|r=r0 = 0. For smallM andξ/D, the velocity potential of our superflow
(Eq. (23)) at first order inξ is therefore equivalent at large distances to that of an Eulerian flow around a disk of radiusreff given
by r2eff = 1+ 2

√
2ξ. In term of the obstacle radiusr0, this equation can be written:(

reff

r0

)2
= 1+ 2

√
2
ξ

r0
. (36)

At this order, the approximation made in Eq. (21) is then valid, since the RHS is of orderξ−1 and∇ρ〈0〉 · ∇ϕ̃〈0〉 is of orderξ0.
The expression we find for̃ϕ〈0〉 is then the first term of a perturbative development inξ of the solution of Eq. (19).

Note that, at this order, this renormalized radius does not depend on the Mach numberM � 1 at which no drag is
experienced by the disk. Similar results based on matched expansions were obtained for a spherical obstacle [23]. In t
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of Bose–Einstein condensates, the numerical computation of the pressure drag on a cylindrical obstacle shows a scree
due to an effective renormalization of the obstacle radius [24]. However this result was obtained in a nonstationary r
which the Mach number is supersonic. Moreover no quantitative law of this effective radius with respect toM was derived.

The main consequence of our analytical result is that, at lowξ/D and low Mach numberM, the renormalization of the
obstacle radius is of orderξ . This renormalization may seem natural, however, one can find a renormalized radius of oξ2

when imposing other boundary conditions [25].
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