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Abstract

The transition to dissipation in one-dimensional extended Hamiltonian systems with saddle-node bifurcations of stationary
solutions is characterized. Three different systems are studied: (i) nonlinear Schrédinger flow past a localized obstacle;
(i) sine-Gordon pendulum chains forced by a local torque; (iii) electrically charged nonlinear Schrodinger flows. In case (i),
no frequency gap is present in the dispersion relation. In contrast, in cases (ii) and (iii) a minimum frequency for propagating
waves exists. In the gapless case, the growth rates of the unstable modes and the frequency of supercritical soliton emission are
found to scale as the square root of the bifurcation parameter. No subcriticality is observed. In contrast, when a frequency gap
is present, subcritical soliton emission takes place. Logarithmic and one-fourth power scaling laws are found, respectively, at
the bottom and top of the subcriticality window. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main motivation of the present work is to try to understand the origin of dynamical scaling laws previously
observed in two-dimensional (2D) Hamiltonian systems presenting a local saddle-node bifurcation. These models
of superfluidity and Bose—Einstein condensation were considered in the context of the determination of the critical
velocity at which superfluidity breaks down. We will proceed by investigating dynamical scaling laws in similar,
but much simpler, one-dimensional (1D) Hamiltonian systems. We will thus study the dynamical behavior of three
differentinfinite 1D Hamiltonian systems undergoing spatially localized saddle-node bifurcations. All three systems
can radiate waves at infinity. However, they fall in two distinct types. In one type, waves of arbitrarily low temporal
frequency can propagate, whereas in the other type, waves can only propagate above a finite cut-off frequency.

Much work has been devoted to the determination of the critical velocity at which superfluidity breaks down [1].
A mathematical model of superfluftie, valid at temperatures low enough for the normal fluid to be negligible, is the
nonlinear Schrodinger equation (NLSE), also called the Gross—Pitaevskii equation [2—4]. In a related context, dilute
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Bose—Einstein condensates have been recently produced experimentally. These compressible nonlinear quantu
fluids are also accurately described by the NLSE allowing direct quantitative comparison between theory and
experiment[5]. Inarecentexperiment, Raman et al. [6] have found a critical Mach number for the onset of dissipation
in aBose—Einstein condensed gas by moving a blue detuned laser beam through the condensate at different velocitie

Studying the 2D superflow around a cylinder, using direct numerical simulations of the NLSE, Frisch, Pomeau
and Rica observed a transition to a dissipative regime [7]. They interpreted the results of their simulations in terms
of a saddle-node bifurcation of the stationary solutions [8]. Such a saddle-node bifurcation was analytically found
by Hakim [9] when studying the stability of 1D NLSE flows across obstacles described by a potential. He obtained
explicit expressions for the bifurcating stationary solutions and studied the transitional dynamics. More recently,
using numerical continuation techniques, Huepe and Brachet [10,11] were able to obtain the bifurcation diagram
corresponding to the 2D superflow around a disc. It was found that the stable (elliptic) branch and the unstable
(hyperbolic) branch are connected through a saddle-node bifurcation. Dynamical solutions were studied and the
frequency of supercritical vortex shedding was found to scale as the square root of the bifurcation parameter.

In another context, studying dissipative 1D extended systems, Argentina et al. showed that Andronov saddle-node
and homoclinic bifurcations [12] can control the dynamical scaling laws [13,14]. In the present work, we will extend
to Hamiltonian systems these results obtained in the context of dissipative systems.

The paper is organized as follows. Section 2 is devoted to nonlinear Schrédinger flows past a localized obstacle.
After briefly recalling Hakim’s results on the bifurcation of stationary solutions, the unstable eigenmodes and their
growth rates are computed using a shooting method and the so-called compound matrix method, described in[15,16]
The dynamical behavior of the system is then investigated using direct numerical simulations. In Section 3, we study
sine-Gordon pendulum chains forced by a local torque. The stationary solutions and their bifurcations are obtained
analytically. The growth rates of the unstable eigenmodes are also determined analytically. Direct numerical simu-
lations are then performed to characterize the subcritical dynamical behavior. In Section 4, we study the dynamics
of an electrically charged nonlinear Schrédinger flow. Finally, Section 5 contains a discussion and our conclusions.

2. Nonlinear Schrodinger flow past an obstacle
2.1. Definition of the system

We consider a point impurity moving at speedithin a 1D superflow. In the frame of the moving impurity, the
system can be described by the following action functional

A 91 = [a[g [eray - vai - x| &)
In this expressiony is a complex fieldy its conjugate and the energy functio@reads

K = & — vP + v[R*(+00)¢ (+00) — R*(—00)$ (—00)], (2
with

1
5=fdx [|ax1/f|2+§<|x/f|2—1>2+g6<x><|w|2—1>], (3)
1 - -
P= [ drgli @) - vl @

¥ = Rexplig). (5)
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The Dirac (pseudo) potentigh(x) in (3) represents the impurity (parameterizes the strength of this repulsive
potential). The last term in (2) imposes the appropriate boundary conditions for the pl@keR obeys the
boundary condition®?(+00) = 1.

The Euler-Lagrange equation associated to§4),§y = 0, is the NLSE

I8 =~ + 1y — ¥ + [V 2Y + g8V (6)

We seek continuous solutions of (6) that are differentiable everywhere except & where they are (spatially)
left- and right-derivable. Integrating (6) on ameighborhood ok = 0 and taking the limit — 0 imposes the
discontinuity condition

3x¢(0+vt)—ax¢(oivt)=8¢(Oa t)v (7)

thus thegs (x)y singularity in Eq. (6) is balanced by thedyyy term for all times. Note that the system described
by (6) depends on two real parameterandg. In the following section, we will consider &indexed family of
stationary solutions to (6) whegedepends continuously gnandw. It will be useful to invert this dependence and
considerg as a function of.

2.2. Stationary solutions

Time-independent solutions of the NLSE (6) are best studied by performing the change of variables defined above
in (5): ¢ = Rexp(ig). Using these variables, the NLSE reads

8;R = "UaxR — Raxx¢ — 28xR3X¢, (8)
R
09 = voud — ()2 +1— R — g8(x) + ax; : ©)
and the jump condition (7) reads
a)CR(O+’t)_aXR(O_at) :gR(O, t)a (10)
ax¢(0+1t)_ax¢(o_at) =O (11)

Note that Egs. (8) and (9) can be, respectively, interpreted as the continuity and Bernoulli equations for a fluid of
densityp = R%(x) and velocityu = 23,¢ (see, e.g. [17] for details on this interpretation of the NLSE).

Explicit time-independent solutions of Eqgs. (8) and (9) were found by Hakim [9], using the so-called gray
solitons (a nonlinear optics terminology). Gray solitons [18,19] are stationary solutions of Eqgs. (8) anith(®)t
the potential terngs(x). They are localized density depletions of the form

2 2 1 2
R24(x) = % + (1 — %) tanh? {‘/5 — va:| : (12)

V2 — 02
explvV2— vZx] +12 -1/

Patching together pieces of gray solitons, Hakim found the followimgdexed stationary solutions of Egs. (8) and
(9), includingthe potential terngs(x)

Pes(x) = arctan( (13)

Re(x) = Ros(x ££), x 20 (14)



130 C.-T. Pham, M. Brachet/Physica D 163 (2002) 127-149

¢e(x) = gpes(x £ &) — pes(£E), x 20, (15)
where the jump conditions (10) and (11) impose a valug odrresponding to each value gfvia
\Y? tanh|/1/2 — vZ/4¢]
() = V2 (1 - —) . 16
¢ 2 v2/2 4 sinh?[\/1/2 — v2/4&] (16)
The functiong (§) reaches a maximug, = g(&) at
argcosti(1 + v1+ 4v?)/2)
&c = 17)
2— 2
with
2 /T4 402 — 2\11/2
gC:4<1_v_>[ 1+ 4 1+ v9)] ' (18)
2 202 — 14 V14 42

The two stationary solutions of (6) correspondingiqg) > & andé_(g) < & obtained by inverting (16) for
g < gc thus disappear, merging in a saddle-node bifurcation at a critical strggadttote that the bifurcation can
also be obtained by varyingand keeping constant. In the following, the strengghof the delta function is used
as the control parameter of our system keepimgnstant.

The bifurcation diagram corresponding to the enekgysee Eq. (2)) is shown as the inset of Fig. 1. The
energetically unstable and stable solutigfgé_(g)) > K(£+(g))) are also displayed in the figure. Note that
the phasep: (x), as defined in Eq. (15), differs from that considered in [9] by ainflependent) constant. The
phase in [9] is set to 0 at = +o00, whereas (15) is antisymmetric in This difference is unimportant because
Egs. (8) and (9) are invariant under the constant phase shift

d(x) > Pp(x) +¢. (19)
2.3. Linear stability

We now begin our investigation of dynamical scaling laws by studying the growth rates of unstable eigenmodes
close to the bifurcation.
Atemporal eigenmode of the for(g"’r (x), " ¢(x)) obeys the (second-orderifordinary differential equations

A= (v — 20, ) 0xr — OxxPel — Redxxp — 205 Re 0x 0, (20)

dor Ok
2o = (v — 205) 0 — 2Rer + L — DXL
Re RS

r (22)

obtained by linearizing Egs. (8) and (9) around the stationary solgRetx), ¢z (x)). The jump conditions (10)
and (11) also apply t¢r(x), ¢(x)) so that the Dirad- singularities in the last two terms of Eq. (21) cancel. Thus
the (normalized by (0) = 1) initial data needed to integrate (20) and (21) away fros 0F is of the form

¢(0)

% o (p?
O I I (22)
0= r(0) B 1 '

d
) r'E 38
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Fig. 1. (a) Modulusr of the stable (—) and unstable (---) stationary solutions of Eq. (6) (see Eq. (149)#011.250 andv = 0.5. Insert
shows energy functional of the stationary solutions versygsfor v = 0.5 (see Eq. (2)); lower branch—energetically stable branch, upper
branch—energetically unstable branch. The bifurcation occugs-at1.5514. (b) Phase of the stable (—) and unstable (---) stationary
solutions (see Eq. (15)), same conditions as in (a).

Neutral modes, i.e. special solutions of (20) and (21) with 0, can be obtained analytically. First, the phase shift
invariance (19) implies thatRe (x), ¢¢ (x) + @) is a family of solutions to (8), (9) indexed by the-{ndependent)
phased. Inserting this family into (20), (21) and takingda-derivative yields the phase neutral mode

(ren(x), gpN(x)) = (O, 1). (23)

A second (somewhat less trivial) neutral mode is obtained by repeating the above procedure, gvtidred
(R (), ¢ (x)) family of solutions. Taking g-derivative of (8), (9) with(Re (x), ¢¢ (x)) inserted generates an extra
term stemming from thé-dependence qf. This extra term is zero at the critical potpt(see Eq. (17)). Thus one
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obtains the critical neutral modecn(x), gcn(x)) = (d/d&)(Re, ¢¢)|g, that explicitly reads
(2 —v%)32sechf (v/2 — v2(x + &) /2) tanh(v/2 — v2(x + &) /2)

ren(x) = %+ x 20, (24)
4\/ 1+ (v2/2 — 1) secH(v/2 — v2(x £ &) /2)
_ 2\ i Y i _ 2
son() = F v(—2 4+ v9) sinh(v/2 — v4x/2) 9 sinh(v2 — ve(x 4+ 2&:)/2) £ 20, 25)

(=14 v2 + cosh(v2 — vZ(x £ &)))  (=1+ v2+ cosh(v/2 — v2(£)))

In the following, we restrict our attention to real positiveThe possible existence of unstable modes with complex
growth ratei is, however, discussed in the last paragraph of this section.

We thus seek growin@. > 0) eigenmodes on the (energetically) unstable brgneht.. These modes must bear
some continuity relation with the aboyg = 0) neutral modes in the lim§ — &:. Further insight is obtained by
considering thee — 4-oco0 asymptotic limit. In this limit, (20) and (21) reduce to the simple homogeneous system

du

— =M 26
o u (26)
with
@
0 1 0 O
de
ar 0 0 —Xx v
u=| % |, M= 27)
r 0 O 0 1
dr A —v 2 0
dx

The characteristic polynomialy (1) = det(tM — p 1d) reads
xu () = p* 4+ (0% = 2)u® - 2hop + 2%, (28)
Note that formally settinge = ik andi = iw in (28) yields the dispersion relation

o = vK+ v/ 2k2 + k4, (29)

which corresponds to sound waves (see [17] and text below Egs. (8) and (9)).

For small values of > 0, the matrixM has four distinct real eigenvalues, two positﬂmf, ,ug“) and two negative
(17, 1y). This property can be extended to finite values. af the following way. Calculating the resultant (see,
e.g. [20]) ofxu and its-derivated polynomiay;,, Pr = ReSxu. x),) yields

Pr = 1602(160* — 2(=2 4 v?)3 + A2(—=32— 400? + v¥)). (30)

The polynomialy s (1) admits multiple roots if and only iPg = 0. Solving this equation yields theroots,

502 4 v(16+ v2)3/2 o
A=t 1+ = — = 7 A3 = 0 (of multiplicity 2), 31
1 \/+ T > = 3 ( plicity 2) (31)
502 4 v(16+ v2)3/2
M=t 1+ = 4 = 7 32
2 \/+ 4 3" 32 (32)

Forall 0 < v < /2, thea-roots verify 0< o] < A} Therefore, for fixed and for real values of €]0, A, Mfz
are real and distinct. In this finiteinterval, M is thus diagonalizable, with eigenvectars, u3) and(uy , u5).
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In order to be bounded, solutions to (20), (21) on the whole real axis must therefore have components in the
eigenvector basisufz) that vanish in the limitss — 4oo. This condition, applied to thepatially growing
eigenvectors, yields four nontrivial asymptotic conditions.

To find the unstable eigenmodes, we have developed a shooting method that works as follows. At a given position
& < & (see Eq. (17)) on the unstable branch, four numbers must be specified to solve (20) and (21): the initial data
o, gy, r' (22) and the growth rate. Starting with an initial guess, we numerically integrate (20) and (21) on the
interval—A < x < A. The solution vector is then expressed in the eigenvector basis-at A. The “errors”, i.e.
the component of the solution on the (spatially growing) subspaceg§par ) atx = —A and Spamf, v;)
atx = +A, are then computed. Newton—Raphson [21] iterations are performed in order to drive the errors to zero
by modifying the values of the initial data vector and eigenvalughis procedure provides the eigenfunctions
(r(x), p(x)) on the interval-A < x < A. The components of the solution on the spatially decaying eigenvectors
atx = £ A and the exact (exponential) solutions of Eq. (26) are used to exténd ¢(x)) beyondx = +A. The
initial guess needed to start the procedure is obtained by spatially discretizing (20) and (21) and diagonalizing the
corresponding (large) matrix. The results reported below were obtaineddwith8. We have checked (data not
shown) that they were insensitive to the precise valué.of

Practically, this shooting method was found to work correctly only close to the bifurcation. It is well known that
the problem of integrating individual vectors of an unstable manifold of dimension greater than 1 is a highly ill-posed
problem numerically [22]. There is, however, a simple way to numerically integrate this equation in a robust and
stable way. This so-called compound matrix method is described in detail in [15,16]. The method furnishes the
eigenvalue as the zero of the so-called Evans function. A key element is the use of exterior algebra which takes as
basis vectors 2D subspaces. We have implemented this method, and found it to work reliably, everywhere on the
unstable branch.

The growth rates, corresponding#o= 1/2, obtained both by the compound matrix method and the shooting
method, are displayed in Fig. 2 together with the eigenmodes (only available in the framework of the shooting
method). It is apparent, by inspection of Fig. 2(a), that the growthixragmits a maximum.max >~ 0.263. Note
thatimax < A7 ~ 0.536. Thus, for all computed valuesifthe M matrix eigenvectorezfz) form a nondegenerate
basis (see discussion below Eq. (32)). The asymptotic conditions used for both the shooting and compound matrix
methods are therefore consistent. Note that the growth rates determined by both methods are in very good agreement

The growth rate is seen to approach O wiger> 0. In this limit g(§) = 0 (see Eq. (16)) and the stationary
solution (14) and (15) reduces to a gray soliton. Note that gray solitons are knowstablesolutions of Egs. (8)
and (9) (withg = 0) [23]. It is therefore natural that the growth ratganishes in this limit.

It is apparent in Fig. 2 that the growth ratelso vanishes at the bifurcation, linearly with- &:. Note that this
linear scaling implies & — g¢|/? scaling for the characteristic growth time on the unstable branch (see Eq. (16)).
By inspection of Fig. 2, the eigenmodes are seen to converge towards the neutral mode. However, the convergence
of the phase is nonuniform i This behavior can be understood by the following considerations. Taylor expanding
the roots of (28), one obtains explicit formulas that readyfer 0.5,

7 2 22v2 -1
ny ) = % +— 0(A?), ng ) = #A +00:3), (33)
_ VT 2 _ —2(1+ 22
py () = Tf o+ 01?3,  u; () = (f“/_)x +0(23). (34)

Forx > 0, the spatial growth rate;us‘zt tend to 0, but are finite. Consequently, fog 0, the phase of the eigenmodes
converges towards 0 at= +o00, whereas the neutrél. = 0) mode (Eq. (25)) has a finite phase shift.

Note that the eigenmodes found on the unstable branch cannot pass to the stable branch by simple analytical
continuation. Indeed, replacing the unstable eigenvaludy As = iAy for the resolution of (26) around the
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Fig. 2. Solutions to the linear stability equations (20) and (21). (a) Growthtnegesuss for v = 0.5. (—) Compound matrix method of [15,16];

(O) shooting method described below Eqg. (29). (b) Phaséthe unstable mode fdr = 0.287, 0.382, 0.440, 0.459 and 0.478; insert: modulus

r of the unstable mode. The symmetri¢—) is the neutral mode (Eq. (24)). Note the nonuniformity of the convergence towards the phase of
the neutral mode (Eq. (25)) and the linear scaling of the growthirégee text).

stable branch yields the four eigenvalues (33) and (34), with purely imagisaBounded eigenmodes require 0
components on the eigenvector correspondingit(j)»u) at+oo andu; (iAy) at—oo, the two other components
remaining bounded. Thus, in contrast with the unstable branch, two degrees of freedom remain free in the choice
of the eigenmode. Therefore, we can expect in this case a continuum of nonlocalized oscillating eigenvectors. We
have not attempted to compute such modes.

We now turn to a discussion of the possible existence of unstable modes with complex growtHatenain
focus in the present work is to understand the dynamical scaling laws occurring on the unstable branch near the



C.-T. Pham, M. Brachet/Physica D 163 (2002) 127-149 135

bifurcation(¢ — &¢). In this limit, the shape of the Evans function (data not shown) suggest the existence of a single
real isolated eigenvalue. The numerical simulations (see next section) strongly suggest a dominant real eigenvalue.
However, although we have found no indication of unstable modes with complex growth rate, we cannot rule out
their existence. The problem of the complete determination of the spectrum of Egs. (8) and (9), including complex
eigenvalues is left for further studies.

2.4. Dynamical results

In this section, we study the dynamics of the system near the stationary solutions and in the supercritical regime,
by numerical integration of Eq. (6).

Spatial derivatives are evaluated with a centered second-order finite difference scheme. Time stepping is performed
using the semi-implicit leapfrog Crank—Nicholson scheme

[ (wn—kl - wn—l)

A7 =Lyy1+Ly—1+2NL,, (35)

where L, and NL, stand, respectively, for the linear and nonlinear parts of the right-hand side of Eq. (6) evaluated
for ¥, = ¥ (to + nAt). The computations reported below were performed with space discretizatiea 0.005
and time discretizatiothr = 0.001.

We checked that the numerical scheme reproduced the linear stability results of Section 2.3 by studying the growth
of a perturbation near the unstable branchvAt 0.295 andg = 3, the linear stability result is = 0.07827, and
numerical integration yields"'™ = 0.0803. We have checked (data not shown) that this 2.5% error is due to space
discretization.

As observed by Hakim [9], an initial condition equal to an analytic unstable stationary solution relaxes towards
the stable solution releasing gray solitons upstream and downstream.

In order to characterize the dynamical behavior, we studied small perturbations around the stable stationary
solutions. We found that they decay exponentially in time by emitting sound waves. The characteristic decay time,
that diverges with the scaling laf ~ |g — g¢|~/2 at the bifurcation, is plotted in Fig. 3. Note that this exponential
decay (instead of oscillations) is rather surprising for a reversible system. However, far 08, the dispersion
relation (29) holds. This means that sound waves can be emitted at arbitrary low frequency. Thus, the emission of
sound waves appears to damp the system.

Finally, we studied the system in the supercritical regigne- gc. We found, as already observed in [9], a
transition to dissipation where the system starts emitting periodically in time solitons that move away upstream and
downstream. We found that the characteristic time of the pefiad soliton emission diverges with the scaling
law T ~ |g — gc|~Y? (see Fig. 3). No hysteresis has been encountered. Note that this behavior is typical of an
Andronov saddle-node bifurcation occurring when there exists a homoclinic connection at the bifurcation point
[12].

2.5. Discussion

One of the main results found in the previous sections is the scalings|ai? for all the characteristic times
close to the bifurcatiorid = (gc — g)/gc). Note that this scaling was previously found for supercritical vortex
shedding in 2D NLSE flow [11]. This scaling is generic of the (first-order in time) saddle-node bifurcation with
normal form

me Q = Q% — 6. (36)
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Fig. 3. Dynamical scalings close to the thresh@d = 1.551404v = 0.5). ((J) Growth characteristic tim& = 1/ (see Fig. 2(a)) on
the unstable branch/( relaxation time on the stable branck}) period of gray soliton emission. The curves represent fits with scaling law

lg — gcI~Y2.

Indeed, looking for solutions of the forr® = Q¢ + € (Qo = +(8/8)Y/? are stationary solutions) yields by
linearizationmesé = £2(88)Y2¢ + o(e). Thus, the characteristic time scales\as §~1/2.

The normal form (36) and its associated scaling are rather unexpected in a Hamiltonian system. When we
studied the eigenvalues and the eigenmodes of the system, we found that the unstable eigenmode disappears at t
bifurcation, merging in a continuum of oscillating eigenmodes (see discussion in the last paragraph of Section 2.3).
It is possible that this behavior is at the origin of #1é? scaling.

One way to check this hypothesis is to avoid the merging of the unstable mode into a continuum. This can be done
by including a frequency gap in the dispersion relation of the system (see the simple model discussed in Section
5.1). In the remainder of the paper, we thus consider models with this property.

3. Sine-Gordon pendulum chain forced by a local torque
3.1. Definition of the system
In this section, we study a system described by the following action
Alg] = / a | / dx%(a,@z - 5] : (37)
In this equationg is a real field and the energy functiorfateads

E[¢] = f dx %(ax¢)2+(1— cOSp) —aa(x)] (38)

The Euler—Lagrange equation associated to (84)Yd¢ = 0, yields the sine-Gordon equation

i — O + Sing — ad(x) = 0, (39)
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with boundary conditions: ligL, 15,9,¢ (x) = lim,_ L@ (x) = 0, where the discontinuity condition
(07, 1) — 0, (07, 1) = —« (40)

is imposed in order to balance thé(x) singularity at all times.

This system can be pictured as the continuous limit of an infinite chain of coupled pendulum of momentum
of inertia I, with the noth pendulum forced by an external torqiigy. Note that one could realize this system
experimentally by fixing a pulley and a weight to the forced pendulum. The forced pendulum should be modified
in order to keep the total inertia momentum (including weight and pulley) equalftbus, the equation of motion
for pendulumn reads

d?o,
dr2

Texts

= C(z)(9n+1 + 61— 20,) — U)(Z) sing, + n,ng> (41)

with w(z) =mgl/] andcg = B/I, wherem is the mass of the pendulugthe acceleration due to gravity agdhe
coupling constant between the penddlg;, = 1 if n = ng, and 0 otherwise. The continuous limit (39) is obtained
by settingw3 = 1, ¢ = 1/Ax? andlext/I = o/ Ax.

Note that fore = 0, one obtains, by linearization aroud= 0 a dispersion relation with gap? = w3 + c3k>.
Thus the pendulum chain cannot propagate waves at frequencies lowefthan

3.2. Stationary solutions

Stationary solutions of (39yithout the delta function (known as kink and anti-kink solitons) can be easily
calculated [24], they read

Pk jk (x) = 4arctan exptx). (42)

Patching together pieces of kink and anti-kink solitons yields the followhgdexed stationary solutions of (39)
includingthe delta function

¢e(x) = 4arctanexg] Fx], if x =0, (43)

where the jump condition (40) imposes the relation

= ) 44
(&) = oohE (44)
This function reaches a maximuag = 4 at¢ = 0. Thus, fore < 4, «(¢) can be inverted as
Oc
£y = iargcost(;) . (45)

The two stationary solutiong:, (x) disappear at = «¢, merging in a saddle-node bifurcation. The energy of the
stationary solutionge, (x) can be computed using (38), yielding

Elgpe.] = 8(1 + tanh&y) — ade, (0), (46)

with ¢¢_(0) = 2 arcsiner/ac) andee, (0) = 27 — 2 arcsina/ac). The bifurcation diagram is displayed in Fig. 4,
where the stationary solutiogg_ and¢g, are seen to be energetically stable and unstable, respectively.
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Fig. 4. (a) Plot of the energy functiondl (see Eq. (46)) of the stationary solutions to Eq. (39) vetsusower branch—£[¢:_], upper
branch—£[¢:. ]. (b) Stable (—) and unstable (- - -) stationary solutions correspondiag-@.5.
3.3. Linear stability
Linearizing (39) around the time-independent solutions (43) for a perturbation of the form
$x, 1) = P (x) + € (x) € (47)
yields the equation

w? Y + [dxx+ (2sech(E Fx) — D]y =0, forx =0. (48)
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Taking thet-derivative of (43) aE = 0, in exactly the same way as in Section 2.3, provides the ngutfak 0)
mode

Yo(x) = 2seclhix). (49)

Note thatf (y) = exp(v'1 — @2y)[v/1 — @2 — tanhy] is a solution taw? f + [dyy+ (2 seck y — 1)] f = 0. Setting,
forx < 0,y = x + & and symmetrizing around = 0 yields the (arbitrarily normalized) exact solution to (48)

Y (x) = eV1ITPEFI/1— 2 — tanh(g Fx)], forx =0, (50)
w? = %tanhzs [1 - \/ cotantf¢ + 3 cosecﬁg} , (51)

where (51) is obtained by imposirdy (x)/dx)|r=0 = O.

The functionw?(€) together with selected eigenmodgsx) are displayed in Fig. 5. One can note that
has a unique minimum)rznin that can be computed by solving@/dé = 0 which yieldsémin = argsech/2/3
corresponding te2,, = —1/3 andamin = 44/2/3.

The asymptotic behavior Iigr3+_00a)2 =1"and Iing_ﬂrooa)z = 0~ can be understood by the following consid-
erations. Around the stable branch, far from the bifurcation, the stationary solution approaches a pendulum chain at
rest. A global oscillation of the chain corresponds,fo= 1. Around the unstable branch, far from the bifurcation,
the stationary solution tends to a pair of infinitely distant static kink and anti-kink. The neutral mode that changes
the distance between kink and anti-kink corresponds’te- 0.

At the bifurcation, the eigenmodes are localized, and one can continuously pass from the unstable eigenmode to
the stable eigenmode. These eigenmodes have a similar shape in contrast with the situation of Fig. 2.

Nearté = 0, Eq. (51) yieldso? = —& +0(£). As (see Eq. (450 = +v/25%2 + 0(8Y/2), with § = (ac — @)/,
we can conclude that

w? = FV28Y? + 0(5Y2). (52)

Note that this scaling implies|a — «c|~Y/* scaling for the period of oscillations on the stable branch and for the
characteristic growth times2/|w| on the unstable branch. Moreover, these scalings are typical of a Hamiltonian
saddle-node bifurcation (see Section 3.5).

3.4. Dynamical results

In this section, we study the dynamics of the system near the stationary solutions by numerical integration of
Eq. (39).

Spatial derivatives are calculated with a centered second-order finite difference scheme. Time stepping is per-
formed using a fourth-order Runge—Kutta algorithm. The computations reported below were performed with spatial
and temporal discretizationx = 0.01 andA¢ = 0.0002.

We checked that the numerical scheme reproduced the linear stability results of Section 3.3, by studying the
dynamics of a perturbation near the unstable and stable branch. We found very good agreement. For instance, on
the stable branch at? = 0.3 andé = —0.2778 (see Fig. 5) correspondingi¢t) = 3.64 (Eq. (44)), the numerical
integration yieldso?,,, = 0.301. The error, lower than 1%, is due to space discretization.

At subcritical values of, initial conditions, close to the analytical unstable stationary solutions, relax towards
stable solutions, releasing to infinity a kink/anti-kink pair. In the supercritical regimexc, the system exhibits a
transition to dissipation: kink/anti-kink pairs are periodically emitted (data not shown).
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T T T T T

Fig. 5. (a) Plot ofw? versus the shift parametér(see Eq. (51)). Note the existence of a minimmﬁ;]n; (b) stable mode (curve 142 = 0.5),
neutral mode (curve 2y2 = 0) and unstable modes (curves 3, 4 and 5) corresponding, respectivefy=to—0.2, wﬁﬂn and—0.2. Note that
curves 3 and 5 correspond to two different values wiith the same value at?.

Considering the pendulum chain is an easy way to understand these phenomena. For strong enough extern:
torques, the forced pendulum passes the valud then makes a rotation ofri2 while dragging the pendulum
chain. In this way, the system emits periodically pairs of kink/anti-kink, radiating energy to infinity. Note that the
energy supplied by the work of the forced pendulufg,= 87, is larger than that of a pair of static kink/anti-kink,
Eg = 16. By energy conservation, the velocity of a pair of solitons is finite.

A striking result, displayed in Fig. 6, is that this periodic regime exhibits subcriticality. Starting in the supercritical
(o > ac) regime and decreasing we found that the system continues to emit solitons down to«; = 3.888.
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Fig. 6. Dynamical scalings close to the thresh@ld = 4). (— - —-) Growth characteristic times2/|w| on the unstable branch, (---) period
of oscillations around the stable branch, see Fig. 5(),deriod of kink/anti-kink emission. The solid curves represent fits with scaling laws
lo — ac|~¥* and loga — o), see text below Eq. (53).

The period of soliton emission diverges wheapproaches.. Belowey, the system relaxes near the stable solution
after emitting only one pair of kink/anti-kink. Note thatat= «f, the energy supplied by the external torque is
again larger than the energy of a pair of static kink/anti-kink. Thus the spatial and temporal periods of kink/anti-kink
both diverge atr;, while their velocity of emission remains finite. We checked (data not shown) that the value of
o was insensitive ta\x.

One mechanism for subcriticality is the homoclinic Andronov bifurcation [12], which is a global bifurcation.
In phase space, the unstable stationary solutions are fixed points characterized by a 1D unstable manifold and
a one-codimensional stable manifold. The homoclinic Andronov bifurcation occurs when the unstable manifold
connects back to the stable manifold, forming a homoclinic connection. After the bifurcation, the connection
disappears leaving a limit cycle. Near the bifurcation, the characteristic time scales as

T = —%Iog(a — ag) + o(log(e — ), (53)
wherea . is the value of the unstable eigenvalue of the systeaj.athis bifurcation has been found in extended
dissipative models [13].

We have measured the period of emission of the solitons and fitted it with the scalifigdaw+ (1/As) log(a —
o) with of = 3.888,15. = 0.454 andr = 15.5, see Fig. 6. The value af,. (see Fig. 5(a)) is 0.450, thus_ and
A4 differ by less than 1%.

This very good agreement together with the quality of the fit displayed in Fig. 6 is a strong argument in favor of
the Andronov homoclinic bifurcation as the mechanism for subcriticality in our system. Note that to the best of our
knowledge, it is the first time that such a bifurcation has been found in an extended Hamiltonian system.

3.5. Discussion

We have just seen that the presence of a gap in the dispersion relation yields a continuity in the eigenmodes at
the bifurcation and is responsible for a hysteresis phenomenon. We found at the top of the subcriticality window
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(« = a¢) a scaling law for the unstable eigenvalues of the linear problem of the.type (ac — a)Y/4. This scaling
can be obtained from the normal form of the Hamiltonian saddle-node bifurcation

me O = Q% — 6, (54)

using the same arguments as in Section 2.5.
The parameters appearing in (54) can be determined by the following considerations. Writing the normal form as
0 =—-0V/20,whereV(Q, 8) = B(Q3/3) — 80 + Vo + A8, the stationary solutions a@. = +(5/8)Y/2. Thus

283/2
V(Qu.8) = £ 350 + Vot 44, (55)

Comparing (55) with, on the one hand the asymptotic development of (46)
E(pe,) =42 —m + 78 £ 38%/7], (56)

wheres§ = (ac — a)/ac, and on the other hand, with Eq. (52), yieldgss = 1 andB = 1/2. This normal form
could also be explicitly computed by making use of a collective coordinate approach of the type given in [25].
The gap appears to open a subcriticality window, with a Hamiltonian saddle-node bifurcation on top and an
Andronov bifurcation at the bottom. Note that the Andronov homoclinic bifurcation responsible for subcriticality,
being a global bifurcation, cannot be obtained in the above context of local bifurcation theory.
In order to verify the generality of this subcritical behavior, we have tried to make the simplest modification of
Eq. (6) opening a frequency gap in the dispersion relation.

4. Electrically charged nonlinear Schrédinger flow
4.1. Definition of the system

In this section, we consider the system defined by the following action
- i - -
At 1= [ [ asia - vad x| 7)

wherey is a complex fieldy its conjugatey a real field andC’ the energy functional of the system, equakio
in (2) with a supplementary term

1
K' =K+ / dx [qvmmz - <|w|2>)§<aXV)2} : (58)
(1|2 isthe (spatial) mean value pf |2, equal to 1 in an infinite system. The Euler—Lagrange equatiohsy = 0
andé.A/8V = 0, yield the following NLSE
10,9 = —dah + V3 Y — ¥ + [PV + g8(0)Y + Vi, (59)
oV = —q (W 1* = (112 (60)

This system can be viewed as a charged 1D superflow past an obstacle, the electrostatic field created by the charge
flow interacting with the latter [26]. It is also the dynamical equation for a 1D superconductor in the presence of
an impurity given in [27]. We have chosen to use as a source [tetfn— (|v/|2) in order to insure global charge
neutrality so that G= VV (+00) = VV (—00).
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The dispersion relation of the system away from the obstacle can be found considerig\that is a nonlocal
term in the actionqV = ¢2A~Y|¥|% — (J¢|®]). Itis shown in [28] that this potential adds a supplementary term
in the dispersion relation of the form

o= vk+ \/kzﬁ(k) + 2k2 + k4,

whereU (k) is the Fourier transform af . As U (k) = ¢2/ k2, the electrostatic field adds a gap with cut-off frequency
w¢ = ¢q to the dispersion relation

o = vk+ /g + 2k2 + k4. (61)

No sound wave can therefore propagate at frequencies lowewthan
4.2. Stationary solutions

We were unable to find the stationary solutions analyticallyfer 0. A simple way to numerically obtain stable
stationary solutions of (59), at fixed v andg, is to let the system relax, following the Ginzburg—Landau equation,
Y = 8K/ /5y

WY = ot — 100V + ¥ — Y2 — g8V — gV, (62)
oV = —q (W2 — (1Y ?). (63)

Note that the stationary solutions of (62) are identical to those of (59). This procedure does not yield unstable
solutions.

However,g in (3) is a Lagrange multiplier that imposes the valug{0)|2. We can instead directly impose
[¥(0)] = Ro, while minimizing £ = K'|,—0. This is equivalent to integrating (62) with = 0 and boundary
condition |y (0)| = Ro, then to compute, through (7), the corresponding valug. dthe bifurcation diagram and
the stationary solutions obtained by this procedure are displayed in Fig. 7.

It can be seen by inspection of the figure that, unlike the stationary solutions of the eadg the charged
stationary solutions have two bumps on both sides of the discontinuity. This is due to Coulombian screening that
tends to accumulate positive charges near the depletion that stands at the discontinuity. The bifurcation diagram of
K’ shows that the upper branch/6f is energetically unstable.

4.3. Linear stability

As explained in Section 2.3, the neutral mode is obtained by taking the derivative of the family of the stationary
solutions with respect to a regular parameter, at the bifurcation. We thus evaluate the neutral mode as

¥ (Ro+ ARo) — ¥ (Ro — ARo)
2ARg ’

wherey (Rg &= ARg) are the stationary states calculated at modRiyis= A Rg. The phase and the modulus of the
neutral mode obtained by this procedure are plotted in Fig. 8. It can be seen in the figure that the neutral mode has
a finite phase shift.

We have also integrated slightly perturbed stationary solutions in order to obtain the linearly stable and unstable
modes. The growing and oscillatory modes are found to have very similar shapes (see Fig. 8). These modes have a
finite phase shift.
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Fig. 7. (a) ModulusrR of the stable (—) and unstable (- --) stationary solutions to Eq. (59} fer 5.53,v = 0.15,¢ = 0.5. Insert shows
energy functionalC’ of the stationary solutions versysfor v = 0.15 (see Eq. (58)); lower branch—energetically stable branch, upper
branch—energetically unstable branch. The bifurcation occugs-at6.06222. (b) Phase of the stable (—) and unstable (- - -) stationary
solutions, same conditions as in (a).

Thus, in sharp contrast with the uncharged Schrddinger flow (see Section 2.3), the eigenmodes pass uniformly
from one branch of stationary solutions to the other. This is identical to what was observed in the sine-Gordon model
(see Section 3.3).

4.4. Dynamical results

The method used to study numerically the dynamics of the system is the same as in Section 24,with05
andAr = 0.001.
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Fig. 8. Eigenmodes of (59). (a) Moduludor v = 0.15 andg = 0.5 of the neutral mode (—) correspondinggo= g. = 6.06222 and of a
stable and an unstable eigenmodesgfes 6.0622. (b) Phase of the same eigenmodes (same conditions as in (a)). Note the continuity of the
modes past the bifurcation.
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Fig. 9. Dynamical scalings close to the thresh@ld = 6.06222 g = 3.64, v = 0.15, ¢ = 0.5). (A) Oscillations period on the stable branch,
(<) period of solitons emission. The curves represent fits with scalinggws g)~%4 (- - -), and lodg — g.) (---), see text.

Table 1

Dependence on of the reduced subcritical intervédc — g¢)/gc

q (8c — 8’9)/8c (%)
1 48

0.5 40

0.25 33

Perturbing a stable stationary solution leads to collective oscillations around it, with no emission of sound waves,
unlike the uncharged model. The period of the oscillations has been numerically calculated and is plotted in Fig. 9.
It can be fitted by a scaling law of the forfh = v 4+ u(gc — g)*, with A = —1/4, which corresponds to the
Hamiltonian saddle-node bifurcation (see Eq. (54)). Thus, as was already noticed above in Section 4.3, the systen
again behaves like the sine-Gordon pendulum chain of Section 3.

The system also exhibits subcriticality as in the Sine-Gordon modelg Fpeater tharg, < gc, a perturbed
unstable stationary state yields a periodic emission of solitary waves. Fig. 9 shows the period, together with a fit to
the scaling lawl" = © — (1/A)log(g — go). We thus find the same results as in the case of the sine-Gordon model,
that is the scaling law of a homoclinic Andronov bifurcation.

Finally we studied thg dependence of the subcritical interga¢ — g;)/gc. by performing several series of runs.

The results are summarized in Table 1. It can be seen by inspection of the table that this interval decreases with
Note that the data is compatible witly&* scaling, a fit yielding the exponent 0.27.

5. Discussion and conclusion
5.1. Discussion

The purpose of the present section is to demonstrate that a very simple linear model exhibits some of the propertie:
found in Sections 2 and 3. To wit, let us consider the following propagative equation



C.-T. Pham, M. Brachet/Physica D 163 (2002) 127-149 147

ey — c2(X)dxy + wZy =0, (64)

with ¢2(x) = 1 for |x| > 1 andc?(x) = —y2for |x| < 1.

For positive values of 2, (64) presents an anti-propagative localized instability. Furthermagpg, 3 0, there is
a gap in the dispersion relation of waves propagating far away from the region of the instability.

We are interested in symmetric solutions that display temporal instability. Setting) = €+ ¢ (x), the solution
reads

2 3 2\1/2
¢(x) = Acos [%x} , forjx| <1 (65)

¢ (x) = BexpF(wi +22)Y2x], forx =1. (66)
The continuity of¢ (x) and(d¢/dx)(x) atx = £1 implies

(@3 +2?)Y2 = y arctany. (67)
Suppose now thatg = 0. Fori2 > 0 andy? > 0, Eq. (67) becomes

A = y arctany, (68)

thus fory < 1, one obtains after linearization= y2 + o(y?).

Note that the linear relation betweerandy? yields a dampedr < 0) mode for negative/2. However, the
corresponding eigenmode (65) and (66) is spatially unbounded. This situation is somewhat similar to that of the
so-called Gamov states, describing the decay of metastable states by quantum tunneling [29,30].

When y? is negative (64) is propagative, even in the regioh < 1. Because of this, the damping can also
be understood through an optical analogy: waves, trapped inside a medium of jtidékyihg at |x| < 1, and
undergoing multiple reflections at the interfaces with a medium of index [xfos 1. A propagative wave in the
center of the system (x, r) = &®1¥=@) of wave vectok; ~ |y |, is partially reflected and transmitted with a ratio
of wave amplitudes given by the transmission rate= 4kiko/ (k1 + k2)? ~ |y| (with ko the wave vector of the
transmitted wave of order unity). In a unit time, the wave reflé¢ts- 1/c ~ |y| times at the interface, yielding a
decay rate. ~ N'T ~ y2; this argument reproduces the expected scalingllawy 2.

Suppose now thabg # 0. The instability takes place when= 0, and Eq. (67) becomes

wo = y arctany. (69)
Lety? = y02 + &, whereyy verifies (69), then one finds, after linearizingsir{67)

— A= + arctany | &, 70

2wo 2y0 <1+y02 ny) (70)

thus, a scaling law of the forik? ~ £. Note that\? scales linearly in the variation gf? in sharp contrast with the
casewp = 0. Also note that the eigenvector (65) and (66) is bounded both for stable and unstable vgities of
The drastic effect ofog on both the difference in scaling laws and in continuity of eigenmodes is reminiscent of
the differences found in Sections 2 and 3. It thus seems reasonable to infer that these effects are typical of situations
with localized instabilities in infinitely extended domains.

5.2. Conclusion

The three models studied in this paper are all spatially extended Hamiltonian systems exhibiting a transition to
dissipation. Beyond a critical threshold, they start radiating energy to infinity by emitting solitary waves (kink and
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anti-kink in the case of the sine-Gordon equation, gray solitons or waves alike in the case of the NLSE). However,
two distinctmechanisms have been encountered.

In the case of the uncharged nonlinear Schrédinger flow, the transition takes place through a usual saddle-nodke
Andronov bifurcation. Although the system is Hamiltonian, it behaves like a dissipative system because its dynamics
is coupled with the emission of sound waves. In this case, the dispersion relation

o = vk+ v/ 2k2 + k4 (71)

is gapless so that sound waves of arbitrarily low frequency can, indeed, propagate. This fact is relaté¥ fo the
dynamical scaling, characteristic of dissipative systems. There is no hysteresis in this case.

In contrast, the sine-Gordon model and the charged nonlinear Schrodinger flow share a different behavior; the
transition takes place through a Hamiltonian saddle-node bifurcation, characteriz&t‘bgiasipation-less scaling
law. The dispersion relations of these two systems are

0? =02+ k% with oc=1, (72)

o =vk+ /g +2k% + k4, with wc=gq. (73)

Thus, no wave can propagate below the cut-off frequesgyn contrast to the uncharged NLS system. We found
that the periodic emission of solitary waves exhibits subcriticality and log scaling characteristic of a homoclinic
Andronov bifurcation.

The charged nonlinear Schrodinger flow model confirmed the genericity of this behavior by adding to the disper-
sion relation of the nonlinear Schrédinger flow a tunable gap. The interval of subcriticality was found to decrease
with the gap.

The simple linear model introduced in Section 5.1 allowed us to understand some of the effects of the gap, such
as the existence of Gamov states on the stable branch in the gapless case. However, this linear model bears no dire
relation with the linear stability equations (20), (21) and (48). In the gapless case, a remarkable fact is that the
linearized stability equations display genuine irreversible behavior on the stable branch.

A challenge, left for further study, is to derive from the original time-reversible equation of motion an irreversible
normal form of the type (36). Another point, that we will study in the future, is the generalization of the above 1D
results to 2D and 3D systems. Irreversible scaling is known to occur in gapless 2D systems [10,11] but the behavior
of the eigenmodes close to the bifurcation is still unknown.
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