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Dynamo action is demonstrated numerically in the forced Taylor–Green~TG! vortex made up of a
confined swirling flow composed of a shear layer between two counter-rotating eddies,
corresponding to a standard experimental setup in the study of turbulence. The critical magnetic
Reynolds number above which the dynamo sets in depends crucially on the fundamental symmetries
of the TG vortex. These symmetries can be broken by introducing a scale separation in the flow, or
by letting develop a small non-symmetric perturbation which can be either kinetic and magnetic, or
only magnetic. The nature of the boundary conditions for the magnetic field~either conducting or
insulating! is essential in selecting the fastest growing mode; implications of these results to a
planned laboratory experiment are briefly discussed. ©1997 American Institute of Physics.
@S1070-664X~97!02501-9#
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The primary objective of this Letter is to demonstra
that a forced Taylor–Green vortex is consistent with a lo
term magnetic field produced by dynamo action and to fi
the critical magnetic Reynolds number for the field to
produced. The Taylor–Green~TG! vortex is a standard tur
bulent flow used in numerical computations1,2 that is related
to an experimentally studied swirling flow.3–5 The relation
between the experimental flow and the TG vortex is a si
larity in overall geometry:3 a shear layer between tw
counter-rotating eddies. The TG vortex, however, is perio
with free-slip boundaries while the experimental flow is co
tained inside a tank between two counter-rotating disks. O
experiment in Gallium is planned,6 in which the magnetic
Reynolds number may be close to the critical valueRc

m

above which a dynamo sets in.
The magnetohydrodynamics~MHD! equations for in-

compressible fluids with“•v50 and“•b50 read as

] tv1v•“v52r0
21
“P1n¹2v1 j3b1F~ t !, ~1!

] tb5curl~v3b!1h¹2b, ~2!

whereb is the Alfvén velocity B/A4pr0, r0 the constant
density,n the kinematic viscosity,h the magnetic diffusivity
andP the pressure; finally,j5“3b is the current density
The governing parameter for the dynamo is the magn
Reynolds number defined asRm5V0Lint /h, whereV0 is the
rms velocity andLint the integral scale, withPm5n/h the
magnetic Prandtl number. An external driving volumic for
F(t) is introduced in order to balance the energy dissipat
and reach a statistically steady state; it is chosen
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F(t)5 f (t)vTG, where f (t) is determined by imposing tha
the (k0 ,k0 ,k0) Fourier mode ofv is fixed at all times to
its initial value vTG5(sin(k0x) cos(k0y) cos(k0z),2cos(k0x)
3 sin(k0y)cos(k0z), 0). A number of symmetries ofvTG

are dynamically compatible with the equations of motio1

i.e., if the initial data obeys the same symmetries thanvTG,
then the solution,vs , is also symmetric. The symmetrie
of vs amount,

1 with k051, to the expansionvs5(m,n,p(ûsx
3 (m,n,p,t) sinmxcosny cospz, ûsy(m,n,p,t) cosmxsinny
3 cospz, ûsz(m,n,p,t) cosmxcosny sinpz) where ûs(m,n,
p,t) vanishes unlessm,n,p are either all even or all odd
integers. The expansion coefficients obey the additional
lations: ûsx

(r )(m,n,p)5(21)r11ûsy
(r )(n,m,p) and ûsz

(r )

3(m,n,p) 5 (21)r11ûsz
(r )(n,m,p), where r51 when

m,n,p are all even andr52 whenm,n,p are all odd. The
corresponding symmetries ofvs in physical space are rota
tional symmetries: of anglep around the axis (x5z5p/2)
and (y5z5p/2); and of angle p/2 around the axis
(x5y5p/2). There are also planes of mirror symmetr
x50,p, y50,p, z50,p. The velocity and the vorticity
vs5“3vs are, respectively, parallel and perpendicular
these planes that form the sides of the so-calledimpermeable
box which confines the flow. The kinetic helicity
hs(x)5vs•vs is anti-symmetricwith respect to the planes o
mirror symmetries. Thus, the total helicity of the TG flo
^hs(x)&[0 when integrated over the whole periodicity bo
x50,2p, y50,2p, z50,2p. However, locally the helicity is
strong: the eddy at the top of the impermeable box entra
an aspirating motion upward with velocity and vorticity an
parallel, and similarly for the counter-rotating eddy at t
1/$10.00 © 1997 American Institute of Physics
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bottom of the box.1 Likewise, the spectrum of helicity
Hs
v(k) is non-zero, but the isotropic spectrum~when inte-

grated over all angles! is again zero. Note that, because h
licity provides an efficient mechanism for growth of th
large-scale magnetic field,7 ABC flows which are Beltrami
(u56v/k0) are obvious candidates for dynamo action.

8,9 A
dynamo in a highly symmetric flow witĥh(x)&[0 has been
demonstrated numerically10 using a hyperviscosity algorithm
whereby the two diffusive operators in~1!, ~2! are replaced
by higher powers of the Laplacian. Here, the choice is m
to deal with the primitive MHD equations instead.

However, the above TG symmetries ofvs can physically
be spontaneously broken, in the sense that a small non
symmetric component of the initial data will grow and eve
tually completely break the symmetry of the solution. Th
in order to take this possibility into account, two period
~with periodicity lengthL52p) pseudo-spectral codes a
used. Both are de-aliased by the 2/3 rule. The wavenum
are thus integers in the range (kmin51,kmax5N/3!, where
N3 is the number of grid points. The first code is a stand
periodic code in which no symmetries are implemented. T
second code is symmetric. It is used to save computer
sources: implementing the TG symmetries yields, compa
to the same computation in a general periodic code, a sa
by a factor of 64 in both CPU and memory.1 At a given
Reynolds numberRv5V0Lint /n, this represents, at equa
cost, an increase of 641/4;3 in Reynolds number. The sym
metric code was developed from the hydrodynamical vers
described in Ref. 1. All the symmetries ofvs ~with k051)
are implemented within this code. Thus, no flow can cr
the impermeable boxx50,p, y50,p, z50,p. The magnetic
field in the symmetric code was chosen to have the sa
symmetries thanvs , which can readily be checked to b
dynamically compatible with the governing equation~2!.
Thus,j is perpendicular to the sides of the impermeable b

In order to study linear growth-rates as a function
magnetic Reynolds number, both the general periodic
the symmetric code are initialized in a similar way. The in
tial velocity field is such that the kinetic energy correspon
to its ~statistically! stationary value under the action of th
TG forcing; and the magnetic field is initially set to a sm
seed value, such thatb05^b2&/^v2&!1. After initial tran-
sients die out, the growth–rates computed on^a2& ~where
b5“3a), ^b2& and ^ j2& are identical, corresponding to dif
ferent Fourier projections of the same eigenmode. Two p
cautions have been taken when computing the growth-ra
~i! the linear character of the regime has been checked
decreasingb0 ~non-linear effects become noticeable wh
b0.1024); ~ii ! the precision of the computation is measur
by the logarithmic decrementd(t) defined from a fit of en-
ergy spectra in the near dissipative range
E(k,t);exp(22d(t)k). It is such that for all times
d(t)kmax;2, a standard condition for computations of tu
bulent flows.11 A symmetric run of ;300tNL , where
tNL5Lint /V0;0.6 is the turn-over time, takes 4350 secon
of CrayC94 at a resolution ofN351283.

The results of a series of computations at resolutions
643, 1283 and 2003 points, corresponding to a wide range
magnetic Reynolds numbersRm are summarized in Figure
2 Phys. Plasmas, Vol. 4, No. 1, January 1997
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giving the growth-rates of the dynamo field as a function o
Rm, with ^ j2(t)&;est. Three types of runs are performe
here: in the first case, symmetric TG runs withk051 and
Rv551 ~represented by stars! or with k051 andRv514.3
~circles!; in the second case, symmetric TG runs w
k052 andRv540 ~triangles!; finally, in the third case, runs
using the general periodic code withk051 andRv514.3
~squares!. A simple test of the dynamical constraints im
posed by the symmetries of the TG flow atk051 is per-
formed by comparing the results of the symmetric and g
eral periodic runs atRv514.3. Initial conditions for these
runs are identical except that, in the general periodic cod
non TG-symmetric perturbation of 1% in energy compar
to that of the basic TG flow is introduced—att50 only—in
the Fourier shell corresponding tok5k0; both runs are at
resolutionN564. In the non-symmetric runs~represented by
squares!, the resulting velocity settles at a larger kinetic e
ergy than that at which the symmetric TG flow settle
namelyEv;0.28 instead of 0.17; moreover, the total amou
of kinetic helicity is non-zero; as measured by its relati
rate rv5^v•v&/A^v2&^v2&, we haverv;5%. Thus, in the
general periodic run, the TG symmetry isspontaneously bro-
ken, in the sense that the small initial non-TG-symmet
perturbation has changed the general character of the fl
As seen in Figure 1, the growth-rate remains negative in
symmetric case withk051 ~circles!, whereasRc

m;10 in the
general periodic case~squares!.

Another result seen in Figure 1 is that, for the symmet
runs withk051 and up toRm;380, growth-rates are alway
negative, whereas when takingk052, one findss;0 for
Rc
m;50. The drastic change of behavior obtained wh

k052 may be due to a combination of two factors. Fir
whenk052, within the symmetry-conserving algorithm of
symmetric code, modes which are forbidden whenk051 can
now be populated. For example, only modes with wavev
tor (kx5p,ky5q,kz5r ), with (pqr) jointly even or odd, are
present.1 When k051, both types of modes are generat
from the initial data, whereas whenk052 only even modes
are generated initially. Thus, in thek052 case, there is a

FIG. 1. Growth-ratess of the square magnetic current as a function
logRm. Symbols for each computation differ according to the type of ru
symmetric TG runs withk051 andRv551 are represented by stars; sym
metric TG runs withk051 andRv514.3 by circles; symmetric TG runs
with k052 andRv540 by triangles, and squares are for the non-symme
runs with k051 andRv514.3 ~see the text!. Growth-rates for̂ b2& and
^a2& are identical to those displayed here. Note that growing solutions o
occur either whenk052 or for non-symmetric flows.
Letters
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possibilitywithin a symmetric TG codefor spontaneous sym
metry breaking of the initial flow by the odd modes. A se
ond factor is scale-separation: a similar effect was obtai
in the study of the dynamo stirred by the ABC flow;9 it was
identified with the fact that the most unstable Fourier mo
is at a scale slightly larger than that of the velocity. This
indeed the case in our symmetric computations where
find that the fastest growing mode has a Fourier compon
at wavenumber (1,1,1).

Whereas in the above non-symmetric runs, symmet
on both the velocity and the magnetic field have been
tially broken, we now perform the more stringent test
using a non-symmetric magnetic seed withb0510212, but
initially imposing all TG symmetries to the velocity, t
within round-off errors. In that case, withRm541 and
Rv510.3, there is at first a weak growth of the magnetic fi
~recall that whenb has the same symmetries as the TG flo
it does not grow at that Reynolds number!. In Figure 2 are
displayed the temporal evolution of the kinetic and magne
energies, and̂v2& and^ j2& for that run. Att;220, there is
a spontaneous breaking of the TG symmetry of the velo
field, with an increase in kinetic energy which settles, afte
transient, atEv50.194. This change in the velocity field a
lows for a substantial increase~roughly, a quadrupling! of
the growth-rate of the magnetic energy. Non-linear effe
are seen to become manifest for^b2&/^v2&;1024 when an
oscillation sets in, followed by a saturation at a lev
^b2&;831022, whereas the ratio of maximabmax/
vmax ; 0.9, indicative of an intermittent magnetic field. Th
details of the saturation regime are left for further studies.
for the non-symmetric growing runs of Figure 1, the growi
non-symmetric magnetic field has Fourier compone
(0,0,1). Because of the relations“•b50 and j5“3b, the
corresponding physical space fields have the fo
b5((ax ,ay ,0)exp(iz)1c.c.) and j5((2 iax ,iay ,0)exp(iz)
1c.c.), where c.c. denotes the complex conjugate. Thus,
given horizontal cutz5const, both the magnetic field and th

FIG. 2. Temporal evolution of the kinetic~solid line! and magnetic~long
dash! energies as well as that of the square vorticity^v2& ~dash! and the
square current̂ j2& ~dash–dot! for a run with k051, Rv510.3 and
Rm541, and with, att50, a pure TG velocity field. Note the substantial
stronger growth in the secondary phase 270,Time,340, followed by an
oscillation and non-linear saturation.
Phys. Plasmas, Vol. 4, No. 1, January 1997
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current are constant horizontal vector fields, perpendicula
each other. Such aslabgeometry is forbidden in a symmetri
TG code because of the invariance by rotation of anglep/2
around the axis (x5y5p/2).

When comparing with an experimental setup, one ha
take into account the fact that the magnetic Prandtl num
of liquid metals is much smaller than unity, a regime un
tainable with direct numerical simulations. However,
simple examination of the MHD equations settingPm!1 but
keepingRm.1 indicates that in the presence of an exter
large-scale magnetic fieldB0, an equilibrium in the induction
equation is rapidly established, namelyhDb;B0•“v;
hence, in amplitude,b;B0R

m, similar to low thermal
Prandtl number convection;12 this suggests that a dynam
mechanism may work as well in the lowPm regime, granted
Rm be sufficiently high.

Keeping this in mind, there are several implications
our results to experimental setups. First note that altho
^hs(x)&[0, the kinetic helicity inside the impermeable bo
is strong. Experimentally, only the impermeable box is
relevance, and thus the experimental TG flow is stron
helical and likely a good candidate for dynamo action. S
ond, the present computations indicate that the regime
magnetic Reynolds numbers reachable experimentally m
be close to criticality. Moreover, our results obtained w
the general periodic code show that the fastest growing m
is a slab modewith j andb horizontal and perpendicular t
each other. Thus, allowing for a magnetic field to loop o
side the vessel in one horizontal direction, together with
large-scale current looping in the orthogonal direction, m
significantly lower the critical magnetic Reynolds numb
for dynamo action toRc

m.10. This type of circulation could
be achieved experimentally by using materials with differe
conductibility at the wall, closing, outside the vessel,j with a
conductor andb with a ferromagnetic material.
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