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Abstract

Simple explicit expressions describing stationary superflows around a circular disk are found by solving the Gross—Pitaevskii
equation at low Mach numbers in the boundary layer approximation. The expression for the velocity potential presents both a
short-range layer and a long-range term that is interpreted as stemming from a renormalization of the size ofbeitisk.
thisarticle: C.-T. Pham et al., C. R. Physique 5 (2004).
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Résumé

Couches limites dans un écoulement superfluide autour d’un disque décrit par I'équation de Gross—PitaevskKiies
solutions stationnaires décrivant les couches limites d’un écoulement superfluide autour d'un disque sont explicitement déduites
de I'équation de Gross—Pitaevskii a faibles nombres de Mach. L'expression du potentiel des vitesses présente un terme de couche
limite & courte portée et un terme a longue portée qui est interprété physiquement comme une renormalisation de la taille du
disque.Pour citer cet article: C.-T. Pham et al., C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Fluid mechanics; Superfluidity; Boundary layers and obstacles

Mots-clés: Mécanique des fluides ; Superfluidité ; Couches limites et obstacles

1. Introduction

Since the first experimental observations of Bose—Einstein condensation in trapped dilute gases [1-3], the field is in
rapid evolution. Recent results include the production and detection of an isolated quantized vortex [4,5], the nucleation
of several vortices [6] and details of vortex dynamics [7]. The dynamics of these compressible nonlinear quantum fluids is
accurately described by the Gross—Pitaevskii equation (GPE) [8—10] allowing direct quantitative comparison between theory
and experiment [11]. While the nucleation of a vortex in a rotating Bose—Einstein condensate is quite well understood [12—-14],
the mechanism for vortex production behind a detuned laser [15] is still an open problem. This experiment corresponds to a
superflow around a disk.

A mathematical model of superfluitHe, valid at temperatures low enough for the normal fluid to be negligible, is the
GPE, also called the nonlinear Schrédinger equation [16]. A recent experiment [IH§iperformed at temperatures less than
130 mK has used an oscillating grid to probe the flow properties. It was observed that, with increasing oscillation amplitude,
the superflow abruptly changes: the frequency response becomes nonlinear and is shifted towards a decreasing resonance peak
A further increase yields a transition to turbulence.
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The superflow around a 2D cylinder using numerical simulations of the GPE was first studied by Frisch, Pomeau and
Rica [18]. They observed a transition to a dissipative regime characterized by vortex nucleation that they interpreted in terms
of a saddle-node bifurcation of the stationary solutions of the GPE. Using numerical continuation techniques, Huepe and
Brachet [19,20] obtained the complete bifurcation diagram in which the stable and unstable branches are connected through a
saddle-node bifurcation. The dynamics around an obstacle is governed by two non-dimensional parameters: the Mach number
M =|v|/c (wherev is the flow velocity and: the sound speed) and the ratio of the healing leggth the diameter of the
disk D. The healing length determines the vortex core radius and also the thickness of the healing layer connecting the solution
at infinity with the vanishing solution on the obstacle. Huepe and Brachet [20] have gafiednd found that the critical Mach
number M°C converges fog /D — 0 to an Eulerian value that Rica [21] computed using an asymptotic expansion in Mach
number. Note that this Eulerian computation did not take into account dispersive effects due to the so-called quantum pressure.

The main purpose of this paper is to present stationary solutions at low Mach numbers including quantum pressure dispersive
effects. The boundary layer approximations are obtained from a closed-form integral representation of the solutions, expressed
in the Madelung variables: the fluid density and the velocity potential. We show that Eulerian solutions are recovered for
&/D = 0 and that asymptotic solutions féy D — 0 consist in two parts: an internal boundary layer structure that matches
smoothly to an external mainstream flow. Our results can be interpreted in terms of a renormalization of the obstacle radius.
The outline of the paper is organized as follows: in Section 2, the general problem is formulated, along with the Madelung
transformation; in Section 3, the integral representation of the stationary solutions is derived and the boundary layer limits are
obtained. Section 4 is our conclusion.

2. Governing equations
In this section, we present the hydrodynamic form of the Gross—Pitaevskii equation (GPE) that models the effect of a disk of
radiusrg = 1 (D = 2 is its diameter), moving at constant speed ve, in a two-dimensional superfluid at rest. In the frame of

the disk, the system is equivalent to a superflow around a disk, with constant-spegdhfinity. The system can be described
with the following action functional

A[w,llr]=/dr{~/§cs/d2x'§[zﬁa,w—ww]—f}, @
Q

whereys is a complex fieldy its conjugate. The speed of soundnd the so-called healing lenggtare the physical parameters
of the systemF is the energy of the system that can be written
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The Euler—Lagrange equation corresponding to (1) provides the GPE
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Boundary conditions ar¢r = 0 at the border of the disk.
This equation can be mapped into two hydrodynamical equations by applying Madelung’s transformation [16]

i
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The real and imaginary parts of GPE give for a fluid of dengind velocity
U=V¢—v ©)

the following equations of motion
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dp—+V-(pU)=0, (8)

A
aﬂp:—%<v¢)2+c2<1—p)+c2s2—*/pﬁ +V-Vo. ©)

These equations correspond to the continuity equation and the Bernoulli equation with a supplementary quantum pressure term
for a barotropic compressible and irrotational flow. Note that in the imid — 0, the quantum pressure term vanishes and we
recover the system of equations describing an Eulerian flow.
We now proceed to another change of variables, defining (if the spesegbonzero)
M=1v|/e, (10)
¢ =—(¢ —vrcosd)/v. (11)

The Bernoulli and continuity equations then can be written

0=£22YC _ 114 [1-(Vp)?, 12
50 > [1- (Vo] 12
0=A¢p+Vp-Vep. 13

The boundary conditions on the disk become

Plr=ry = 0,
ar‘ﬂ‘r:ro =0.
We now study the case of finite but small Mach number and expaamtty as
p=p0 + MM 4.y mZEpR 4 (14)
0=09 4 M2 . 4 MR (15)

Note that if one knows at orderAMZ , one can formally deduce at orderpM2k+1) by solving (12). Potentiap can then be
computed at ordemM2k+D py solving (13).
3. Boundary layer solutions

We now proceed to the computation of the boundary layer stationary solutions, using polar coordinatenss and
y =rsiné.

3.1. Density boundary layer
First, note that when the Mach number is zeres O is solution of the stationary equations gndatisfies

gz%ﬁ—wrl:o. (16)

Writing p(r, ) = R2(r) yields the equation
1
§2AR+R—R3=$2(8”+—8r>R+R—R3=O (17)
r

with boundary condition®(rg = 1) = 0. An approximation for the solution of this equation, valid up to ogles to neglect
the term (sz/r)a,p, for small values oft, so that the approximatg can be identified with the stationary solution in the
one-dimensional case

0\ = tant? ( i/%;') . (18)
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Fig. 1. Upperleft part: density<0> (see Eq. (18)). Upperright pargi (see Eq. (23)). Lower pamloc(s.n) (see Eq. (30)). All the figures are
plotted withg =0.1.

3.2. Velocity potential boundary layer

The velocity potentiap(©) satisfies
AgQ = _v,0 . y,0 (19)
. 0 N
We writeg = ‘/’|<5Liler+ @0 Where<p|<Euler
the following equation for; ()

(r +1/r)cosd is the solution at order O in12 of the Eulerian flow. Eqg. (19) gives

~ 0 ~
560 =550 T+ 5 @

In the right-hand side of equation (20), one can keep at order of our comput@t@%ﬁer and drop the ternvg(9 . We will
check the validity of this approximation in the discussion (see below). We now have to solve

~ ()
A0 =—vp@ . vp0  —RHS (1)

with
R _ Y20 — 1) cosdsect((r - ;)/(f £) tanh(r — 1)/ (v26)) (22)
r

Eq. (21) can be explicitly solved using the method of parameter variation, so that the spl®tican be written as

7% = g coss, (23)
wheregs is the sum of two terms
¢e(r) = wgar + %) (24)

with
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+00
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and
x—1 x—1
f1(x) = 2(x% — 1) secH —= tanh=——, (27)
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In the limit£/D — 0, after successive integrations by parts and lettibgr = 1+ +/2£sin, one finds at ordef?
o =22 — 4£2log 2+ O(£3), (29)
i°%(sin) = 4 2sin[tanhsin — 1] — 8¢%[log 2+ log coshin — sin] + O(£3). (30)
4. Discussion and conclusions
The standard inner and outer solutions of boundary layer theory [22] are defined by:
o Gsin) = ¢ (1 + V28 5in). (31)
o2 = gz (r). (32)
Recasting our main result (24) in this form, together with the expressions (29) and (30), yields
<pi§” (sin) = 2v/2¢ + £2[—1210g 2+ 4sip tanhsj, — 8log coshin] (33)
and
24/2¢ — 4£2log 2
gDé)Ut(,,) — w (34)

’
Note that the outer expression stems only from the long-range term. In contrast, the inner expression (33) mixes contributions
from the local and also the long-range term. Similar results were obtained directly, using matched expansions, for a spherical
obstacle in [23]. This reference also includes the governing matched expansion equations for the case of a 2D disk; however,
the authors did not give the solution to these equations.

In order to check out global validity of our solution, we have estimated the difference between Rlﬁ%msing the
expressions (29) and (30). The relative error on the right-hand side of (20) is found to be of dudeich is consistent with
the order of thep{? approximation.

The long-range term in the velocity potential can be physically interpreted as a renormalization of the diameter of the disk.
Indeed, the compressible Eulerian flow around a disk of ragjasimits at order zero in12 the following solution:

2
(0) ro cosH

PEulerrg =" cost +

(39)

in order to satisfy the boundary conditi@;kpgle”oh:ro = 0. For smallM and&/D, the velocity potential of our superflow
(Eq. (23)) at first order i is therefore equivalent at large distances to that of an Eulerian flow around a disk ofrggdiisen
by rgff =1+ 24/2¢. In term of the obstacle radiug, this equation can be written:

2
(’e—“> 142435 (36)
ro ro
At this order, the approximation made in Eq. (21) is then valid, since the RHS is of prdeand v (0 - V(9 is of orderg?.
The expression we find fg#'? is then the first term of a perturbative developmeny ivf the solution of Eq. (19).

Note that, at this order, this renormalized radius does not depend on the Mach niwhkerl at which no drag is
experienced by the disk. Similar results based on matched expansions were obtained for a spherical obstacle [23]. In the context
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of Bose—Einstein condensates, the numerical computation of the pressure drag on a cylindrical obstacle shows a screening effect
due to an effective renormalization of the obstacle radius [24]. However this result was obtained in a nonstationary regime at
which the Mach number is supersonic. Moreover no quantitative law of this effective radius with respéatés derived.

The main consequence of our analytical result is that, atdp® and low Mach numbes\, the renormalization of the
obstacle radius is of ordér. This renormalization may seem natural, however, one can find a renormalized radius qf20rder
when imposing other boundary conditions [25].
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