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Nonisotropic attractive Bose-Einstein condensates are investigated numerically with Newton and inverse
Arnoldi methods. The stationary solutions of the Gross-Pitaevskii equation and their linear stability are com-
puted. Bifurcation diagrams are calculated and used to find the condensate decay rates corresponding to
macroscopic quantum tunneling, two-three-body inelastic collisions, and thermally induced collapse. Isotropic
and nonisotropic condensates are compared. The effect of anisotropy on the bifurcation diagram and the decay
rates is discussed. Spontaneous isotropization of the condensates is found to occur. The influence of isotro-
pization on the decay rates is characterized near the critical point.

DOI: 10.1103/PhysRevA.68.023609 PACS nuntber03.75.Kk, 32.80.Pj, 47.20.Ky, 05.30.Jp

[. INTRODUCTION in the isotropic case via a shooting method was outlined in
Ref. [16], but generalizing this procedure to higher dimen-
Experimental Bose-Einstein condensati@EC) with at-  sions would be inefficient, and indeed impossible in nonrect-
tractive interactions was first realized in ultracold vapors ofangular domains. The decay rates for the processes of MQT,
’Li atoms[1], opening a new field in the study of macro- ICO, and TIC were also computed, in the spherical case,
scopic quantum phenomena. Such attractive condensates drem the numerical GP solutions. They were shown to obey
known to be metastable in spatially localized systems, prouniversal scaling laws. Experimentally, significant quantita-
vided that the number of condensed particles is below a crititive differences were found between the exact rates and those
cal valueN; [2]. Recently, Feshbach resonances in BEC ofbased on the Gaussian approximatias].
8°Rb atoms were used to investigate the stability and dynam- In the extreme anisotropic cases, the variational Gaussian
ics of condensates with two-body interactions going fromapproximation has been computed and compared to the GP
repulsive to attractive valuds]. solution on the ellipti(stable branch[17,18. This has al-
Experimental atomic traps generally use a harmonic antbwed a more reliable determination of the critical val\Mg
slightly asymmetric potential. Thus, for most of the conden-than can be obtained by the Gaussian approximdtiat.
sates produced so far, the geometry is nearly spherical. Howdowever, a faithful determination of the lifetimes requires
ever, extremely asymmetric traps have been recently enthe computation of the hyperboli@nstablé branch[15],
ployed in experimental investigations of cigarliké—6] or  which has not yet been performed in the anisotropic case.
pancakelikg 7] condensates. The main purpose of the present paper is to show that it is
Various physical processes compete to determine the lifepossible to compute the full HSN bifurcation diagram and
time of attractive condensates. The processes considered time corresponding lifetimes in extreme anisotropic cases. We
this paper are macroscopic quantum tunnelid@T) [8,9],  will do so by studying a cigarlike and a pancakelike conden-
inelastic two- and three-body collisiotBCO) [10-12, and  sate, and will obtain their MQT, ICO and TIC decay rates.
thermally induced collaps€TIC) [9,13]. The MQT and TIC  While we have concentrated, for simplicity, on these two
contributions have been evaluated in the literature using axisymmetric cases, the numerical methods developed in this
variational Gaussian approximation to the condensate wawgork are capable of solving the general anisotropic problem.
function. However, this approximation is known to be in  The paper is organized as follows. In Sec. Il, we present
substantial quantitative error—e.g., as high as 17%Npr the model considered throughout this work. After defining
[8,14,19—when compared to the exact solution of the our working form of the GP equation, we explain the meth-
Gross-Pitaevski{GP) equation. ods that we used to obtain the stationary states and their
In the nearly spherical isotropic case, both the ellipticlinearized stability. Section Il is devoted to the numerical
(stable and the hyperboli¢unstable exact stationary solu- determination of the bifurcation diagram and stability of the
tions of the GP equation were obtained numerically by New-stationary states. Isotropic and nonisotropic cases are com-
ton’s method in Ref[15]. These solution branches were pared and the dynamics is discussed in terms of the HSN
shown to meet atV; through a generic Hamiltonian saddle- bifurcation. In Sec. IV, we define and compute the decay
node (HSN) bifurcation. While the Gaussian approximation rates. Isotropic and nonisotropic rates are discussed and their
presents an analogous HSN bifurcation, the amplitudes of itsimilarity is analyzed in terms of the spontaneous isotropiza-
associated scaling laws were found to be insubstantidion of condensates. Finally, Sec. V is our conclusion. Details
(=14%) error. A method for computing the unstable branchof our numerical methods are given in the Appendix.
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II. PRESENTATION OF THE MODEL

A. Gross-Pitaevskii equation

At low enough temperatures, neglecting the thermal and
guantum fluctuations, a Bose-Einstein condensate can be

represented by a complex wave functid(x,t) that obeys
the dynamics of the GP equatidt9,20. Specifically, we
consider a condensate af particles of massn and (nega-

tive) effective scattering lengtl in a confining harmonic
potential  V(x)=m(wix?+ wjy?+ w2z?)/2, where X
=(X,y,z) is the position vector.

These variables can be rescaled with respect to any refer-

ence frequencyn by using the natural quantum harmonic
oscillator units of timero=1/w and lengthLy= VA/mw. In
terms of the nondimensional variablest/7,, x=X/L,, a
=47mally, w=owdw, o=/, and v,=o,/o, the
condensate is described by the action

A—fdt fd3 i(@‘w «p‘N_’) F 1
- S\ Va V)T W
with

F=E—uN, 2

where
N= f x| w2, 3

a1 2 2, &4

&i[dXEWW|+VUHWI+jWI, 4)
V(X) =3 (X + wly?+ w3z?). (5)

The Euler-Lagrange equation corresponding4ds our
working form of the Gross-Pitaevskii equation:
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FIG. 1. Particle numbesV as a function ofu for the exact
solutions (solid curve$ and the Gaussian approximatigdashed
curves presented in Sec. lll. From top to bottom: pancakg (
= w,I5), cigar (/5= w,), and isotropic {, = w,) geometries.
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using initial data¥ (t=0) with a total number of particles
N. Condition(8) fixes the value of the Lagrange multiplier
w during the relaxation. This relaxation method yields both
the solutionW and the Lagrange multiplies. It is equiva-
lent to that used in Ref.14] and can only reach the stable
stationary solutions of Eq7). Unstable stationary solutions
to Egs.(6) and(7) are obtained by a Newton branch follow-
ing method detailed in the Appendix.

Note that the Lagrange multiplie can only affect the
solutions of Eq.(6) through a homogeneous rotating phase
factor €'#!, in contrast to its particle number conservation
effect on Eq.(7). However, every stationary solution to Eq.
(6) is indexed by the unique. value that makes it time
independent, as shown in Fig. 1.

Our goal is to numerically determine the stable and un-

stable stationary states of E@) and the eigenvalues of Eq.

C. Linearized stability

(6) linearized about these stationary states. We will carry out

this calculation for various values of a cylindrical potential

defined by o,=w,=w, and w,: the isotropic casew,
=w,, a cigar casew,/5=w,, and a pancake case,

=w,/5. We will then use these results to calculate the con-
densate decay rates and compare these decay rates to those

produced by the Gaussian approximation.

B. Stationary states

Stationary states of E@6) corresponding to minima of
at a given value of\ can be obtained by integrating to re-
laxation the diffusion equation

We now turn our attention to computing the linear stabil-
ity of the GP equation about a stationary state. We first write
Eq. (6) in the abbreviated form

gV
—i— =LV +W(D),

at ©

where
LY=1v2y, (10)
W(W)=[-V(x)—a|¥[*+u]V. (11

023609-2



STABILITY AND DECAY RATES OF NONISOTROPIC . .. PHYSICAL REVIEW A8, 023609 (2003

The stationary states of E¢Q) satisfy P ( ,pR) 0 —(L+DW" ( sz)
— = . (16
0=LW+W(V). (12) at\ ') [L+DWR 0 Y
Without loss of generality? can be chosen to be real. The eigenmodes\( ¢ ®,¢') satisfy
Our objective is to calculate the eigenpaiks ¢) of the op- R | R
erator that results from linearizin@) about a stationary state 2NN 0 —(L+DW)|[ ¢ an
V. [We useV to designate solutions to the nonlinear prob- ! “|L+DWR 0 y'

lem (12) and ¢ to designate eigenvectors, which are solu-

tions to the linear problem to be defined belpim order to  Note that this eigensystem is usually presented in the litera-
correctly formulate the linear stability problem, it is neces-ture (see, for example, Ref21]) in terms of the variables
sary to first decomposg= yR+iy'. We write the linearized

evolution equation (@B, g, )=(—iN,yR+iy! yR=iyh), (18

ap R as the equivalent Bogoliubov—de Gennes coupled equations

Zr ~I[L+DWP) J("+id), (13

o ¥ L+DwW? —aw? "
whereDW(V) is the Frehet derivative, or Jacobian, ¥ Pl T aw? —(L-DWB)|| g |’ (19)
evaluated atV. DW(W¥) acts ony via
DWy=DWRyR+iDW'y ', (14 where
DWB= 1, —V(x)—2aW¥?. (20)

where we have omitted the functional dependenc® @/,

R |
DWF, andDW' on ¥, and where In the following, we will work with matrix formulation(17)

DWR= u— V(x)— 3aW? (153 because it avoids a potential notational inconsistency of Eq.
' (19) arising from the fact thaty and ¢* are complex conju-
DW'=p—V(x)—av2 (15p  9ates only whenw® is imaginary.
It is more convenient to work with the square of the ma-
Equation(13) is then written in matrix form as trix in Eq. (17):
|
yR\ [—(L+DW)(L+DWR) 0 YR
! 0 —(L+DWR)(L+DWH || '

Because Eq(21) is block diagonal, it can be separated into  Problems(17), and (228 and (22b) have neutral eigen-

two problems modes that reflect the physical invariances of the problem.
SinceDW'¥ =W(W), then the stationary stat¥ is a neu-
A2y R=—(L+DW)(L+DWR)yR, (229  tral mode ofl + DW! and hence of problerf22b). This neu-

tral mode is the phase mode of E§), since its existence is

a consequence of the invariance of solutidhgo Eq. (12
under multiplication by any complex number on the unit
circle. The corresponding eigenmode of probl¢22a is
Problems(22a and (22b) are closely related. Since the op- dW/du. This neutral mode can be understood as a conse-
eratorsL, DW!, andDWR are all self-adjoint under the stan- quence of differentiating6) with respect tou,

dard Euclidean inner product, the operators in E&83 and

(22b) are adjoint to each other. #R is an eigenvector of Eq. d dw

(22a with nonzero eigenvalug?, then L+DWF) R is an 0= m[('—JFW)‘l’]Z(LﬂL DWR)E“P- (23
eigenvector of Eq(22b) with the same eigenvalu¢Simi-
larly, if (N,¢R ') is an eigenmode of Eq(17), then
(=N, R —y') is also an eigenmode of E(QL7).] Thus, we
solve only Eq.(223. The eigenvaluea? of Egs. (229 and 4w
(22b) must be either complex-conjugate pairs or real. We —(L+DWH(L+DWR)— =(L+DWHW¥=0. (24
find them to be real anthimost al) negative, perturbed only du

slightly from the eigenvalues of L2. The eigenvalues of

Eq. (17) are therefore found to be either pure imaginary orln terms of the original problen{17), the phase mode
pure real, with most imaginary. (N, R y')=(0,0¥) is a neutral eigenvector, while E(@3)

AN2y'=—(L+DWR)(L+DW")y'. (22b)

Thus,
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shows that X, ¥R, ¢')=(0d¥/dw,0) is a neutral general- 2400 1
ized eigenvector, the two modes forming a Jordan block for
Eq (17) 2000 7

In practice, we fixu to calculate the stationary stat#s
and the eigenvalues. The operators of HG2a and (22b) «w
depend onu both explicitly and through¥. For u above a 1200
critical valuepu., all eigenvaluesa. are imaginary, i.e.W is
an elliptic stationary state of Eq9). As u crossesu., we
will see that one imaginary pair fuses at zero, and become: 544
real, with one positive and one negative valuenofor u

1600

800

<. Stationary states fqu<pu. are thus hyperbolic in the 150 ]
directions corresponding to these eigenvalues. ~
0.0
IIl. BIFURCATION AND STABILITY OF CONDENSATES 5o | | | EME | A[CG
In this section, we will find the stationary solutions and 600 800 1000 1200 1400 1600
study the stability of isotropic &, = w,), cigarlike (w,/5 N
= w,), and pancakeliked, = w,/5) condensates. These re- ) ) _
sults were obtained by solving E¢L2) for the stationary FIG. 2. Stationary solutions of the GP equation versus tpe par-

states and Eq17) or Eq.(22a for the corresponding bifur- ticle number for the isotropic potential case with, = w,= w.
cating eigenvalues. The system is discretized using pseU©P: value of the energy functiondl, on the unstablé¢hyperbolio
dospectral methods in a spherical domain for the isotropi®'anch and.. on the stablgelliptic) branch. Bottom: square of the
case and in a periodic Cartesian domain for the nonisotropififurcating eigenvaluex). Note thatjx | is the energy of small
cases. We use Newton’s method to calculate the branches p¥citations ar_ound the stab_le branch. $oI|d Ilnes:_exa_ct solution of
stationary states. The bifurcating eigenvalue is found in thd"€ GP equation. Dashed lines: Gaussian approximation.

isotropic case by diagonalizing the matrix corresponding to
P y clag g D d on both branche&ata not shown

Eqg. (17). In the nonisotropic case, we use instead the itera- he dashed S derived f h _
tive inverse Amoldi method, which requires only actions of € dashed curves in Fig. 2 are derived from the Gaussian
variational approximation that will be defined in Sec. IlI C

the operator in Eq(22g. The BICGSTAB variant of the con- . . : .
jugate gradient method is used to solve the linear systemf r the general anisotropic case. In the present isotropic case,

required by both Newton’s method and the inverse Arnoldit is approximation can be solved in closed form, yielding the

method. The numerical methods we use are described {RPTeSSION$15]
greater detail in the Appendix. . BT (=Bt 3TFARD) -
)= = ;
A. Isotropic condensate 7a|(—2u+\7+4u?)%?

In order to compare our results with the existing experi-
ments on quasi-isotropic condensates, we will use the fol- E=Np) (= p+3V7+4pd)IT. (26)

lowing physical constants, corresponding ‘toi atoms in a
radial trap:m=1.16x 10 2 kg, a=—27.3, (with a, the
Bohr radiug, and &)=(Z>XZ)3>,Z)Z)1’3= 908.415 . These val-
ues yield a=—5.74<10"°. With these parameters, the
mean-field approximatio(6) is expected to be very reliable.
Note that we ignore the contributions of noncondensed at-
oms. They interact with the condensate only through a nearly
constant background density term, inducing no significant
change in the dynamics of the syst¢a2].

The values of the energy functionéland the(smallest
absolute valuesquare eigenvalug? versus particle number
N are shown as solid lines in Fig.(fop and bottom, respec-
tively). The eigenvalues are imaginary on the metastable e
liptic lower branch §2<0) and real on the unstable hyper-
bolic upper branch X?>>0). Using Eg.(2) on stationary
solutions, we obtaim&/dN=u. Thus, u is the slope of¢ o
and the lower branche& , N2 (respectively, upper branches B. Hamiltonian saddle-node normal form
£, ,\2) are scanned fop> u, (respectively,u<u.). The The qualitative behavior displayed in Fig. 2 by the physi-
point u=u, determines the maximum number of particlescal quantities and\? near the critical valueV=A\ is the
N=AMN, for which stationary solutions exist. We have generic signature of a HSN bifurcation defined, at lowest
checked that all the other pairs of eigenvalues are imaginargrder, by the normal formi23,24

The number of particlesA is maximal at NS
=8.27%/|5%4| for u=uS=1/2.5. The eigenvalues can
also be obtained in closed form from the linearized equations
of motion[15]:

N2 ) =8ul—Au\T+4u?+2. (27)

By inspection of Fig. 2 it is apparent that both the solution

of the GP equation and the Gaussian variational approxima-
tion share the same qualitative behavior, with quantitative
discrepancies. Figure 3 shows the physical origin of the
Huantitative errors in the Gaussian approximation. It is ap-
parent that the exact solution is well approximated by a
Gaussian only for smal\ on the stablédelliptic) branch.
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FIG. 3. Condensate density|?> as a function of radius, in 0.0 \
reduced unitgsee text Solid lines: exact solution of the GP equa-  0.025
tion. Dashed lines: Gaussian approximation. St&blkptic) solu- p )
tions are shown for particle numbar=252 (a) and /'=1132(b), -0.025
and (c) is the unstablghyperboli9 solution for N=1132 (see in- -0.05 /
sed. -0.075

-0.2-0.10 0.1 0.2
q

w

(=)

q=06- B>, (28)

FIG. 4. Phase portraits of the Hamiltonian saddle-node normal
where 5= (1-NMNp) is the bifurcation paramete is @ form (28), with p=gq. (@ 6=0.2, (b) 5=0.1, (c) 5=0. (d) Corre-
dimensionless constant, andis the coordinate describing sponding potentiab associated with each phase porttajt (b), or
the state of the system in the direction of the phase space th(’g, with p=—ad/4q. An elliptic region bounded by the separatrix
becomes unstable. Indeed, introducing the additional nondinat starts and ends on the fixed pot (homoclinic orbi} is
mensional quantitie§ andy to define the appropriate energy present in(a) and (b). Phase portraitc) displays the critical merg-

) ing of fixed pointsQ, andQ. , and the disappearance of the ellip-
E=Et+ 307~ 89+ 389°— ¥4, (29 tic region.

it is straightforward to derive from E¢28) that, close to the

critical point §=0, the universal scaling laws are given b N .
P g ¢ y Q.= F6/B, as shown in Fig. @). Thus, a hyperbolic sta-

E.=E—E6+E,8% (30) tionary state and an elliptic stationary state coexist. The
phase space is separated into two regions by a separatrix that
)\?:: ty\iglf% (3D is a homoclinic orbit linking the hyperbolic stationary state

to itself. Trajectories inside the orbit remain bounded near
where&,=&,, &=y, E4=2/3\B, and\3=2B. Note that the elliptic fixed point. If the condensate is taken beyond the
these relations can be inverted to obtain the parameters separatrix by a perturbatiofe.g., thermal excitations or
Eqg. (28) from the critical data. For the Gaussian approxima-quantum tunneling, see Sec. IV belpit will fall into un-
tion, the critical amplitudes can be computed from E@S)  bounded(hyperbolig trajectories and collapse. A¥ is in-

and(26). One finds creased, the hyperbolic and elliptic stationary states approach
. one another[Fig. 4(b)] and the homoclinic orbit inside
:4V27T 32) which orbits are bounded is reduced. The two stationary
¢ 53|’ states join at\'=N [Fig. 4(c)], at which the HSN occurs.
No stationary state exists fov> N, .
64y
EN=—gr (33
57 al C. Nonisotropic condensates
\2=4.10. (34) We now briefly present the main expressions obtained

from a Gaussian variational analysis of the GP equation with

For the exact solutions, we obtain the critical amplitudesa cylindrical potential trap. Some of these results have been
Ex=1340 andxi= 14.68 by performing fits on the numeri- previously obtained by other authof47,18,25-28 We
cal data. Comparing both results, we find that the Gaussiatherefore restrict our discussion to the equations that will be
approximation captures the bifurcation qualitatively, but withused in our analysis of the condensate lifetimes.
quantitative errors of 17% folV, [14], 24% for &£,, and The trial function is a Gaussian solution to the linear (
14% for\3 in the isotropic casl5]. =0) Schralinger equation in which we incorporate eight

The phase portrait of the normal form is shown in Fig. 4.variational parameters in order to take into account the an-
When 6= (1-NMNMN;)>0, Eg.(28) admits two fixed points isotropy of the system. The form of the ansatz is given by
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1 X2 2000 \I\ T T
W(x,y,z,t)=[A (1) +iA(t)]exp — +igy(t) | = e,
(xy.2)=[A (D) +iA ()] p{ (sz ¢x()>2 | |
. y? “w
Y(t)2+|¢v(t) > 1200 | .
L i |2 35) a0 :
- +1 >0 8.0 -
zw? 72
where the real parameterfA, A}, {dx.dy.dz}, and o *OF 7
{X,Y,Z} are related to the amplitude, the phase and the~<
width of the Gaussian profile, respectively. The Euler- 0.0 5
Lagrange equations associated with the trial functi®8) AZ
and the action defined in Eql) can be reduced to the fol- -4.0 : : :
800 1000 1200 1400 1600 1800

lowing system of second-order differential equations:

d?X —w2X— 4 +i FIG. 5. Stationary solutions of the GP equation versus the par-
dt? X X2yz X8’ ticle number\ for a nonisotropic potential case with,= & and
w,=wl5 (cigan. Top: value of the energy functional. Bottom:
d2y " 1 square of the bifurcating eigenvalug?). Solid lines: exact solu-
F =— wf,Y— > +—3, tion of the GP equation. Dashed lines: Gaussian approximation.
t XYZ Y
4 4 1
&z, v 1 P R R (39D
Pro wzZ— Zoxy 73" (36) 772 774 T\X%:Z72
where where the chemical potential is related to the total number
of particles through
2 M(wyw,0,)° -
=\ ,;%WM (37) 2L,
—2 xzz —u . (40)
|a| 2z2

The evolution of the condensate is better understood by
drawing an analogy between its width and the motion of a

particle with coordinatesX,Y,Z) moving in the potential  The fixed points correspond to a metastable cerxer,¢ )
and to an unstable saddle poitt (,Z_), respectively. They

are analogous to th®, and Q_ points appearing in the

XY7 phase portraits in Fig. 4. The solutions to E§9) can be
computed numerically, together with the linearized varia-
tional equations evaluated at every stationary point.

(38 Figures 5 and 6 show and\? for the cigar and pancake
cases, respectively. The solid lines present the values ob-
tained by discretizing and solving numerically the original
differential equationg12) and (223, using the methods de-
scribed in the Appendix. The dashed lines were computed
using the Gaussian approximation described above. Both the
isotropic and nonisotropic cases display saddle-node bifurca-
tions. This is to be expected, since the saddle-node bifurca-
tion is the generic way in which stable and unstable branches
meet[23].

It is apparent from Figs. 2, 5, and 6 that the exact critical

U(X,Y,2)= —(w2X2+w2Y2+ w?Z?)—

L
2

1 1 1
?-F?—F? .

Indeed, definingP,=dX/dt, P,=dY/dt, P,=dZ/dt, and
the Hamiltonian

H(Py.Py.P,.X,Y,Z)=5(P;+P;+P2)+U(X,Y,2),

we find that Egqs(36) transform into Hamiltonian equations
of motion.

If we consider now a potential trafb) with cylindrical
Isggn)r(rzte)try&a)— a\;\’}e tu;]u)SEﬂ?]‘:’j (t::]Ga)tCs;@%? j:;?ggfsv% E&gj number of particlesf\/’l'cE is smaller than the Gaussian value
points (X, ,Z.) and (X_,Z_), which describe the station- N for all three geometrief8,14,17,18 Table | compares
ary solutions for¥(x,y,z,t). These obey the different critical\V values obtained.

In order to compare properly the HSN bifurcations ob-

4 5 2/1 tained for the three aspect ratios studied, we can rescale the
0=w?— ———atslzt+t=5 |5, (398 intensity of the potential to obtain the samhé for all cases.
X2oTxt T\XE Z3 X2 In general, any confining harmonic potential with frequen-
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TABLE II. Rescaling factors required for having,=A"° in

1300 .
the cigar and pancake cases. Colundisand )\i show critical
1200 E amplitudes at the bifurcation for the rescal®@nd\? curves, re-
spectively.
@ 1100 1
1000 | o, o, Rescaling factor &, A3
900 ® ® 1340  14.68
20 | Caig @ Caig @/5 Ceig= 1.3463 1000 4.00
Coan®/5 Coan® Cpar= 2.2447 550 1.05
™10 1
0.0 We choose arbitrarily to rescale the potential intensity so that
all N are equal to that for the isotropic cas€>. Table II
10,400 1600 1800 2000 2200 shows the value of the rescaling factagg, andc,,, for the

N cigar and pancake cases, respectively, as obtained from Eq.
(41) using N3 =Ng°. The last two columns of this table
FIG. 6. Stationary solutions of the GP equation versus the parSNOW the critical amplitudes obtained for the rescaleshd
A2 curves. These were obtained by fitting the HSN
asymptotic forms given in relation80) and(31) to the res-
caled data.

ticle number\ for a nonisotropic potential case with,= /5 and
w,= (pancake Top: value of the energy functional. Bottom:
square of the bifurcating eigenvalug?). Solid lines: exact solu-
tion of the GP equation. Dashed lines: Gaussian approximation.

IV. LIFETIME OF CONDENSATES
cies w, and w, that produces a critical number of particles

N, can be rescaled by a factor In this section, we first find expressions for the TIC,
¢ MQT, and ICO decay rates. Using the numerical data pre-
AK sented in the preceding section, we then compute these decay
c=| =%, (41) rates for thew,=w, (isotrppio, /5= w, (cigan, and w,
NZ = w,/5 (pancakg cases. Finally, we compare the results ob-

tained for these three potential geometries by studying the
to obtain a new potential with frequencies’ =ceo, and  Spontaneous isotropization of the condensates.
o} =Cw,, which will have the critical number of particles
N% . The remaining physical quantities for the new potential A. Definition and computations of decay rates

are obtained through the following transformations: The TIC (thermally induced collapsedecay ratel'; is

estimated using the formu(@9]

v
* — ~
v Ly 42 It [N ~fo P 46
(:)_2’7Tex kBT(+ —)! ()
N* =£ (43 ~ . . . . .
Jc' wherefiw (€, —E_) is the (dimensionalizefl height of the
nucleation energy barriefwith » the reference frequency
£ introduced in Sec. Il A T is the temperature of the conden-
=— (44) sate, andg is the Boltzmann constant. Note that the prefac-
Ve tor characterizes the typical decay time which is controlled
by the slowest part of the nucleation dynamics: the top-of-
N* =\, (45) the-barrier saddle-point eigenvalhNe and not\ _ as used in

Ref. [9]. However, near the bifurcation both eigenvalues

TABLE . Critical number of particles obtained for the isotropic, Scale in the same way and the behaviorlgf can be ob-
cigar, and pancake geometries by using the exact solution of the Giained directly from the universal saddle-node scaling laws

equation (VE) and the Gaussian approximatioVf) (30) and(31). Thus, the exponential factor and the prefactor
vanish, respectively, a§>? and 6%,
o, o, NE NE We estimate the MQTmacroscopic quantum tunneling

decay rate using an instanton technique that takes into ac-

f’ f:’ 1258.5 1467.7 count the semiclassical trajectory giving the dominant con-
w wl5 1460.3 1646.6 tribution to the quantum action path integf&,9]. We ap-
ol5 o 1885.6 2080.5 proximate this so-called bounce trajectory by the solution of

the equation of motion
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10" TIC: 7 6 5 4 3
$(qp) T —
@,
5(q,) T g 10° ]
" | | | Dt:“ 10
[ [ | (%,
49 9, 9B S
(=)
FIG. 7. Bounce trajectorydashefl over the Euclidean potential %
&(q). Pointsgs, g, andg, indicate the fixed point, the minimum 2 107" 1
of ®(q), and the bounce point, respectively. § 5
_ S i
d*q(t)  —dd(q)
2 = ’ (47) -2 . : | . |
dt dq 10 !
800 1000 1200 N F

starting and ending at the fixed poigf of the phase space

where&(q)=£- . The Euclidean potentiab(q) is defined FIG. 8. Condensate decay rates versus particle number for the
so that—®(q) reconstructs the Hamiltonian dynamics in the isotropic potentlalw,—a)z—w (solid), and for the rescaled cigar
region scanned by the bounce trajectdsge Fig. 7. We

! : potential w, = cc,gw, w,= cmgw/S (dashegl and pancake potential
represent it by a fourth-order polynomial of the form

@, = Cparl5, w,=Cpap (dotted. ICO, inelastic collisions; MQT,
~ 5 3 4 macroscopic quantum tunneling; TIC, thermally induced collapse at
®(q)= gt axq°+ a3q”+ asq”, (48)  temperatures 50 nk3), 100 nK (4), 200 nK (5), 300 nK (6), and
400 nK (7).
coefficientsag, @,, a3, anda, chosen such that

The TIC (46) and MQT (50) decay rates obtained for the

O0)=-¢,, (498  exact and Gaussian stationary states are shown in Fig. 8. To
validate these results, we checked that the Gaussian TIC de-
d(qp)=—¢E_, (49p  cay rates computed in Ref13] are found when weincor-
rectly at a finite distance from criticalityreplace\ , by \ _
5533(0)=—)\+(N’), (490 in Eq. (46) (data not shown We also checked that our

Gaussian MQT decay rate agrees with the one previously
computed in Ref[8].

The ICO (inelastic two- and three-body collisipatomic
decay rates are evaluated using the forniaddt=f-(\)

with

Fa®(q)=—N_(N). (490

We thus obtain a semianalytic polynomial expression for

®(q) where the coefficients are determined through the nu-
merical values presented in Figs. 2, 5, and 6.

Once®(q) and the bounce poirg, [defined through the

relation ®(qg,) =® are known, the MQT rate is esti- .
e ted as(qb) (@] Q whereK=3.8x104 s L andL=2.6x10"" s ! as in Refs.

[10,11). In order to compare the particle decay réfd) to
To /Ix |Uo p[— o
= ®(q)—P(gs)dq|,
\/— at

C(/\/)sz |\If|4d3x+Lf | [° d3x, (51)

the condensate collective decay rates obtained for the TIC
(500 and MQT, we compute the condensate ICO half-life using

w
Noodn
whereuv, is defined by the asymptotic form of the bounce T N)= f/wz fe(n)’ (52)
trajectory q(t) as it approaches; [9], given byq(7)~q;
+(volIN_|)exd —\_d]. and plotr;,; in Fig. 8.

In the same way as was done for the TIC, universal scal- Figures 8 and 9 compare the condensate decay rates for
ing laws can be derived close to criticality from E@8),  the isotropic and the cigar and pancake potentials, rescaled
(30), and(31). We find that the exponential factor in E§0) by ¢y and ¢,y as described in Sec. IIl C. We note that the
follows the same scaling ag&, —£_|dq. It therefore van-  three aspect ratios generate very similar results after rescal-
ishes as/8%26Y2= 5°* The asymptotic form of(t) shows ing. The relative magnitudes of the different decay rates—
thatdq follows the same law asy/|\_|. Thus,vg~é%4and  TIC, MQT, and ICO—are the same for the three cases. At
the prefactor vanishes a5§57%5%*= 5”%. Note that these uni- T=<1 nK, the MQT effect becomes important compared to
versal scaling laws agree with those already derived in th¢he ICO decay in a region very close tt!e/’E (6<8
Gaussian case in Rg]. x10°%). This was shown in Ref[8] using Gaussian

023609-8



STABILITY AND DECAY RATES OF NONISOTROPIC.. .. PHYSICAL REVIEW A8, 023609 (2003

! I o e o o B e e e N B ML B e e e e
[ i §
10° Eceeeerm e e i ~ ]
— [ . |
- > 0.9 § .
o 3 B §
e 10| — o/o,=1 g 0.8 :— _:
> ——- ofa : :
S e @) 0,=1/5 _ :
o 0 0.7 - ]
o 10 F E C ]
® : ]
é 0.6 » 7
e | L \ ]
g 10 1CO_ - \ |

o ______\1 ____________ 0.5 1 1 1 | 1 1 1 | 11 1 | L1 1 L1 1 | L1 1
7 /A -02 O 02 04 06 0.8 1

. y i
10 | | 1 | M

1240 1245 1250 1255  N\E
N FIG. 10. Ellipticity ratio€ as a function ofx. Solid curves show
numerical results and dashed curves the Gaussian approximation.
FIG. 9. Enlargement of the crossover region between the quarfFor the cigar,¢=¢,/¢, (upper curvesand for the pancake{
tum tunneling and the thermal decay rate. ICO, inelastic collisions=¢,/{, (lower curveg. Dots show results obtained by using suc-
MQT, macroscopic quantum tunneling; TIC, thermally induced col-cessively fewer Fourier modes in the numerical results; dots nearer
lapse at temperatures 1 nK), 2 nK (2), and 50 nK(3). to (further from each curve correspond to retaining 7683) of the
Fourier modes{ changes by less than 1% far>—-0.8 (u>
computations but evaluating them with the exact maximal—0-2) for the cigar(pancakg case and by less than 0.1% at the
number of condensed particlesT. Figure 9 shows that Saddle-node bifurcation i =0.38 (»=0.31) for the cigar(pan-
even for temperatures as low as 2 nK, the TIC decay rat&2ke case.
exceeds the MQT rate except in a region extremely close to
N, (8<5x10 %), where the condensates will live less thanthe pancake. Ag is decreased, i.e., as we leave the saddle-
10 's. Thus, in the experimental case &fi atoms, the node bifurcation along the unstable branénapproaches 1
relevant effects are ICO and TIC, with the crossover that isss the wave function becomes more spherically symmetric.

shown in Fig. 9. This trend is present both in the numerical solution to the GP
equation and in the Gaussian approximation, as can be seen
B. Spontaneous isotropization of condensates in Fig. 10. Since the decay rates result from the scaling be-

The decay rates of the isotropic and nonisotropic caselavior near the saddle-node bifurcation, where the conden-
shown in Fig. 8 are quite similar, despite the fact thagand sate is fairly is_otropic, it follows that the decay rates are
w, differ by a factor of 5. We have investigated this questionSimilar for the cigar, pancake, and spherically symmetric ge-
by examining the wave functiond for the pancake and °CMetries, as we have shown in Figs. 8 and 9. _

cigar cases. These wave functions are peaked at the origin, as | "€ SPontaneous isotropization of condensates yhen
shown in Fig. 3. Their characteristic length scales in the axiaflécreased can be understood by the following phenomeno-
and radial directions¢, and ¢, , can be measured by com- logical reasoning. Wher- u grows, the balance of terms on

puting the ratios of the value oF to its curvature at the (e right-hand side of E¢6) czhanges. For smakt-u, it is
origin. dominated by the isotropi&“ and the anisotropic/(x)

More specifically, we define terms. But for large— u, thg wave functior ?s strongly
peaked and th&?2 and nonlinear terms, both isotropic, be-
PrA AN come dominant.
€§=\P<—2) (r=0, z=0), (533 Figure 10 also provides a test of our numerical spatial
9z resolution. By computing the ellipticity for different Fou-
. rier truncation levels, we show thétchanges with the reso-
625\?(} irﬂ) (r=0, z=0) (53b) lution for low u, especially for the pancake case, where we
r rar or ' ' used fewer Fourier modes than in the other calculations.
Note, however, that our decay rate calculations only use re-
We then obtain the ellipticity of the wave function as the sults near the saddle-node bifurcation, whenearies by less
ratio ¢ of these length scaleg:=¢, /¢, for the cigar andt than 0.1% when different truncation levels are used. This
={,/¢, for the pancake. These ellipticity ratios are shown inindicates that¥ was adequately resolved in the region of
Fig. 10 as a function ofc. For largeu, i.e., away from the interest.
saddle-node bifurcation along the stable brarchecreases As u is decreased, the wave functions become more
rapidly away from one, indicating that the wave function is highly peaked for both our numerical results and for the
highly nonisotropic. At the saddle-node bifurcatiofi, = Gaussian approximatiofsee Figs. 3 and 11 This is the
=0.89 atu=0.38 for the cigar and =0.80 atx=0.31 for  main reason for the declining accuracy. To continue the com-
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1.5

A

e EEEy systems that need to be inverted within each method are

4 solved by the same inner biconjugate gradient iteration—
BICGSTAB—and constitute the main numerical difficulty. Its
convergence is greatly improved by an inverse Laplacian
preconditioning which is empirically tuned by adjusting the
pseudotime step- in Newton’s method or the shi&in Ar-
noldi’s method.

Our results and implementation have demonstrated that
all these numerical techniques can be successfully combined
to calculate the stationary states and eigenvectors for the GP
equation in a confining potential with an arbitrary three-
T dimensional geometry.

op/w;=1/5

L @Op/07=5

0
-02 O 02 04 06 08 1
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FIG. 11. Length scale§, ,¢, as a function ofu. Solid curves This work was supported by ECOS-CONICYT Program
show numerical results and dashed curves the Gaussian approxinfd0. CO1E08 and by NSF Grant No. DMR-0094569. Compu-
tion. The cigar case is shown in lower cur@sth ¢,<¢,) and the tations were performed at the Institut du\2éppement et

pancake in upper curvewith ¢,<¢,). The size of the condensate des Ressources en Informatique ScientifiiERIS) of the
decreases drastically as decreases, i.e., away from the saddle- CNRS.
node bifurcation along the unstable branch.

putations further, the size of the periodic box should be re-
duced along withw. We believe that, with adequate resolu-
tion, all of the exact wave functions would become 1. Spatial discretization

spherically symmetric ag. decreases, as do the Gaussian The operatord. and W defined in Eqs(10) and (11) are

approximations. spatially discretized using the pseudospectral mef3ad.
For the isotropic case, the spherically symmetki¢r,t) is
V. CONCLUSION expanded as a series of even Chebyshev polynomials

We have demonstrated that it is possible to numerically!2n(T/R), on which the boundary conditioW (R,t)=0 is
compute the stationary states, the bifurcating eigenvaluednPosed. The domain is taken to besd<R=4 and the
and the lifetime of anisotropic attractive Bose-Einstein contesolution used ifNg=128. For the nonisotropic cases, we
densates. use a three-dimensional periodic Cartesian domain\anid

The Gaussian mean-field approximation was found texpanded as a three-dimensional trigonomeffurier se-
have significant quantitative errors for all the different con-ries. The cigar case is solved in a periodic domain of size
fining potential geometries that were studied, when com{L,,L,,L,)=(5.39,5.39,12.04) in units ofLy, using
pared with numerical solutions to the GP equation. (Nx,Ny,N,)=(96,96,96) grid points or trigonometric modes

Spontaneous isotropization of the metastable condensat@ith a 2/3 dealiasing rule so the total number of grid
was found to occur as the critical number of particles ispoints or trigonometric functions is as high dgp=10°.
approached, yielding a lifetime that depends weakly on th¢The more poorly resolved pancake case was calculated us-
anisptropy of the confining potgntial. - ing (LyLy,L,)=(12.04,12.04,5.39) and N(,N,,N,)

_Direct  methods—Gaussian ~ elimination and _ 48 48,96)] The harmonic potential5) is approximated
d|ag(.)nallzat|0n—.were used in treating the spherically SYMpyy a periodic potential by writing = arcsirisin(x)] and Tay-
metric case, of size 128, but are far too costly for the three[or expanding the arcsin function. This leads to a Fourier

d|menS|pnaI case, of size 10in fact, since we only calcg- series for the potential, which is truncated according to the
lated axisymmetric stationary states and eigenvectors with an

" . ) s resolution used.

additional midplane symmetry, an intermediate two- Pseud rral thod . forming oVer at
dimensional axisymmetric cylindrical representation could seudospectral methods require pertorming ra
have been implemented, of size 5000, permitting the use gvery |ter_at|on, a Chet_)yshev transform_ in the isotropic case
direct methods. Our purpose, however, has been to constru@f & Fourier transform in the nonisotropic case. These opera-
and explore numerical methods appropriate for a generdlonS consume a time proportional tdNgINNg or
nonisotropic case. N3pIn(Ngp), respectively. Actions and inversions of the La-

The methods used to compute stationary states and bifuplacianL are carried out on the Chebyshev or Fourier repre-
cating eigenvalues for the nonisotropic cases are essentialgntations of’, while actions of the multiplicative operator
analogous. Each consists of a powerful and rapid outer iterdd/ are carried out on its grid representations. The time re-
tion: Newton’s method for the stationary states and the inquired by these operations scales approximately linearly in
verse Arnoldi method for the eigenvalues. The large lineaNg or N;p.

APPENDIX: NUMERICAL METHODS
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2. Stationary states L YL+DW)y=L Y(L+W)W¥, (AB)

As stated in Sec. |l B, the stationary states of &yj.that
correspond to minima of at a given value of\V can be
obtained by integrating to relaxation the diffusion equation

For the spherically symmetric case, the linear sy<t&f)

is of sizeNgr=128 and can be solved by standard Gaussian
elimination. The boundary conditiop(r =R) =0 is imposed

A by modifying the operatot ~* or (I —oL) ™1, as itis in the

- —LY WD), (Al)  time-stepping algorithniA2).

To compute the full branch of solutions as a function of

where the initial datal’ (t=0) has a total number of particles &, We begin from a stable state of Eeh1) at a small value
N and the value of the Lagrange multiplieris fixed during of A/ obtained by time integration. Each stationary state is

the relaxation by the conditioa\V/dt=0. computed in three to five Newton iterations.
To integrate Eq(Al), a mixed implicit-explicit first-order
time-stepping scheme is used: 3. Conjugate gradient solution of linear systems
W(t+o)=(1—ol) X1+ W)W (t) (A2) For the periodic Cartesian case, the linear syst&f) of

sizeNzp=1CF is too large to be stored or inverted directly:
wherel is the identity operator. The Helmholtz operator ( the operagion count for Gaussian elimination W(_)uld be of the
—oL) Lis easily inverted in the Chebyshev or Fourier rep-order ofN3p. Instead, we useiccsTAs[33], a variant of the
resentation. The motivation for integratihgimplicitly is to ~ Well-known conjugate gradient method, developed for linear
avoid the extremely small time steps that would otherwise b&ystéms that are not symmetric definite. Such methods are
necessitated by the wide range of eigenvalues of the Laplad¢natrix-free, meaning that they require only the right-hand-
ian. side of EQ.(A6), and a subroutine that acts with the linear
This relaxation method is equivalent to that used in Refoperator of the left-hand side. A solution to the linear system
[14] and can only reach the stable stationary solutions of E¢JS constructed as a carefully chosen linear combination of
(A1). In order to also capture unstable stationary solutiong?0wers of the linear operator acting on the right-hand side.
[31], we implemented a Newton branch-following algorithm ~ FoOr a periodic Cartesian geometry, conjugate gradient
[15,39. We search for fixed points of E¢A2), a condition methods are particularly economical, since operator actions

strictly equivalent to the stationarity of Ep): are all accomplished in a time proportional Kap. How-

ever, conjugate gradient methods for nonsymmetric definite

0=BY¥(t)=V(t+o)—V(t) systems may converge slowl{yequiring a large number of

1 evaluations of the linear operajoor even not at all. This
=(I=ol) (I +oW)¥(1) =W (1) happens when the operator is poorly conditioned, i.e.,
=[(1— L)~ 11+ oW)— 1% (1) roughly when it has a wide range of eigenvalues. One must
then precondition the linear system, i.e., multiply both sides

=(1—oL) (I +oW)—(1—oL)]¥(t) of the system by a matrix which improves its conditioning

(1= oL) Y (o(L+ W) (). (A3) and accelerates convergence. Since for operators sutch as

+DW, the wide range of eigenvalues is due primarily to
those ofL, we expect. ~! to be an effective preconditioner.
From Eq.(A5), it can be seen that allows us to interpolate
between linear operators(L + DW) andL ~}(L+DW). We
vary o empirically to optimize the convergence ICGSTAB.
A few hundredBICGSTAB iterations are usually required to
solve the linear system.

A further advantage of iterative inversion methods is that

Solutions to Eq(A3) are found using Newton’s method. We
begin with an initial estimatd’, in our case the solution at a
neighboring value ofx. Newton’s method calls for approxi-
mating the nonlinear operat®@ whose roots are sought by
its linearizationBy, aboutW¥. We seek a decremet such
thatW — ¢ solves this linearized equation

0=B(¥ — ¢)~B(¥)—By ¢, they can produce énonunigqu¢ solution even when the lin-
ear operator is singular. This is the case for our operators,
Byy=B(V). (A4)  which have the neutral modes described in Sec. I C, as well

as other neutral modes related to symmetries and the Fourier
WV is then replaced by — ¢ and Eq.(A4) is solved again for representation. The preconditioner, however, is inverted ex-
a further decrement. The process is iterated B(ti’) or 4  actly. If Eq. (A6) is used, the constant Fourier mode is
is sufficiently small. In our case, E¢A4) takes the form treated separately which allows us to construct an invertible

version of the singular operatar
(I—oL) to(L+DW)y=(1—0oL) to(L+ W) V.

(AS) 4. Eigenvalue problem
We will explain how we solve the large linear probléib) We now describe our numerical method for calculating
in the following section. the linear stability of the stationary states. For the spherically

The role ofo is formally that of the time step in EGA2), symmetric case, the eigenvalues of ELj7) are computed by
but in Eq.(A5), its value can be taken to be arbitrarily large. constructing and diagonalizing the corresponding matrix for
For o—«, EqQ.(A5) becomes each converged stationary solution. The results reported were
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generated with &ATHEMATICA code running on a worksta- assembled into th& X K matrix Hy=(¢;,(M —s) L),
tion. With the valueR=4, Ng=128, the first two eigenval- The eigenvalues oH provide estimates of up t& of the
ues of the harmonic oscillator are obtained with a precisioreigenvalues X —s) ~* of (M —sl)~ 1.
better than 0.05%. In our implementation of the Arnoldi method for Eq.
For the three-dimensional case, it is again not possible t622a, we seek the eigenvalues® of the matrix — (L
construct and diagonalize the matrix of sikgp=10° di- +DW')(L+DWF). Rather than solving EqA7), we solve
rectly: the operation count for diagonalization is also of thethe equivalent preconditioned probldi32]
order of N3,. Instead, we calculate only eigenvalues of in-
terest, using a variant of the iterative inverse power method.
The inverse power method calculates the eigenvalues of a
matrix M closest to a values by means of the sequence
defined by

L™ —(L+DW")(L+DWR)=sl]g;. =L 2y,
(A8)

by usingBICGSTAB. From Eq.(A8), we obtain a sequence of

vectors containing an increasing proportion of the desired
(M=sh¢j 1= (A7) eigenvectors, but since our solution of E48) is not exact,

we then construcH by multiplication rather than inversion
The sequencqy;} converges rapidly to the eigenvector via Hjy=(#;,M). We can then estimate the eigenvalues
whose eigenvalue is nearestgawith the eigenvalua. of M A2 by those ofH. Although the formal role ok is that of a
estimated by)(—s)*lw(zpjﬂ,(//]—)/( Wi ). shift which focuses the inverse iteration on the eigenvalues

In order to calculate complex or multiple eigenvalues andoeing sought, here we also use it empirically to improve the

to obtain more precise eigenvalues and error estimates, wenvergence oBICGSTAB.
use the sequence generated by E/) to implement the The inverse Arnoldi method requires between three and
more general Arnoldi or Krylov methoB2,34). Instead of ten iterations to converge, each of which requires several
retaining only the last two members of the sequence, the lagtundredBICGSTAB iterations in order to solve its associated
K members(typically 4 or 6 are orthonormalized and then linear system.
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