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Dynamo action is demonstrated numerically in the forced Taylor—G{E6jh vortex made up of a
confined swirling flow composed of a shear layer between two counter-rotating eddies,
corresponding to a standard experimental setup in the study of turbulence. The critical magnetic
Reynolds number above which the dynamo sets in depends crucially on the fundamental symmetries
of the TG vortex. These symmetries can be broken by introducing a scale separation in the flow, or
by letting develop a small non-symmetric perturbation which can be either kinetic and magnetic, or
only magnetic. The nature of the boundary conditions for the magnetic(étter conducting or
insulating is essential in selecting the fastest growing mode; implications of these results to a
planned laboratory experiment are briefly discussed. 187 American Institute of Physics.
[S1070-664X97)02501-9

The primary objective of this Letter is to demonstrate F(t)=f(t)v'®, wheref(t) is determined by imposing that
that a forced Taylor—Green vortex is consistent with a longhe (k,,kq,ko) Fourier mode ofv is fixed at all times to
term magnetic field produced by dynamo action and to findts initial value v'®=(sin(kyX) coskay) cosksz),— coskyX)
the critical magnetic Reynolds number for the field to bex sink.y)cosk,z), 0). A number of symmetries of'®
produced. The Taylor—-GredfiG) vortex is a standard tur- are dynamically compatible with the equations of motton,
bulent flow used in numerical computatiofighat is related i e, if the initial data obeys the same symmetries &
to an experimentally studied swirling floW® The relation  then the solutionys, is also symmetric. The symmetries
between the experimental flow and the TG vortex is a simiy v amountt with ky=1, to the expansions=3, , p(asx
larity in overall geometry* a shear layer between two X (m,n,p,t) siNmxcos1y copz, Gsy(m,n,p,t) cosﬁx’sinny
counter-rotating eddies. The TG vortex, however, is periodicg copz, Us,{m,n,p,t) cosnxcosiysinpz) where lg(m,n,
with free-slip boundaries while the experimental flow is con-p 1) vanishes unless,n,p are either all even or all odd

tained inside a tanl:f bet\_/veeln tW?éd‘?OU”tﬁr'rrlOtﬁti”g disks. Onghtegers. The expansion coefficients obey the additional re-
experiment in Gallium is plannetiin which the magnetic |ations:  G()(m,n,p)=(~1)"**0)(nmp) and 00}

R I I h itical -
eynolds number may be close to the critical vaRg x(mn,p) = (_1)r+1ugrz)(n,m’p), where r=1 when

above which a dynamo sets In. _ ) m,n,p are all even and=2 whenm,n,p are all odd. The
The magnetohydrodynamio#HD) equations for in- ., eshonding symmetries of in physical space are rota-
compressible fluids witlV -v=0 andV-b=0 read as tional symmetries: of angler around the axisX=z=n/2)
1) and (y=z=m/2); and of angle w/2 around the axis
(x=y=/2). There are also planes of mirror symmetry:
b= curl(vxb)+ 7V2b, 2) x=0,7, y=0,7, z=0,7. The velocity and the vorticity
w,=V Xvg are, respectively, parallel and perpendicular to
whereb is the Alfven velocity B/\4mp,, po the constant these planes that form the sides of the so-caliguermeable
density,» the kinematic viscosityy the magnetic diffusivity box which confines the flow. The kinetic helicity
and P the pressure; finally,=V xb is the current density. hg(X) =V wg is anti-symmetriovith respect to the planes of
The governing parameter for the dynamo is the magnetienirror symmetries. Thus, the total helicity of the TG flow
Reynolds number defined &"=V,L;,;/ 7, whereV, is the  (h¢(x))=0 when integrated over the whole periodicity box
rms velocity andL;,, the integral scale, witlP™=1v/7 the = x=0,27, y=0,27, z=0,27. However, locally the helicity is
magnetic Prandtl number. An external driving volumic forcestrong: the eddy at the top of the impermeable box entrains
F(t) is introduced in order to balance the energy dissipatioran aspirating motion upward with velocity and vorticity anti-
and reach a statistically steady state; it is chosen aparallel, and similarly for the counter-rotating eddy at the

OVv+V-Vv=—po VP +pV2v+jxb+F(t),
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bottom of the boxX. Likewise, the spectrum of helicity 0.10
HZ(k) is non-zero, but the isotropic spectrufwhen inte-

grated over all angless again zero. Note that, because he- 0.00 -t

licity provides an efficient mechanism for growth of the /“’\
large-scale magnetic fiefdABC flows which are Beltrami 010

(u=* wlk,) are obvious candidates for dynamo actiorA

dynamo in a highly symmetric flow witth(x))=0 has been
demonstrated numericalfusing a hyperviscosity algorithm

-0.20 -

. . -0.30
whereby the two diffusive operators {#), (2) are replaced
by higher powers of the Laplacian. Here, the choice is made -0.40 . .
to deal with the primitive MHD equations instead. 1.00 1000 p 10000 1000.00

However, the above TG symmetrieswafcan physically
be Spont_aneOUSIV brokenn t_h(.a_sense th_at a small non- FIG. 1. Growth-ratess of the square magnetic current as a function of
symmetric component of the initial data will grow and even-jogr™. Symbols for each computation differ according to the type of run:
tually completely break the symmetry of the solution. Thus,symmetric TG runs wittko=1 andR"=51 are represented by stars; sym-

- T s _ with ky=2 andR"=40 by triangles, and squares are for the non-symmetric
(with periodicity Ieng_th:Z 2m) pseudo-spectral codes are runs with k=1 and R"=14.3 (see the teyt Growth-rates for{b? and
used. BOt_h are de'_a“ased by the 2/3 rule. The Wavenumbe(§2> are identical to those displayed here. Note that growing solutions only
are thus integers in the rang&.{i,=1Knax=N/3), where  occur either wherk,=2 or for non-symmetric flows.

N? is the number of grid points. The first code is a standard

periodic code in which no symmetries are implemented. Thejiving the growth-rater of the dynamo field as a function of
second code is symmetric. It is used to save computer rer™ ith (j?(t))~e“t. Three types of runs are performed
sources: implementing the TG symmetries yields, compareflere: in the first case, symmetric TG runs wih=1 and
to the same computation in a general periodic code, a saving’ =51 (represented by starer with ko=1 andR’=14.3
by a factor of 64 in both CPU and memdnAt a given  (circles; in the second case, symmetric TG runs with
Reynolds numbeR’ =Vl /v, this represents, at equal k,=2 andR’=40 (triangle; finally, in the third case, runs
cost, an increase of 84~ 3 in Reynolds number. The sym- using the general periodic code wity=1 and R"=14.3
metric code was developed from the hydrodynamical versiofisquares A simple test of the dynamical constraints im-
described in Ref. 1. All the symmetries of (with ky=1) posed by the symmetries of the TG flow lkaj=1 is per-
are implemented within this code. Thus, no flow can crossormed by comparing the results of the symmetric and gen-
the impermeable box= 0,7, y=0,7, z=0,7. The magnetic eral periodic runs aR’=14.3. Initial conditions for these
field in the symmetric code was chosen to have the samguns are identical except that, in the general periodic code, a
symmetries thang, which can readily be checked to be non TG-symmetric perturbation of 1% in energy compared
dynamically compatible with the governing equati¢®).  to that of the basic TG flow is introduced—iat 0 only—in
Thus,j is perpendicular to the sides of the impermeable boxthe Fourier shell corresponding to=k,; both runs are at

In order to study linear growth-rates as a function ofresolutionN=64. In the non-symmetric rur(sepresented by
magnetic Reynolds number, both the general periodic andquarey the resulting velocity settles at a larger kinetic en-
the symmetric code are initialized in a similar way. The ini- ergy than that at which the symmetric TG flow settles,
tial velocity field is such that the kinetic energy correspondsnamelyE” ~0.28 instead of 0.17; moreover, the total amount
to its (statistically stationary value under the action of the of kinetic helicity is non-zero; as measured by its relative
TG forcing; and the magnetic field is initially set to a small rate p?=(v- w)/ {V?){w?), we havep’~5%. Thus, in the
seed value, such tha@,=(b?)/(v?)<1. After initial tran-  general periodic run, the TG symmetrysigontaneously bro-
sients die out, the growth—rates computed(af) (where ken in the sense that the small initial non-TG-symmetric
b=V xa), (b?) and(j?) are identical, corresponding to dif- perturbation has changed the general character of the flow.
ferent Fourier projections of the same eigenmode. Two preAs seen in Figure 1, the growth-rate remains negative in the
cautions have been taken when computing the growth-ratesymmetric case witt,= 1 (circleg, whereaR{'~ 10 in the
(i) the linear character of the regime has been checked bgeneral periodic casgquares
decreasingB, (non-linear effects become noticeable when  Another result seen in Figure 1 is that, for the symmetric
Bo=10"%); (ii) the precision of the computation is measuredruns withk,=1 and up toR™~ 380, growth-rates are always
by the logarithmic decremeni(t) defined from a fit of en- negative, whereas when taking=2, one findso~0 for
ergy spectra in the near dissipative range asR'~50. The drastic change of behavior obtained when
E(k,t)~exp(28t)k). It is such that for all times ky=2 may be due to a combination of two factors. First,
S(t)kmax—2, a standard condition for computations of tur- whenky= 2, within the symmetry-conserving algorithm of a
bulent flows!! A symmetric run of ~300r,, , where symmetric code, modes which are forbidden wkgr 1 can
7nL=Lint/Vo~0.6 is the turn-over time, takes 4350 secondsnow be populated. For example, only modes with wavevec-
of Cray C94 at a resolution oN®=128. tor (ky=p,ky=0q,k,=r), with (pqr) jointly even or odd, are

The results of a series of computations at resolutions opresent. When k,=1, both types of modes are generated
64°, 128 and 208 points, corresponding to a wide range of from the initial data, whereas whég=2 only even modes
magnetic Reynolds numbeR" are summarized in Figure 1 are generated initially. Thus, in the=2 case, there is a
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current are constant horizontal vector fields, perpendicular to

10—~ Smme— - "I?—-A»L"“ - each other. Suchslabgeometry is forbidden in a symmetric
- Cia . TG code because of the invariance by rotation of ang2
-2 ! s .
10 o " n around the axis\=y=7/2).

ol ,u'\. ,~’ J,""/ ] When comparing with an experimental setup, one has to
0 H ‘-\ ¢ 7 take into account the fact that the magnetic Prandtl number
10_5'_ ,/’\. .o ] of liquid metals is much smaller than unity, a regime unat-

L !/ \_ | tainable with direct numerical simulations. However, a
1078 P 4 simple examination of the MHD equations setting<1 but
- s / . keepingR™>1 indicates that in the presence of an external
10710 —,-/ j . large-scale magnetic fieB,, an equilibrium in the induction
ol i / ] equation is rapidly established, namelyAb~By Vv;
10 I hence, in amplitudeb~ByR™, similar to low thermal
0 200 400 600  BOO 1000 Prandtl number convectiof; this suggests that a dynamo

mechanism may work as well in the o™ regime, granted
R™ be sufficiently high.
FIG. 2. Temporal evolution of the kinetiolid line) and magnetiqlong Keeping this in mind, there are several implications of
dash energies as well as that of the square vorti¢iy?) (dash and the  our results to experimental setups. First note that although
square current(j?) (dash—dot for a run with ko=1, R'=10.3 and  (h (x))=0, the kinetic helicity inside the impermeable box
Rn=41, and with, at=0, a pure TG velocity field. Note the substantially is strong. Experimentally, only the impermeable box is of
stronger growth in the secondary phase 2770me<340, followed by an | ) d th h ' . | TG fl . |
oscillation and non-linear saturation. re ?Vancev e}n thus the expgrlmenta ow 'S_ strongly
helical and likely a good candidate for dynamo action. Sec-
possibilitywithin a symmetric TG codr spontaneous sym- ond, the present computations indicate that the regime of
metry breaking of the initial flow by the odd modes. A sec:_magnetic Reynolds numbers reachable experimentally may
' q]e close to criticality. Moreover, our results obtained with

ond factor is scale-separation: a similar effect was obtaine . )
in the study of the dynamo stirred by the ABC fiSit; was the general periodic code show that the fastest growing mode
d js aslab modewith j andb horizontal and perpendicular to

identified with the fact that the most unstable Fourier modé h other. Th llowing f ic field to |
is at a scale slightly larger than that of the velocity. This jséach other. Thus, allowing for a magnetic field to loop out-

indeed the case in our symmetric computations where w ide the vessel in one horizontal direction, together with a
find that the fastest growing mode has a Fourier compone ?rge—scale current looping in the orthogonal direction, may

at wavenumber (1,1,1) significantly lower the critical magnetic Reynolds number
Whereas in the above non-symmetric runs, symmetrie%Or dyngmo action .'[(R?: 10. This .type of circulati_on cpuld
on both the velocity and the magnetic field have been ini- e achieved experimentally by using materials with different

tially broken, we now perform the more stringent test ofconductibility at th_e wall, closing, Ol_JtSide th? vesgelith a
using a non-symmetric magnetic seed wigh=10"12 but conductor and with a ferromagnetic material.

initially imposing all TG symmetries to the velocity, 10 AckNOWLEDGMENTS

within round-off errors. In that case, witlR™=41 and
RY=10.3, there is at first a weak growth of the magnetic field
(recall that wherb has the same symmetries as the TG flow
it does not grow at that Reynolds numpen Figure 2 are
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