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Kolmogorov Turbulence in Low-Temperature Superflows
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Low-temperature decaying superfluid turbulence is studied using the nonlinear Schrödinger equation
in the geometry of the Taylor-Green (TG) vortex flow with resolutions up to 5123. The rate of
(irreversible) kinetic energy transfer in the superfluid TG vortex is found to be comparable to that of the
viscous TG vortex. At the moment of maximum dissipation, the energy spectrum of the superflow has
an inertial range compatible with Kolmogorov’s scaling. Physical-space visualizations show that the
vorticity dynamics of the superflow is similar to that of the viscous flow, including vortex reconnection.
The implications to experiments in low-temperature helium are discussed. [S0031-9007(97)03046-9]

PACS numbers: 67.40.Vs, 47.37.+q, 67.40.Hf

Superfluid flows are described mathematically in terms
of Landau’s two-fluid model [1]. When both normal fluid
and superfluid vortices are present, their interaction, called
“mutual friction,” must be taken into account as pioneered
by Schwarz [2]. At temperatures low enough for the nor-
mal fluid to be negligible (in practice below T ! 1 K for
helium at normal pressure), an alternative mathematical
description is given by the nonlinear Schrödinger equa-
tion (NLSE), sometimes also called the Gross-Pitaevskii
equation [3,4]. The NLSE reads

≠tc ! !ic"
p

2 j# !c 2 jcj2c 1 j2=2c# . (1)
The complex wave field c is related to the superflow’s
density r and velocity y by Madelung’s transformation
r ! jcj2, ryj ! !icj"

p
2 # !c≠jc 2 c≠jc#, where j is

the so-called “coherence length” and c is the velocity
of sound (when the mean density r0 ! 1 [5]). The
superflow is irrotational, except near the nodal lines of
c which are known to follow Eulerian dynamics [6,7].
These topological defects correspond to the superfluid
vortices that appear naturally, with the correct velocity
circulation, in this model [8].
The basic goal of the present Letter is to qualify

the degree of analogy between turbulence in low-
temperature superfluids and incompressible viscous fluids.
We will do this by comparing numerical simulations
of NLSE with existing numerical simulations of the
Navier-Stokes equations, in particular the Taylor-Green
(TG) vortex [9]. The TG vortex is the solution of the
Navier-Stokes equations with initial velocity field vTG !
!!! sin!x# cos!y# cos!z#, 2 cos!x# sin!y# cos!z#, 0###. This flow
is well documented in the literature [10–12]. It admits
symmetries that are used to speed up computations: rota-
tion by p about the axis !x ! z ! p"2#, !y ! z ! p"
2#, and !x ! y ! p"2#, and reflection symmetry with
respect to the planes x ! 0, p , y ! 0, p, z ! 0, p. The
velocity is parallel to these planes which form the sides of
the impermeable box which confines the flow. The TG
flow is related to an experimentally studied swirling flow

[13–15]. The relation between the experimental flow and
the TG vortex is a similarity in overall geometry [13]:
a shear layer between two counterrotating eddies. The
TG vortex, however, is periodic with free-slip boundaries
while the experimental flow is contained inside a tank
between two counterrotating disks.
We now show how to construct a vortex array whose

NLSE dynamics mimics the vortex dynamics of the large
scale flow vTG . The first step of our method is based on a
global Clebsch representation of vTG and the second step
minimizes the emission of acoustic waves [16].
The Clebsch potentials l!x, y, z# ! cos!x#

p
2j cos!z#j,

m!x, y, z# ! cos!y#
p

2j cos!z#j sgn!!!cos!z#### (where sgn
gives the sign of its argument) correspond to the TG
flow in the sense that =vTG ! =l 3 =m. The complex
field cc, corresponding to the large scale TG flow cir-
culation, is given by cc!x, y, z# ! !!!c4!l, m####$gd"4% with
gd ! 2

p
2"!pcj# ($ % is the integer part of a real) and

c4!l, m# ! ce!l 2 1"
p

2, m#ce!l, m 2 1"
p

2 #
3 ce!l 1 1"

p
2, m#ce!l, m 1 1"

p
2 # ,

where ce!l, m# ! !l 1 im# tanh!
p

l2 1 m2"
p

2j#"p
l2 1 m2.
The second step of our procedure consists of integrating

to convergence the advective real Ginzburg-Landau equa-
tion (ARGLE):

≠tc ! !c"
p

2j# !c 2 jcj2c 1 j2=2c# 2 ivTG ? =c

2 $!vTG#2"2
p

2 cj%c , (2)

with initial data c ! cc. This amounts to minimizing the
functional

F ! !c"
p

2 j#
Z

d3 "x $2jc j2 1 jcj4"2

1 j2j=c 2 !ivTG"
p

2 cj#cj2% . (3)

It is shown in [17] that replacing vTG by a constant
vector yields as a minimum of (3) a boosted straight
vortex line that is an exact radiationless solution of (1).
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Minimizing (3) with the space-dependent vTG applies
to the vortex lines a local Galilean boost with velocity
vTG. The TG symmetries can be used to expand c!x, y,
z, t# !

PN"2
m!0

PN"2
n!0

PN"2
p!0 ĉ!m, n, p, t# cosmx cos ny 3

cospz where N is the resolution and ĉ!m, n, p, t# ! 0,
unless m, n, p are either all even or all odd integers. Im-
plementing this expansion in a pseudospectral code yields
a saving of a factor 64 in computational time and memory
size when compared to general Fourier expansions. The
ARGLE converged periodic vortex array obtained in this
manner is displayed on Fig. 1. Note that the radius of
curvature of the vortex lines is large compared to their
radius.
The total energy of the vortex array, conserved by

NLSE dynamics, can be decomposed into three parts
Etot ! !1"2p#3

R
d3x !Ekin 1 Eint 1 Eq#, with kinetic

energy Ekin ! 1
2 ryjyj , internal energy Eint ! !c2"

2# !r 2 1#2, and quantum energy Eq ! c2j2!≠j
p

r #2.
Each of these parts can be defined as the integral of the
square of a field, for example, Ekin ! 1

2 !pryj#2. Using
Parseval’s theorem, the angle-averaged kinetic energy
spectrum is defined as

Ekin!k# !
1
2

Z
k2 sinu du df

3

Ç
1

!2p#3

Z
d3r eirjkj

p
r yj

Ç2
,

which satisfies Ekin ! 1"!2p#3
R

d3x Ekin !
R`

0 dk 3
Ekin!k#. The angle-average is performed by summing
over shells in Fourier space. A mode (m, n, p) belongs to
the shell k ! $

p
m2 1 n2 1 p2 1 1"2%. Ekin is further

decomposed into compressible Ec
kin and incompressible

Ei
kin parts, using p

r yj ! !pr yj#c 1 !pr yj#i with
=!pr yj#i ! 0. This simple decomposition has the ad-

FIG. 1. Three-dimensional visualization of the vector field
= 3 !r "y# for the Taylor-Green flow at time t ! 0 with
coherence length j ! 0.1"!8

p
2 #, sound velocity c ! 2, and

resolution N ! 512 in the impermeable box $0, p% 3 $0, p% 3
$0, p%. The visualization is obtained by drawing the 30 000
vectors of highest norm.

vantage over the more conventional one, p
r yj !p

r !yj#c 1
p

r !yj#i , of not involving a mixed
compressible-incompressible energy spectrum. We have
checked that both decompositions give the same behavior
for Ei

kin!k# in the runs presented below.
An exact solution of NLSE, describing a 2D axisym-

metric vortex, is given by cvort!r# !
p

r!r# exp!imw#,
m ! 61, where !r , w# are polar coordinates. The vortex
profile

p
r!r# & r as r ! 0 and

p
r!r# ! 1 1 O!r22#

for r ! `. It can be computed numerically using mapped
Chebychev polynomials expansions and an appropriate
functional [17]. The corresponding velocity field is azi-
muthal and is given by y!r# !

p
2 cj"r . Using the ex-

pansion for
p

r!r#, the 2D angle-averaged spectrum ofp
r yj can then be computed with the formula Evort

kin !k# !
!c2j2"2pk# $

R`
0 dr J0!kr#≠r

p
r %2, where J0 is the zeroth

order Bessel function. It is shown in [17] that, when a
3D isolated vortex line is almost straight, the 3D angle-
averaged spectrum of the line is given by Eline

kin !k# !
!l"2p#Evort

kin !k#, where l is the length of the line.
Indeed, the incompressible kinetic energy spectrum

Ei
kin!k# of the ARGLE converged vortex array of Fig. 1
displayed on Fig. 2(a) is well represented, at large k,
by an isolated line spectrum Eline

kin !k# with total vortex
length given by l"2p ! 175. In contrast, the small wave
number region cannot be represented by Eline

kin !k#. This
stems from the average separation distance between the
vortex lines in Fig. 1. Calling this distance dbump &
k21

bump ! 1"16, the wave number range between the
large-scale wave number k ! 2 and the characteristic
separation wave number kbump can be explained by

FIG. 2. Plot of the incompressible kinetic energy spectrum,
Ei

kin!k#. The bottom curve (a) (circles) corresponds to time
t ! 0 (same conditions as in Fig. 1). The spectrum of a
single axisymmetric 2D vortex multiplied by !l"2p# ! 175 is
shown as the bottom solid line. The top curve (b) (plusses)
corresponds to time t ! 5.5. A least-square fit over the interval
2 # k # 16 with a power law Ei

kin!k# ! Ak2n gives n ! 1.70
(top solid line).
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interference effects. Because of constructive interference,
the energy spectrum at k ! 2 has a value close to
its corresponding value in TG viscous flow (namely
0.125), which is much above the value of Eline

kin !k ! 2#.
In contrast, for 2 , k # kbump , destructive interference
decreases Ei

kin!k# below Eline
kin !k#. This spectral situation

can be understood by analogy with the reproduction of
a grey scale picture using black dots. The small wave
number spectrum of the reproduction will be that of the
original picture, while the large wave number spectrum
will be that of the individual dots. Here the dots are
vortex lines and the picture is vTG .
The evolution in time via NLSE (1) of the incompress-

ible kinetic energy is shown in Fig. 3 for various values
of j, the resolution N being adjusted to maintain accu-
racy. The main quantitative result of this Letter is the re-
markable agreement of the energy dissipation rate
2dEi

kin"dt with the corresponding data in the in-
compressible viscous TG flow. Both the moment
tmax & 5 10 of maximum energy dissipation (the inflec-
tion point of Fig. 3) and its value e!tmax# & 1022 at that
moment are in quantitative agreement with the viscous
data [10,18]. Furthermore, both tmax and e!tmax# depend
weakly on j. This is remarkably similar to the weak
dependence of the corresponding viscous dissipation
in the limit of small viscosity. This weak dependence
is considered a hallmark of numerical evidence for a
Kolmogorov regime in decaying turbulence [18].
Another important quantity studied in viscous decaying

turbulence is the scaling of the kinetic energy spectrum
during time evolution and, especially, at the moment of

FIG. 3. Total incompressible kinetic energy Ei
kin plotted

versus time for j ! 0.1"!2
p

2 # and resolution N ! 128
( long-dash line); j ! 0.1"!4

p
2 #, N ! 256 (dash); j !

0.1"!6.25
p

2 #, N ! 400 (dot); and j ! 0.1"!8
p

2 #, N !
512 (solid line). All runs are realized with c ! 2. The
evolution of the total vortex filament length divided by 2p
(crosses) for the N ! 512 run is also shown (scale given on
the right y axis).

maximum energy dissipation, where a k25"3 range can be
observed [10]. Figure 2(b) shows the energy spectrum at
t ! 5.5. A least-square fit over the interval 2 # k # 16
with a power law Ei

kin!k# ! Ak2n gives n ! 1.70 (solid
line). For 5 , t , 8, a similar fit gives n ! 1.6 6 0.2
(data not shown). Although uncertain, the value of n
is compatible with Kolmogorov’s 5

3 value. The time
evolution of l"2p obtained by representing the high-k
region of Ei

kin by a line spectrum Eline
kin is displayed in

Fig. 3. The length saturates beyond tmax at roughly three
times its t ! 0 value. Although the volume occupied
by the vortices has increased, it remains a small fraction
lpj2"!2p#3 & 0.4% of the total volume of the box. The
computations were performed with c ! 2 corresponding
to a root-mean-square Mach number Mrms ' jvTG

rmsj"c !
0.25. As it is very costly to decrease Mrms, we checked
[17] that compressible effects were nondominant at this
value of Mrms. In particular, Ei

kin is well above the other
energy spectra throughout the run for k , kbump .
It is known [19] that NLSE vortex lines can reconnect.

The vortex lines are visualized in physical space in
Figs. 4 and 5 at times t ! 4 and t ! 8. At t ! 4, no
reconnection has yet taken place while a complex vortex
tangle is present at t ! 8. Detailed visualizations (data
not shown) demonstrate that reconnections occur for t .
5. Note that in the viscous TG vortex reconnection also
sets in for t . 5.
As seen above, the spectral behavior of NLSE can be

compared to viscous turbulence only for k # kbump &
d21

bump , where dbump is the average distance between
neighboring vortices. We now estimate the scaling of
kbump in terms of the flow integral scale l0 and velocity
u0 and of the velocity of sound c and coherence length
j. The number nd of vortex lines crossing a large-
scale l2

0 area is given by the ratio of the circulation
l0u0 to the quantum of circulation G ! 4pcj"

p
2, i.e.,

nd & l0u0"cj. Assuming that the vortices are uniformly

FIG. 4. Same visualization as in Fig. 1, but at time t ! 4.

3898



VOLUME 78, NUMBER 20 P HY S I CA L REV I EW LE T T ER S 19 MAY 1997

FIG. 5. Same visualization as in Fig. 1, but at time t ! 8.

spread over the large scale area gives nd & l2
0"d2

bump .
Equating these two evaluations of nd yields dbump &
l0

p
!cj#"!l0u0#.
In the case of helium, the viscosity at the critical

point (T ! 5.174 K, P ! 2.2105 Pa) is ncp ! 0.27 3
1027 m2 s21 while the quantum of circulation, G !
h"mHe has the value 0.99 3 1027 m2 s21. Thus, 4ncp &
G and dbump & l0"

p
Rcp & ll, where Rcp is the integral

scale Reynolds number at the critical point and ll the
Taylor microscale. The value of dbump in a superfluid
helium experiment at T ! 1 K is thus of the same order
as the Taylor microscale in the same experimental set-up
run with viscous helium at the critical point.
An experiment corresponding to the numerical results

of the present Letter must be performed at a temperature
low enough for the normal component of the flow to be
neglected. In this regime, second sound attenuation mea-
surements cannot be performed. Preliminary measure-
ments (J. Maurer, private communication) in the swirling
flow of Ref. [14] did not seem to show any significant
change in energy dissipation for temperatures as low as
1.6 K where the normal fluid and the superfluid are in the
same proportion. It would be interesting to know if such
behavior persists at T , 1 K. In viscous turbulence, it
is well known that Kolmogorov’s theory is only approxi-
mate since it neglects intermittency [18]. Inertial range
“intermittency corrections” are measured [14,20,21] on
velocimetry data by monitoring the scaling of high order
moments of velocity increments. If the corresponding su-
perfluid quantities could be measured experimentally be-
low T ! 1 K by an as-yet-to-be-developed velocimetry
probe, significant differences might appear.
In summary, turbulent solutions of NLSE—and thus

low-temperature superfluid turbulence—approximately

obey Kolmogorov’s scaling. A question, open to ex-
perimental investigations, is to know the exact limits
of this analogy between superfluid and viscous turbu-
lence. Some important experimental properties, such as
Kolmogorov’s scaling, still evade first principle deriva-
tion from the Navier-Stokes equations [18]. These hard
problems may be easier to solve, when the analogy is
valid, using the NLSE rather than the Navier-Stokes
equations.
Computations were performed on the C94-C98 of

the Institut du Développement et des Ressources en
Informatique Scientifique. We would like to thank
L. Tuckerman for her helpful discussions on this work.
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