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Superfluid turbulence is studied using numerical simulations of the nonlinear Schro¨dinger equation
~NLSE!, which is the correct equation of motion for superflows at low temperatures. This equation
depends on two parameters: the sound velocity and the coherence length. It naturally contains
nonsingular quantized vortex lines. The NLSE mass, momentum, and energy conservation relations
are derived in hydrodynamic form. The total energy is decomposed into an incompressible kinetic
part, and other parts that correspond to acoustic excitations. The corresponding energy spectra are
defined and computed numerically in the case of the two-dimensional vortex solution. A preparation
method, generating initial data reproducing the vorticity dynamics of any three-dimensional flow
with Clebsch representation is given and is applied to the Taylor–Green~TG! vortex. The NLSE TG
vortex is studied with resolutions up to 5123. The energetics of the flow is found to be remarkably
similar to that of the viscous TG vortex. The rate of the~irreversible! transfer of kinetic energy into
other energy components is comparable, both in magnitude and time scale, to the energy dissipation
of the viscous flow. This transfer rate depends weakly on the coherence length. At the moment of
maximum energy dissipation, the energy spectrum follows a power law compatible with
Kolmogorov’s 25/3 value. Physical-space visualizations show that the vorticity dynamics of the
superflow is similar to that of the viscous flow in which vortex reconnection events play a major
role. It is argued that there may be some amount of universality of reconnection processes, because
of topological constraints. Some preliminary support for this conjecture is given in the special case
of secondary instabilities of round jets. The experimental implications of the close analogy between
superfluid and viscous decaying turbulence are discussed. ©1997 American Institute of Physics.
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I. INTRODUCTION

Superfluid flows are described mathematically by
Landau two-fluid model, in contrast to classical ideal or v
cous fluids, which are described by the Euler or Navie
Stokes equations, respectively.1 When the temperature is low
enough for the normal fluid to be negligible~in practice be-
low T51 K for helium at normal pressure!, Landau’s model
reduces to the Euler equation for an ideal fluid, which
irrotational except on singular vortex lines around which
circulation of the velocity is quantized. The quantum natu
of velocity circulation appears, in this model, as a supp
mentary condition, compatible with the Euler equation.

When both normal fluid and superfluid vortices a
present, their interaction, called ‘‘mutual friction,’’ must b
taken into account. Such models, pioneered by Schwarz,2 are
necessary, for example, to study superfluid turbulence in
counterflow produced by a heat current.

At low temperatures, an alternative mathematical
scription of superflows is given by the nonlinear Schro¨dinger

a!Also at: Laboratoire d’Informatique pour la Me´canique et les Sciences d
l’Ingénieur, BP 133 91403 Orsay, Cedex, France.
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equation ~NLSE!, sometimes also called the Gross
Pitaevskii equation.3,4 The NLSE is a partial differentia
equation~PDE! for a complex wave field related to the su
perflow’s density and velocity by Madelung’
transformation.5 The superflow is irrotational, except nea
the nodal lines~also called topological defect lines! of the
complex wave field. These lines are known to follow Eu
rian dynamics.6–8 They are nonsingular, in contrast to th
singular vortex lines in Landau’s model. These topologi
defects correspond to the quantum vortices of superfluid
lium; they appear naturally—with the correct amount of v
locity circulation—in this model. In this context, NLSE i
the correct dynamical equation of motion for superfluid9

Recently, because of the current availability of high-spe
computers allowing numerical simulations to be perform
there has been a surge of interest in studying the dynam
properties of NLSE.10–14 NLSE has been shown to conta
intricate dynamical mechanisms, such as vor
reconnection,14 vortex nucleation,10 and vortex–sound
interaction.15

One of the open problems in superfluidity is to expla
the critical velocity at which superfluidity breaks down. Th
problem is related to the onset of superfluid turbulence
9(9)/2644/26/$10.00 © 1997 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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question which has long been open is the degree of ana
between superfluid and ordinary turbulence. Quoting fr
Feynman’s review of 1955: ‘‘The resistance to flow som
what above initial velocity must be the analogue in sup
fluid helium of turbulence, and a close analogue at that.16

Note that, experimentally, one should distinguish betwe
counterflow superfluid turbulence and towed grid superfl
turbulence.17 Counterflow superfluid turbulence is produc
by a heat current and is characterized by opposite m
fluxes of normal fluid and superfluid. It has thus no classi
analog. In contrast, in towed grid superfluid turbulence,
normal and superfluid components of the flow have the sa
velocity. It is the analog of ordinary turbulence and can ex
at very low temperatures. In the rest of this article, we re
to towed grid superfluid turbulence simply as ‘‘superflu
turbulence.’’

The basic goal of the present article is to qualify t
degree of analogy between superfluid and ordinary tur
lence by comparing numerical simulations of NLSE and
isting numerical simulations of Navier–Stokes equatio
The comparison is made using the Taylor–Green~TG! vor-
tex, a three-dimensional vortical flow characterized by a v
cous decaying turbulence that is well documented in
literature.18 The TG vortex is a standard turbulent flow us
in numerical computations19–21 that is related to an experi
mentally studied swirling flow.22–24The relation between the
experimental flow and the TG vortex is a similarity in over
geometry:22 a shear layer between two counter–rotating
dies. The TG vortex, however, is periodic with free-s
boundaries while the experimental flow is contained insid
tank between two counter–rotating disks. The TG vortex
also a highly symmetric flow which permits economic
computations~see Ref. 19 and Appendix 1!.

The paper is organized as follows: Section II is devo
to the basic definitions and properties of the model of sup
flow. A short presentation of the hydrodynamic form
through Madelung’s transformation, of NLSE with an arb
trary nonlinearity is given. Simple solutions are discuss
Most of this section can be skipped by the reader alre
familiar with the NLSE model of superflow who will find, a
the end of the section, the nonlinearity used for the numer
simulations presented in this article.

In Sec. III, the basic tools that are needed to numeric
study three-dimensional turbulence using NLSE are de
oped and validated. The conservation relations for mass,
mentum, and energy are derived. Energy spectra are defi
and computed in the case of a simple vortex solution
preparation method for the initial data is developed. Us
this method, the vorticity dynamics of any three-dimensio
incompressible flow that admits a Clebsch representation
be reproduced with NLSE. The method is validated on
two-dimensional vortical test flow. The energy spectra
computed, and it is shown that their low wave number
havior is controlled by the classical flow, while their hig
wave number behavior is controlled by the~constant! num-
ber of vortices.

In Sec. IV, a Clebsch representation is given for t
Taylor–Green vortex, a reference flow in the numeri
study of ~viscous! three-dimensional turbulence. This repr
Phys. Fluids, Vol. 9, No. 9, September 1997
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sentation is used to generate initial data for NLSE. The c
responding vortex dynamics is compared to high resolut
simulations of the Taylor–Green flow published in the liter
ture. Evidence for Kolmogorov turbulence in NLSE is foun
and its validity and meaning are discussed. Section V is
conclusion. The numerical methods and computer codes
described in an appendix.

II. BASIC DEFINITIONS AND PROPERTIES OF THE
MODEL

Most of the material contained in this section can
skipped by the reader already familiar with the NLSE mod
of superflow.25,6–8,5,9We present the hydrodynamic form o
NLSE with an arbitrary nonlinearity. We show that NLS
corresponds, through Madelung’s transformation, to a ba
tropic fluid with an arbitrary equation of state. We also d
cuss basic hydrodynamic features such as time-indepen
solutions and acoustic propagation. The equation of state
the model parameters used for the numerical simulations
sented in this article are defined at the end of the section

A. Fluid dynamical form of the nonlinear wave
equation

The most straightforward way to understand the relat
between nonlinear wave dynamics and fluid dynamics is
first define the nonlinear wave dynamics through the follo
ing action functional:25

A52aE dtH E d3xF i

2
S c̄

]c

]t
2c

]c̄

]t
D G2F J ~1!

with

F 5E d3x@au “cu21 f ~ ucu2!#, ~2!

where c(x,t) is a complex wave field andc̄ its complex
conjugate,a is a positive real constant, andf is a polynomial
in ucu2[c̄c with real coefficients:

f ~ ucu2!52Vucu21
b

2
ucu41 f 3ucu61•••1 f nucu2n. ~3!

The nonlinear wave dynamics is governed by the NL
which is the Euler–Lagrange equation of motion forc cor-
responding to~1!:

]c

]t
52 i

dF

dc̄
,

or

]c

]t
5 i @a “

2c2c f 8~ ucu2!#. ~4!

The key step is Madelung’s transformation5,25

c5Ar exp S i
f

2a D , ~5!

which maps the nonlinear wave dynamics ofc into equa-
tions of motion for a fluid of densityr and velocity
v5“f. Indeed with the help of~5!, ~1! can be written
2645Nore, Abid, and Brachet
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A52 E dt d3xH r
]f

]t
1

1

2
r~“f!212a f ~r!

1
1

2
@2a “~Ar!#2J ~6!

and the corresponding Euler–Lagrange equations of mo
read

]r

]t
1 “•~rv!50, ~7!

]f

]t
1

1

2
~ “f!212a f 8~r!22a2

DAr

Ar
50. ~8!

Neglecting the last term of~8! ~the so-called ‘‘quantum pres
sure’’ term!, these equations are the continuity and Berno
equations1 for an isentropic, compressible, irrotational flui
Note that the quantum pressure term contains higher o
spatial derivatives than the other terms in~8!. It will turn out
~see Sec. II C! that there are circumstances in which it c
safely be neglected.

Using this identification, one can define the correspo
ing ‘‘thermodynamic functions’’ for the barotropic fluid. Th
fluid is called barotropic because only one thermodyna
variable~e.g., the densityr) is enough to define its state a
rest. By inspection of~6!, the fluid’s internal energyper unit
massis given by

e5
2a f ~r!

r
~9!

and Bernoulli’s Eq.~8! readily gives the fluid’s enthalpyper
unit massas

h52a f 8~r!. ~10!

The thermodynamic identity

h5e1p/r, ~11!

yields, for the fluid’s pressure, the expression

p52a@r f 8~r!2 f ~r!#. ~12!

The physical dimensions of the variables used in~2! and
~3! are fixed by the following considerations. Madelung
transformation~5! imposes that@ ucu2#5@r#5M L23 and
@a#5L2 T21. Using ~9!, one gets@ f (r)/r#5T21 and thus,
from ~3!, @V#5T21, @b#5T21 r21 and@ f i #5T21 r12 i . In
the case of a Bose condensate of particles of mass,m, a has
the value\/2m.9

B. Elementary solutions

In this section, the elementary solutions of NLSE a
presented. These correspond to a condensate at rest
axisymmetric two-dimensional vortex at rest. The acous
excitations around such solutions are discussed.

1. Fluid at rest

Further insight into the relation between nonlinear wa
and fluid dynamics can be obtained by considering station
solutions of the equations of motion. Indeed, tim
2646 Phys. Fluids, Vol. 9, No. 9, September 1997
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independent solutions of NLSE~4! are also trivially solu-
tions of the Real Ginzburg—Landau equation~RGLE!

]c

]t
52

dF

dc̄
5@a “

2c2c f 8~ ucu2!#. ~13!

They are thus extrema of the energy functionalF .
The simplest solution of this type corresponds to a c

stant density fluid at rest. In this simple case,c is constant in
space and~13! reads

f 8~ ucu2!52V1bucu213 f 3ucu41•••1n fnucu2n2250.
~14!

This equation, for given values of the coefficientsb and f i

( i 53, . . . ,n), relates the fluid densityucu2 to the value of
V.

Note that theV term of f does not play a crucial role in
the NLSE dynamics. Indeed, it corresponds to a constan
~14! that could be removed from the Bernoulli Eq.~8! by the
change of variablef→f12aVt. This change of Bernoulli
potential f amounts to a change of phasec→ceiVt in
NLSE ~4!. We will however, by convention, not perform
these changes of variable, in order that stationary soluti
of ~13! coincide with stationary solutions of~4!. TheV term
of f will thus be related to the densityucu2 of the fluid at rest
through Eq.~14!.

2. Vortex solution

Another important type of time-independent solutions
NLSE are the vortex solutions. Madelung’s transformation
singular whenr50 ~i.e., when both the real and the imag
nary parts ofc are zero!. As two conditions are required, th
singularities generically happen on points in two dimensio
and lines in three dimensions. The circulation ofv around
such a generic singularity is64pa. These topological de-
fects are known in the context of superfluidity as ‘‘quantu
vortices.’’5 Solutions of~13! with cylindrical symmetry can
be obtained numerically.26 It can be shown that, asr goes to
zero, r;r 2 and v52aeu /r whereeu is the azimuthal unit
vector andr the radial distance of a cylindrical coordina
system (er ,eu ,ex) having its origin on the vortex line. The
density admits a horizontal tangent at the originr 50 while
the velocity diverges as the inverse of the distance. Then
momentum densityrv is a regular quantity.

An important property of vortex solutions is that they a
regular solutionsof NLSE. The singularity lies only in
Madelung’s transformation~5!. This means that, when vor
tices are present, the fluid dynamical form of the action~6!
and the corresponding Euler–Lagrange equations of mo
~7!, ~8! are not well defined. We shall come back to th
subtle point in Sec. III A.

C. Acoustic regime

The nature of the extra quantum pressure term in~8! can
be understood by computing the dispersion relation co
sponding to acoustic waves propagating around a cons
density levelr0. Settingr5r01dr @with f 8(r0)50], “f
5du in ~7! and in the gradient of~8!, one gets at linear orde
] t

2dr52ar0f 9(r0)Ddr2a2D2dr. The dispersion re-
Nore, Abid, and Brachet
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lation for an acoustic wavedr5e$exp@i(vt2k–x)#1c.c.%
~with e!1) is thusv5A2ar0f 9(r0)k21a2k4. This rela-
tion shows that the quantum pressure has a dispersive e
that becomes important for large wave numbers. For sm
wave numbers, one recovers the usual propagation, wi
sound velocity given by

c5S ]p

]r D 1/2

5A2ar0f 9~r0!. ~15!

This means that, for small wave number acoustic waves,
last term of~8! does not play a significant role. The leng
scale

j5Aa/@r0f 9~r0!# ~16!

at which dispersion becomes noticeable is known as the ‘
herence length.’’

All numerical results presented in this paper are p
formed using the simplest choice of nonlinearity for NLS
corresponding to a compressible fluid, namely

f ~r!52Vr1
b

2
r2. ~17!

This simplest choice corresponds to the following thermo
namic quantities:

e5
2a

r S 2Vr1
b

2
r2D , ~18!

h52a~2V1br!, ~19!

p5abr2. ~20!

The form of f used in our numerical computations~17!, to-
gether with~15! and ~16!, lead to the following relations:

c5A2ab,

j5Aa/V, ~21!

r05V/b.

When performing numerical computations, we will furth
fix the density tor051. The coefficients of~17! used in the
computations are thus defined in terms ofc and j by the
relations:

a5cj/A2,

b5c/~A2j!, ~22!

V5b.

III. CONSERVED QUANTITIES, INITIAL DATA
PREPARATION, AND VALIDATIONS

This section is devoted to the development and vali
tion of the basic tools that are needed to numerically st
three-dimensional turbulence using NLSE.

We will redefine Madelung’s transformation when vo
tex lines are present; this is necessary because the ori
transformation~5! is singular on vortex lines. This enables
to derive mass, momentum, and energy conservation r
tions, both in wave and hydrodynamic variables. These c
Phys. Fluids, Vol. 9, No. 9, September 1997
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servation laws are shown to be globally regular on vortic
and lead to the usual form for the fluid’s equation of motio

We use the expression for the total energy density
physical space and Parseval’s formula to define energy s
tra; these allow us to separate the various contributions to
total energy. The energy spectra are computed for the t
dimensional time-independent vortex solution.

We then describe a method for preparing initial da
This method allows us to generate initial data for NLSE th
will reproduce the vorticity dynamics, without too muc
sound wave emission, of any given three-dimensional
compressible flow field, provided that this field admits
Clebsch representation.

The preparation method is validated on a tw
dimensional vortical test flow. The vortex dynamics repr
duces that of the classical incompressible flow, without
much sound emission. The energy spectra are compu
their low wave number behavior is consistent with that of t
classical flow, while their high wave number behavior
controlled by the~constant! number of vortices.

A. Conserved quantities and Madelung’s
transformation

As stated in Sec. II B 2 and by using Madelung’s tran
formation ~5!, a vortex line is given byc5Ar exp (if/2a)
50. Thus, on a vortex line,f is not determined and so th
equations of motions~7! and~8! are not well defined. This is
a mathematical pathology of the transformation, without a
physical meaning. To avoid this problem, we use Noethe
theorem27 to derive equations of motion well defined on
vortex line.

The invariance of~1! with respect to phase rotation
space translation, and time translation, respectively, yield
following conservation laws for mass, momentum, and
ergy ~using the Einstein convention on repeated indices!:

] t~cc̄)1]k@ ia~c]kc̄2c̄]kc!#50, ~23!

] t@ ia~c] j c̄2 c̄] jc!#1]k@2a2~]kc̄] jc1]kc] j c̄ !

1~2aucu2f 8~ ucu2!22a f ~ ucu2!2a2] l l ucu2!d j
k] 50,

~24!

] t@2a2]kc]kc̄12a f ~ ucu2!#22a2]k@ ia~]kc̄] j j c

2]kc] j j c̄ !1 i f 8~ ucu2!~ c̄]kc2c]kc̄ !#50. ~25!

Using Madelung’s transformation~5! in the form:

r5ucu2,
~26!

rv j5 ia~c] j c̄2 c̄] jc!,

and with the thermodynamic definitions of the internal e
ergy, e ~9!, enthalpy,h ~10!, and pressure,p ~12!, the con-
servation laws, after some algebra, can be cast in the fo

]r

]t
1] i~rv i !50, ~27!

]rv j

]t
1] i@rv iv j14a2] iAr] jAr1~p2a2]kkr!d j

i #50,

~28!
2647Nore, Abid, and Brachet
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]

]t F2a2~] jAr!21
1

2
rv jv j1reG

52] i S rv ih1
1

2
rv iv jv j D2] iFa2

] ir

r
] j~rv j !

22a2Arv i] j jArG . ~29!

These conservation laws, apart from the extra quantum p
sure terms~recognizable by thea2 factor!, are the standard
conservation laws1 for a classical barotropic fluid.

Let us now show that~27!–~29! are nonsingular, even
for vortex solutions. In fact, asr goes to zero,r;r 2 andv
52aeu /r , whereeu is the azimuthal unit vector andr the
radial distance of a cylindric coordinate system (er ,eu ,ex)
having its origin on a vortex line. Thus, in Eq.~28!, the term
rv^v;4a2eu ^eu ( ^ is the tensor product! is not defined at
r 50. The same thing happens for 4a2

“Ar ^“Ar
;4a2er ^er but the sum of these two terms is independen
u and therefore is well defined at the origin. Since the
maining terms are all regular at a vortex line, Eq.~28! is
regular. In Eq.~29!, asr goes to zero,rvv2;4a2eu /r . This
singularity cancels with that of 22a2ArvDAr
;24a2eu /r . The other terms are regular.

In order to derive equations of motion similar to~7! and
~8! and well defined on a vortex line, we use~27! and~28! to
obtain

r
]v j

]t
2v j] i~rv i !1] i@rv iv j14a2] iAr] jAr1~p

2a2]kkr!d j
i #50, ~30!

which leads to

rS ]v j

]t
1v i] iv j D52] j~p2a2]kkr!

2] i~4a2] iAr] jAr!. ~31!

As r goes to zero, all the terms butr(v–“)v;24a2er /r
and“•(4a2

“Ar ^“Ar);4a2er /r are regular. Just as fo
the Eq.~28!, these singularities cancel on a vortex line.
recognize the Bernoulli Eq.~8!, we need to rewrite the right
hand side of~31!. Using Eq. ~12! for p and writing ]kkr
5]kk(Ar)252Ar]kkAr12(]kAr)2, one can find that the
right-hand side of Eq. ~31! is equal to 2r] j (h
22a2 DAr/Ar), and thus Eq.~31! reads

rS ]v j

]t
1v i] iv j D52r] j S h22a2

DAr

Ar
D , ~32!

which is the gradient of Eq.~8! multiplied by r for an irro-
tational fluid. This equation is the standard Euler equat
for a barotropic fluid, apart from the quantum pressure te
2a2DAr/Ar.

B. Energy spectra

In this section, we will use the conserved energy den
derived in Sec. III A and Parseval’s identity to define ener
2648 Phys. Fluids, Vol. 9, No. 9, September 1997
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spectra. The spectra corresponding to the two-dimensio
time independent vortex solution are calculated.

1. Definitions of the energy spectra

Starting from the energy conservation law~29!, the total
energy Etot can naturally be decomposed into the kinet
internal, and ‘‘quantum’’ energies:

Etot5Ekin1Eint1Eq . ~33!

Using ~9! and ~29!, each of these parts can be formally d
fined as the~space! integral of the square of a field:

Ekin5
1

2~2p!3E d3x~Arv j !
2, ~34!

Eint5
1

2~2p!3E d3x@2Aa f ~r!#2, ~35!

Eq5
1

2~2p!3E d3x~2a] jAr!2. ~36!

These denominations are justified by the expression in te
of r andv of Ekin , by expression~9! for the fluid’s internal
energy and by the correspondence betweenEq and the quan-
tum pressure term in~31!.

Because of energy conservation~29!, Etot will remain
constant during evolution under NLSE dynamics. Howev
each of the individual energy componentsEkin , Eint , andEq

can, and, in general, will vary in time. Thus, by monitorin
their values, some understanding of the energy transfer
the system can be achieved. Such an understanding ca
enhanced by a scale-by-scale energy breakdown for eac
dividual component. Each component being the space i
gral of a squared field, Parseval’s theorem allows us to c
struct energy spectra. Indeed, defining the normalization
the Fourier transform asg(r )5*d3ke2 ik j r j ĝ(k), one gets
ĝ(k)5(2p)23*d3reik j r jg(r ), and Parseval’s theorem read
*d3kuĝ(k)u25(2p)23*d3r ug(r )u2. Thus, by computing the
Fourier transform ofArv j , 2Aa f (r), and 2a] jAr, respec-
tively, and integrating their square modulus over the ang
one gets the following energy spectra:

Ekin~k!5
1

2E dVkU 1

~2p!3E d3reir nknArv jU2

,

Eint~k!5
1

2E dVkU 1

~2p!3E d3reir nkn2Aa f ~r!U2

, ~37!

Eq~k!5
1

2E dVkU 1

~2p!3E d3reir nkn2a] jArU2

,

wheredVk denotesk2 sinu du dw in spherical coordinates
They verify by construction the relations Ekin

5*0
`dkEkin(k), Eint5*0

`dkEint(k), and Eq5*0
`dkEq(k).

Furthermore, in order to separate the kinetic energy co
sponding to compressibility effects, we decomposeArv j in
Arv j5(Arv j )

i1(Arv j )
c with “•(Arv j )

i50. The corre-
Nore, Abid, and Brachet
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are
FIG. 1. Plots of the energy spectra~a! and momentum density spectrum~b! corresponding to an axisymmetric two-dimensional vortex. The spectra
computed from~41! and~42! with 18 Chebychev polynomials and with coherence lengthj50.1/(8A2), and sound velocityc52. Fig. 1~a! shows the kinetic
energyEkin ~solid!, the quantum energyEq ~dashed! and the internal energyEint ~long–dashed!.
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sponding spectra are namedEkin
i (k) and Ekin

c (k), satisfying
the relationEkin(k)5Ekin

i (k)1Ekin
c (k). We also compute the

spectrum associated withrv j , i.e.,

J~k!5
1

2E dVkU 1

~2p!3E d3reir nknrv jU2

, ~38!

called the momentum density spectrum.
The precise way in which the angle average is perform

in the case of periodic fields is explained in Appendix 3.
We will also wish to compute spectra in the (r ,u) plane.

The appropriate definitions of the two-dimensional ene
spectra and momentum density spectrum are

Ekin~k!5
1

2E0

2p

kduU 1

~2p!2E d2reir nknArv jU2

~39a!

Eint~k!5
1

2E0

2p

kduU 1

~2p!2E d2reir nkn2Aa f ~r!U2

,

~39b!

Eq~k!5
1

2E0

2p

kduU 1

~2p!2E d2reir nkn2a] jArU2

, ~39c!

and

J~k!5
1

2E0

2p

kduU 1

~2p!2E d2reir nknrv jU2

. ~40!

2. The energy spectra of a two-dimensional vortex

For an axisymmetric two-dimensional vortex, the dive
gence ofArv j and of rv j are zero. Thus the compressib
parts of the corresponding spectra vanish.

Each of the spectra~39! and ~40! is related to the two-
dimensional Fourier transform of an isotropic functio
Ekin(k) to the curl of 2aAreu /r , Eint(k) to the function
Phys. Fluids, Vol. 9, No. 9, September 1997
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2Aa f (r), Eq(k) to the gradient of 2aAr, andJ(k) to the
curl of 2areu /r . Using the expression of the Fourier tran
form appropriate to an isotropic functiong(r ), ĝ(k)
5(2p)21*0

`drrJ0(kr)g(r ), where J0 is the zero order
Bessel function, we can express the energy spectra~39! as

Ekin~k!5
1

4pk F E
0

`

drrJ0~kr !
2a

r

]Ar

]r G2

,

Eint~k!5
k

2p F E
0

`

drrJ0~kr !2Aa f ~r!G2

, ~41!

Eq~k!5
k3

4p F E
0

`

drrJ0~kr !2aArG2

,

and the momentum density spectrum~40! as

J~k!5
1

4pk F E
0

`

drrJ0~kr !
4aAr

r

]Ar

]r G2

. ~42!

Appendix 3 contains a description of the numeric
method used to compute the integrals~41! and ~42!. The
energy and momentum density spectra computed with
procedure are displayed in Fig. 1 withj50.1/(8A2) andc
52.

Each of the spectra displays a change of behavior aro
the wave numberkj;1/j5113. The spectraJ(k) and
Eint(k) show exponential decay fork@kj . This is related to
the absence of singularity of the integrands of~40! and~39b!
near r 50. Indeed, it is well known that the Fourier tran
form of a function that is analytic in a finite strip decay
exponentially at large wave numbers.28 Ekin(k) and Eq(k)
have a power-law behavior fork@kj that reflects their sin-
gularity in r 50. Indeed, the Fourier transform ofg(r );r s

~with s a positive real! is ĝ(k);k2s22. Thus the associated
angle averaged spectrum has a power-law behavior
2649Nore, Abid, and Brachet

o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



e
rve
FIG. 2. A schematic representation of relations~44! and ~47!. The Clebsch potentialsl(x,y,z),m(x,y,z) map the left-hand side of the figure into th
(l,m) plane shown in the right-hand side. The circulation ofuadv around the contour in physical spaceC is equal to the area inside the corresponding cu
in the (l,m) planeC 8.
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k22s23. The smallr behavior of both the integrands of~39a!
and ~39c! is r 0. This argument explains thek23 power-law
behavior at largek of Ekin(k) andEq(k) in Fig. 1~a!.

The above Fourier transform scaling argument can
used to relate thek!kj power-law behavior of the spectra i
Fig. 1 to the larger behavior of the corresponding inte
grands. Bothrv j andArv j behave asr 21 at larger , which
gives ak21 scaling for k!kj . The k3 small k scaling of
Eq(k) corresponds to ther 23 large r scaling of ] jAr. Fi-
nally, thek1 small k scaling ofEint(k) is related to ther 22

large r scaling of (r21).

C. Initial data preparation method for vortical flows

Given a large scale flowuadv that admits a globa
Clebsch representation,29 the initial data preparation metho
developed in this section will generate a vortex array wh
NLSE dynamics will mimic the large scale flow vortex d
namics. The preparation method consists of two steps. In
first step, the Clebsch representation ofuadv is used to con-
struct a wave fieldc(x,y,z) whose nodal lines are vorte
lines of uadv. In this way, one can generate a field with t
distribution of nodal lines that reproduces the global circu
tion of uadv. A second preparation step is needed in orde
minimize the emission of acoustic waves. Indeed, startin
NLSE integration from an arbitrary initial data would gene
cally lead to a transient emission of acoustic waves. N
that this is a general property of compressible flows.

1. Vortex arrays defined by global Clebsch variables

We consider a large scale flowuadv that admits a globa
Clebsch representation29 in terms of two potentials:

l5l~x,y,z!,
~43!

m5m~x,y,z!,

and of a functionV(x,y,z) such that:

uadv5l“m2“V, ~44!

with “–uadv50. The vorticityv5“3uadv can thus be writ-
ten
2650 Phys. Fluids, Vol. 9, No. 9, September 1997
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v5“l3“m. ~45!

The circulationG of uadv around any contourC ~see Fig. 2!
can be written

G5 R
C

uadv
–dl5 R

C

l“m•dl5 R
C 8

ldm, ~46!

whereC 8 is the circuit in the (l,m) plane corresponding to
the circuit C in physical space~see Fig. 2!. Using Stokes’
formula, this integral can be written in the (l,m) plane as

G5E E
S8

dl`dm, ~47!

where` is the outer product andS8 is the surface enclose
by the circuitC 8. Note that, when a global Clebsch repr
sentation ~43! exists, the dynamical systemdM/ds
5v@M (s)# admits l,m as first integrals such tha
l@M (s)#5const, m@M(s)#5const. As a generic three
dimensional divergence-less vector field is nonintegrable,30 a
global Clebsch representation does not generically exist.

Equations~44! and~47! admit a simple geometrical rep
resentation in terms of vortex lines and velocity circulatio
A vortex line in physical space is mapped into a point in t
(l,m) plane. A circuitC defining a vortex tube in physica
space is mapped into a contourC 8 in the (l,m) plane. The
circulation of uadv aroundC corresponds to the surface in
sideC 8 in the (l,m) plane. This representation can be us
to construct a complex three-dimensional field with a def
line corresponding to a vortex line ofuadv. Indeed, defining
the three-dimensional field as

c~x,y,z!5c̃@l~x,y,z!,m~x,y,z!#, ~48!

where c̃(l,m) is a complex two-dimensional field with
simple zero atl5ld , m5md , the three-dimensional field
c has, by construction, a nodal line along the vortex line
uadv defined byl(x,y,z)5ld ,m(x,y,z)5md . Furthermore,
if c̃ has several simple zeroes, then the corresponding th
dimensional fieldc of ~48! will have several nodal lines.
Nore, Abid, and Brachet
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In practice, the number of zeroes ofc̃ is fixed by the
ratio of the total surface spanned on the (l,m) plane by the
defining Clebsch potentials~43! to the quantum of circula-
tion, 4pa, i.e.,

nd5F G

4pa G , ~49!

where@ # denotes the integer part of a real. See Secs. III
and IV A for a practical implementation of this procedure

2. Minimization of the modified energy functional

Under compressible fluid dynamics, the vortex array o
tained using Clebsch potentials will generally lead to a
gime containing a great deal of acoustic radiation. In orde
study vortex dynamics using NLSE, we thus need to prep
the initial data in such a way that the acoustic emission is
small as possible. We know that the RGLE~13! with an
initial data containing a nodal line converges towards
exact time-independent vortex solutioncv described in Sec
II B 2.

The procedure we have developed is a generalizatio
this property of RGLE. Our aim is to prepare an arbitra
assembly of moving vortices. To do so, we use the Galil
invariance of NLSE:

c~x,t !→c~x2uadvt,t ! exp H i Fuadv

2a
–x2

~uadv!2

4a
t G J ,

for any constant boost velocityuadv. This transformation
maps any NLSE solutionc(x,t) into another NLSE solution
whose associated velocity and density fields are Galil
transforms of those associated withc. Thus, the NLSE initial
condition cv(x) exp (iuadv/2a–x) corresponds to a vorte
translating with velocityuadv. This initial condition can be
directly obtained as a time-asymptotic solution of the adv
tive real Ginzburg–Landau equation~ARGLE!

]c

]t
5a“2c2c f 8~ ucu2!2 iuadv

–“c2
~uadv!2

4a
c ~50!

and as a minimum of the associated modified energy fu
tional

F ARGLE@c,c̄ #5E d3xS aU“c2 i
uadv

2a
cU21 f ~ ucu2! D .

~51!

Our preparation method consists of using~50! and ~51!
with a givenspace-dependentdivergence-free velocity field
uadv(x). Using the Madelung transformation~26!, ~51! reads

F ARGLE@r,v#5
1

2aE d3xH 1

2
~2a“Ar!212a f ~r!

1
1

2
r@v2uadv~x!#2J .

The last term on the right-hand side will be minimized if t
velocity v is as close as possible to the imposed advec
velocity uadv(x).
Phys. Fluids, Vol. 9, No. 9, September 1997
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D. Validations on a two-dimensional vortical test flow

In this section, we introduce a simple two-dimension
test flow: a system of four counter-rotating vortices. Th
flow is a time-independent solution of the incompressi
two-dimensional Euler equation. The trivial Eulerian dyna
ics of the test flow allows us to perform a global test of t
preparation method introduced above. Furthermore, we
velop and test a vortex counting procedure that will be u
in the three-dimensional TG flow to measure the vortex l
density.

1. Vortex array for the two-dimensional test flow

The two-dimensional vortical test flow is given by

ux
adv~x,y!5 sin ~x! cos~y!,

~52!
uy

adv~x,y!52 cos~x! sin ~y!.

The Clebsch potentials,

l~x,y!5A2 cos~x!,
~53!

m~x,y!5A2 cos~y!,

correspond to the flow~52! in the sense that“3uadv

5“l3“m52 sinx sin yẑ. l and m are chosen to be peri
odic functions of (x,y) in order to permit computations in
periodic box.

The mapping between the (x,y) plane and the (l,m)
plane is displayed in Fig. 3.

The two-dimensional complex fieldce with a simple
zero at the origin of the (l,m) plane reads

ce~l,m!5~l1 im!
tanh~Al21m2/A2j!

Al21m2
, ~54!

wherej is defined by Eq.~21!.
The system of four zeroes in the (l,m) plane displayed

in Fig. 3 corresponds to the product

c4~l,m!5ceS l2
1

A2
,m D ceS l,m2

1

A2
D

3ceS l1
1

A2
,m D ceS l,m1

1

A2
D . ~55!

According to the general procedure presented in Sec. III
based on Clebsch potentials, the appropriate initial data
the ARGLE method whennd5@G/(4pa)#54 @see Eq.~49!#
is given by

c~x,y!5c4@l~x,y!,m~x,y!#, ~56!

wherel andm are defined in~53!. For the two-dimensiona
test flow~52!, the circulation around the box@0,p#3@0,p# is
given by

G5E
0

pE
0

p

dS“3uadv54E
0

p

dx sin ~x!58. ~57!

Thus the ratio of the total circulation to the elementary d
fect’s circulation isgd58/4pa52/pa with a5cj/A2 @see
2651Nore, Abid, and Brachet
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FIG. 3. Illustration of the mapping~53! between the physical and the (l,m) plane for the two-dimensional test flow~52!. The dots represent the zeroes of~55!
in the (l,m) plane and the corresponding vortices in physical space.
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Eq. ~22!#. As we want to consider only multiples of fou
defects, the final expression for the initial data for ARGL
reads

c~x,y!5c4@l~x,y!,m~x,y!#@gd/4#. ~58!

The functionc corresponds to four multiple zeroes. The d
namics of a multiple zero under RGLE was studied in Ref
which showed that a multiple zero of ordern spontaneously
splits inton simple zeroes of order 1. The same behavio
obtained under ARGLE dynamics~see Fig. 4!.

2. Numerical results for energy spectra and spatial
distribution of vortices: Minimization procedure

All of our numerical results are obtained using pse
dospectral codes. The details of spectral representations
time-stepping schemes are explained in Appendix 1 and 2
this section, the periodic box is@0,2p#3@0,2p#.

Figure 4 shows the ARGLE converged field obtain
with coherence lengthj50.1/(8A2), sound velocityc52,
and resolutionN5512, corresponding tond548 and the ini-
tial data solutionc5c4

12. Each of the four, order-12, defec
inside the box@0,p#3@0,p# has unfolded into 12 elementar
vortices that have subsequently spread into the pattern sh
in Fig. 4.

The corresponding ARGLE converged energy spec
are displayed in Fig. 5. It can be seen by inspection of F
5~a! that, for wave numbersk>20, the compressible kineti
energy is below the other energy spectra~except for a small
region near the spectral cutoffkmax5N/2). In the same wave
number range, the energy spectra of incompressible kin
energyEkin

i , quantum energyEq , and internal energyEint

show the same overall features as the spectra of an iso
vortex computed in Sec. III B 2.

Figure 5~b! shows that the high wave number region
the incompressible momentum spectrum is well represe
by the sum of 192 vortex spectra computed in Sec. III B 2
contrast, for small wave numbers, the spectrum correspo
ing to the ARGLE converged system of vortices cannot
represented as a sum of independent vortex spectra.
2652 Phys. Fluids, Vol. 9, No. 9, September 1997
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separation between these two behaviors stems from
smallest distance between vortices. This distance can be
timated by counting on Fig. 6 16 vortices on the linex
5p/2 which corresponds to a separation wavenumberkbump

;16.
The overall behavior of the ARGLE converged spec

displayed in Fig. 5 can be understood by analogy with
reproduction of a gray-scale picture, with ink dots~as done
classically for engravings!, the spatial density of the dot
being taken to be proportional to the gray tone. The sm
wave number spectrum of the reproduction will be that of
original picture, while the large wave number spectrum w
be that of the individual dots. Thus, the incompressible
netic energy displayed in Fig. 5 contains two parts separa
by kbump: the smallk part is associated with the global mo
tion corresponding touadv and the highk part is associated
with the individual vortices. The kinetic energy spectru
associated withuadv has the value 0.25 in the wave numb
shell corresponding tok51 ~see Appendix 3 for the defini
tion of the wave number shells!. The main contribution to the
incompressible kinetic energy of the system of vortices
coming from the wave numbersk<kbump and is found to
have a value 0.251 511 close to the value 0.25 correspon
to uadv. In this way, the ARGLE converged system of vor
ces mimics the imposed advective fielduadv given by ~52!.

3. Numerical results for energy spectra and spatial
distribution of vortices: Vorticity dynamics

Starting from the ARGLE converged system of vortice
the time evolution under NLSE dynamics~4! of the different
components of the total energy is displayed in Fig. 7. T
total energy is conserved throughout the run, with a relat
maximum error at the end of the run of less than 0.2%. It c
be also seen that the compressible kinetic and quantum
ergies remain small throughout the run, compared with
incompressible kinetic energy. The principal effect is a sm
oscillatory exchange between incompressible kinetic ene
and internal energy. The angular velocity at the centex
5y5p/2 of a vortex system is given by
Nore, Abid, and Brachet
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FIG. 4. A grey-scale plot of the initial condition density (r) for the two-dimensional test flow@Eq. ~52!# with coherence lengthj50.1/(8A2), sound velocity
c52, and resolutionN5512. Each quarter of the periodicity box, mirror image of its neighbors, contains 48 point vortices rotating in the same dire
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in nondimensional units, which is of the same order of m
nitude as the oscillation period. Although small compared
the incompressible kinetic energy, the compressible kin
energy grows from 0.06% of the total energy to 2.17% at
end of the run. Thus a very small amount of acoustic em
sion has taken place.

The corresponding evolution in physical space is a d
ferential rotation of each of the four vortex systems~with the
sign of rotation shown on Fig. 3!. The state at timet515 is
displayed in Fig. 6 which shows that the number of vortic
remain constant. The energy spectra at timet515 are dis-
played in Fig. 8. One of the main differences when compa
to the spectra at timet50 ~see Fig. 5! is the growth of the
compressible kinetic energy associated with the sm
amount of acoustic emission. The incompressible kinetic
ergy in the interval 1<k<kbump, which corresponds to the
Phys. Fluids, Vol. 9, No. 9, September 1997

Downloaded 12 Jan 2001  to 129.199.120.5.  Redistribution subject t
-
o
ic
e
-

-

s

d

ll
n-

large scales, decreases steeply. Indeed, a fit with a powe
(Ekin

i 5Ak2n) gives an exponentn;4.6.
Finally, to close this section, we introduce and valida

the procedures that will be used in the Sec. IV to measure
total length of vortices in the three-dimensional flow. For t
simple two-dimensional test flow~52!, these procedures con
sist merely of counting the total number of vortices, a co
stant throughout the run. We have used two different pro
dures:

~a! A fit of the incompressible momentum density spe
trum Ji at high wave numbers~in the range 30<k
<170) with the corresponding spectrumJvort(k) of an
individual vortex computed in Sec. III B 2@see Fig.
1~b!#. The ratio of the integrals of the two spectra in th
fitting range defines the number of vortices:

nd5
(k530

170 Ji~k!

*30
170Jvort~k!dk

. ~59!
2653Nore, Abid, and Brachet
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FIG. 5. Energy and incompressible momentum density spectra at timet50 ~same conditions as Fig. 4!. ~a! Incompressible kinetic energyEkin

i ~solid!,
compressible kinetic energyEkin

c ~dot-dashed!, quantum energyEq ~dashed!, and internal energyEint ~long–dashed!. ~b! Incompressible momentum densit
spectrumJi5(rv) inc ~dot-dashed!. Solid line is the momentum density spectrum of a single vortex@see Fig. 1~b!# multiplied by 192. Note that for wave
numbers greater thankbump;16 the two curves coincide.
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We have checked that~data not shown! the value and the
evolution ofnd do not change when the lowest value of t
fit interval is varied, provided that it is of the order of~or
larger than! 2kbump.

~b! The ratio of the ‘‘enstrophies’’ which gives

nd5
(k50

N/2 k2Ji~k!

E 0
`k2Jvort~k!dk

. ~60!

The results of the two procedures are shown in Fig. 9 wh
it can be seen that, at large time, the fitting procedure~59! is
somewhat more precise. As we will be comparing the res
of the NLSE runs to the TG viscous incompressible ones,
will call in the remainder of the article the quantit
(k50

N/2 k2Ji(k) enstrophy.
The main result of this section is the global validation

our preparation and data analysis procedures. The vortex
tem has been shown to reproduce the Eulerian dynamics
responding to a differential rotation with constant angu
frequency. The amount of acoustic emission was found to
small and our vortex counting procedure was validated.

IV. NUMERICAL EVIDENCE FOR KOLMOGOROV
TURBULENCE

The flow studied in this section — namely the Taylo
Green vortex defined below — is a reference flow in t
numerical study of turbulence in the Navier–Stok
equations.28

A Clebsch representation of the Taylor–Green flow
given. This representation is used to generate a vortex-
array, whose ARGLE-converged nonlinear wave field ob
all the TG symmetries, and is well resolved numerica
including an exponential spectral falloff at high wave nu
bers.
2654 Phys. Fluids, Vol. 9, No. 9, September 1997
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This vortex-line array is used as an initial condition f
NLSE simulations computed with a specialized pseudosp
tral code, making use of the TG symmetries to speed up
computations and optimize the memory size, which is
scribed in Appendix 1.

We then compare the three-dimensional NLSE vor
dynamics, to previously published high-resolution simu
tions of the TG flow.19–21 Evidence for Kolmogorov turbu-
lence in NLSE is discussed.

A. Definition of the Taylor–Green flow and the
associated vortex array

The TG flow is defined by the following advective ve
locity;

ux
adv~x,y,z!5 sin ~x! cos~y! cos~z!,

uy
adv~x,y,z!52 cos~x! sin ~y! cos~z!, ~61!

uz
adv~x,y,z!50.

Note that the solution of the incompressible Euler eq
tion with initial data~61! has a vertical velocity componen
uz(x,y,z)Þ0 for tÞ0. The flow that develops from~61! is
thus a truly tridimensional flow. The TG flow was first intro
duced in Ref. 18 to study vortex stretching.

The Clebsch potentials

l~x,y,z!5 cos~x!A2 ucos~z!u,
~62!

m~x,y,z!5 cos~y!A2 ucos~z!u sgn@cos~z!#,

~where sgn gives the sign of its argument! correspond to the
flow ~61! in the sense that“3uadv5 “l3“m.

The mapping between physical space (x,y,z) and the
(l,m) plane is displayed in Fig. 10. Only 1/8 of the tot
Nore, Abid, and Brachet
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FIG. 6. Same as Fig. 4 but at timet515. The number of vortices has remained constant.
a

FIG. 7. Time evolution of total energyEtot ~dot-dashed!, incompressible
kinetic energyEkin

i ~solid line!, compressible kinetic energyEkin
c ~dotted!,

quantum energyEq ~dashed!, and internal energyEint ~long–dashed!. Note
the small oscillatory exchange between incompressible kinetic energy
internal energy while other energies remain negligible.
Phys. Fluids, Vol. 9, No. 9, September 1997
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periodicity box @0,2p#3@0,2p#3@0,2p# is shown on the
left side of this figure. The rest of the field can be obtain
by reflection in the boundaries of the picture. The extend
vortex lines are thus closed vortex rings. The zeroes in
(l,m) plane are defined in the same way as in the tw
dimensional test case@see Eqs.~54! and~55! and Fig. 3#. The
appropriate initial data for the ARGLE method presented
Sec. III C 2 withnd5@G/(4pa)#54 @see Eq.~49!# is given
by

c~x,y,z!5c4@l~x,y,z!,m~x,y,z!#, ~63!

wherel and m are defined in~62! and c4 is the function
defined in Eq.~55!. For the TG flow~61!, the circulation
around the box@0,p#3@0,p# on thez50 plane~see circuit
C in Fig. 10! is given by

G5E
0

pE
0

p

dS“3uadv54E
0

p

dx sin ~x!58. ~64!

FIG. 9. Time evolution of the number of point vortices in the tw
dimensional test flow~52! determined by two different procedures.~a! A fit
of the incompressible momentum density spectrum~squares!. The fit is per-
formed for 30<k<170, see Fig. 5~b!. ~b! The ratio of the total ‘‘enstrophy’’
and the enstrophy due to a single point vortex~circles!. The fitting procedure
~a! yields the original number of vortices~192! with an error of about
5%.
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Thus the ratio of the total circulation to the elementary d
fect’s circulation isgd58/4pa52/pa with a5cj/A2 @see
Eq. ~21!#. The final expression for the initial data fo
ARGLE reads

c~x,y,z!5c4@l~x,y,z!,m~x,y,z!#@gd/4#. ~65!

Thus each line in Fig. 10 corresponds to a multiple zero l
which, under ARGLE dynamics, will spontaneously sp
into @1/2pa# single zero lines~see Fig. 11!.

These formulas, when restricted toz50, are equivalent
to the formulas~54!, ~55!, ~58! of the two-dimensional case
The presence of theAucos (z)u factor in~62! is responsible for
the curvature of the vortex lines seen in Fig. 10. It is sho
in Appendix 1 that~65! is fully compatible with the symme-
tries of the TG flow.

B. Numerical results for the minimization procedure

Figure 11 shows a three-dimensional visualization of
ARGLE converged field obtained with coherence lengthj
50.1/(8A2), sound velocityc52, and resolutionN5512,
corresponding tond548 and the initial data solutionc
5c4

12. The eight, order-12, lines~see Fig. 10! have unfolded
and converged into the vortex array displayed in Fig. 11.

The corresponding ARGLE-converged energy spec
are shown in Fig. 12~a!. They are remarkably similar to th
spectra corresponding to the two-dimensional test flow~see
Fig. 5!. Figure 12~b! shows the incompressible momentu
density spectrumJi(k). The high k part of this spectrum
shows a conspicuous exponential decrease typical o
smooth well-resolved field. This proves that the ARGLE d
namics has rubbed out the lack of analyticity of the Clebs
initial data ~62!.

The radius of curvature of the vortex lines in Fig. 11
large compared to their radius. Thus these three-dimensi
lines can be considered as straight, and then compared
collection of two-dimensional axisymmetric vortices insid
the periodicity box @0,2p#3@0,2p#3@0,2p#. Indeed, for
large wave numbers, the incompressible momentum den
e
FIG. 10. Illustration of the mapping~62! between physical space and (l,m) plane for the Taylor–Green flow~61!. The dots represent the zeros in th
(l,m) plane corresponding to vortex lines in physical space. Note that only 1/8 of the total periodicity box@0,2p#3@0,2p#3@0,2p# is shown on the left. The
rest of the field can be obtained by mirror reflection in the boundaries of the picture. The vortex lines are thus closed rings.
Nore, Abid, and Brachet
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spectrumJi(k) of Fig. 12~b! is well represented by multiply-
ing the spectrumJvort(k) of a single two-dimensional point
vortex by a factor,

l

2p
5

(k530
170 Ji~k!

*30
170Jvort~k! dk

. ~66!

FIG. 11. Three-dimensional visualization of the vector field¹3(rv) of the
initial data for the Taylor–Green flow with coherence lengthj
50.1/(8A2), sound velocityc52, and N5512 in the impermeable box
@0,p#3@0,p#3@0,p#. Direction of vector field at each point is indicated by
orientation of small rods.
Phys. Fluids, Vol. 9, No. 9, September 1997
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This constant of proportionality is related to the lengthl of
the three-dimensional vortex lines and to the length 2p of a
single two-dimensional point vortex seen in the thre
dimensional periodicity box of side 2p. This factor~66! is
then equal to the total number of three-dimensional vor
lines @just as it is equal to the total number of point vortic
in the two-dimensional test flow, see~59! and the comment
below#. This fitting procedure allows us to determine th
total length of vortex linesl .

We have performed a series of ARGLE runs correspo
ing to various resolutions, and parameters are summarize
Table I. Here and in the remainder of the article, the veloc
of sound is set toc52 unless otherwise specified.

Table I shows that, asj decreases~which requires an
increase in resolution!, the incompressible kinetic energ
converges towards the value 0.125 associated with the
vortex ~61!. The other energies decrease as the resolu
increases.

On the other hand, the total vortex lengthl and the total
enstrophy increase. These two quantities are related@see
~60!#. The lengthl can also be defined~although in a some-
what less precise way, see Fig. 9! as the ratio of the enstro
phies:

l

2p
5

(k50
N/2 k2Ji~k!

*0
`k2Jvort~k! dk

. ~67!

The main conclusion that can be drawn from inspection
Table I is that our initial data preparation method describ
in Sec. III C constructs vortical flows whose incompressib
kinetic energy converges towards the nominal TG va
0.125 asj decreases, while the other components of the
ergy tend to zero. In contrast, in this limit, the total enstrop
y

FIG. 12. Energy and incompressible momentum density spectra at timet50 ~same conditions as Fig. 11!. ~a! Incompressible kinetic energyEkin

i ~solid!,
compressible kinetic energyEkin

c ~dot-dashed!, quantum energyEq ~dashed!, and internal energyEint ~long–dashed!. ~b! Incompressible momentum densit
spectrum. Solid line is the momentum density spectrum of a single two-dimensional point vortex@Fig.1~b! multiplied by a factorl /(2p)] determined by a fit
at highk. This fitting procedure leads to the total vortex length in the periodicity box@see text, Eq.~59!#.
2657Nore, Abid, and Brachet
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.

n-
(k50
N/2 k2Ji(k) increases with the total length of vortices. Th

large value ofl in run d is related to the large number o
lines present in Fig. 11.

The increase of the total vortex lengthl with the resolu-
tion can be estimated by the following argument. In order
maintain accuracy, whenj is decreased,N is increased as
(N/2p);0.723j21. Using ~22!, we obtain a;(c/A2)
3(2p/N)30.72. Note thatl /2p defined in~66! is the num-
ber of defect lines crossing thez50 plane inside the
@0,2p#3@0,2p# (x,y) box. This number is four times th
number of defects inside the@0,p#3@0,p# box, given by
8/4pa @see~64! and ~65!#. Thus the total vortex length in
creases with the resolution as

l

2p
;

32N

~2p!2A2c30.72
. ~68!

In order to check that the runs of Table I are adequa
resolved, we have compared the results of several ARG
runs with different resolutions but the same values ofc and
j. Table II shows that theN5128 run corresponding to
value of j/Dx50.72 ~where Dx52p/N denotes the mesh
size!, is well converged. It is this value ofj/Dx that has been
used in all the other runs presented in this paper. That
resolution is adequate is confirmed by inspection of the sp
trum of Fig. 12~b! showing an exponential tail for most o
the large-k regime.

TABLE I. Characteristics of the ARGLE runs that will be used as init
data for the NLSE dynamics. The values of the energies, enstrophy,
vortex length are indicated at the final timet5TARGLE .

Run a b c d

Resolution 128 256 400 512
j 0.1/(2A2) 0.1/(4A2) 0.1/(6.25A2) 0.1/(8A2)
TARGLE 60 60 15 60
dtARGLE 0.025 0.0125 0.008 0.006 25
Ekin

i 0.129 022 0.129 603 0.126 182 0.124 262
Ekin

c 0.000 488 0.000 26 0.000 358 0.000 129
Eq 0.007 925 0.004 598 0.003 173 0.002 382
Eint 0.013 004 0.007 772 0.005 444 0.004 099
Enstrophy 6.357 064 14.544 741 24.084 934 30.105 9
l /2p 36.584 050 83.703 032 138.605 561 177.864

TABLE II. Characteristics of the ARGLE runs used to check resolution

Run j a8 k

Resolution 64 128 256
j 0.1/(2A2) 0.1/(2A2) 0.1/(2A2)
TARGLE 30 30 30
dtARGLE 0.05 0.025 0.0125
Ekin

i 0.128 984 0.129 041 0.129 570
Ekin

c 0.011 971 0.000 488 0.000 272
Eq 0.087 639 0.007 926 0.007 804
Eint 0.401 425 0.013 005 0.013 028
Enstrophy 9.749 363 6.357 759 6.356 975
l /2p 56.106 275 36.588 050 36.583 538
2658 Phys. Fluids, Vol. 9, No. 9, September 1997

Downloaded 12 Jan 2001  to 129.199.120.5.  Redistribution subject t
o

ly
E

is
c-

C. Numerical results for the vorticity dynamics

Perhaps the most striking result of the three-dimension
vortex dynamics is that NLSE dynamics manages to transf
a sizeable amount of the flow’s incompressible kinetic en
ergy into other energy components. This behavior is di
played in Fig. 13 which shows the time evolution of the
different components of the total energy for rund. In sharp
contrast with the two-dimensional vortical flow evolution
shown in Fig. 6, an irreversible transfer of incompressibl
kinetic energy into compressible kinetic, quantum, and inte
nal energies is manifest in Fig. 13.

One of the main quantitative results of this article is th
excellent agreement of the incompressible kinetic energy d
sipation rate shown on Fig. 14~b! with the corresponding
data in the incompressible viscous TG flow@Ref. 19, Fig. 7,
Ref. 21, Fig. 1~b!, and Ref. 28, Fig. 5.12#. Both the time for
maximum energy dissipationtmax;5–10 and the value of the
dissipation rate at that timee(tmax);1022 are in quantitative
agreement.

In the limit of decreasing j, the coordinates
(tmax,e(tmax)) of the maximum energy dissipation show a
weak dependence onj. This is remarkably similar to the
weak dependence of the corresponding viscous quantity
the limit of viscosityn going to zero. In the viscous case, the
weak dependence inn of e(tmax) is considered a hallmark of
numerical evidence for a Kolmogorov regime in decayin
turbulence.28 By inspection of Fig. 14~b! for run d, tmax;8,
while the first inflection point ofe(t) is in the range 4,t,5
and corresponds on Fig. 14~a! to the beginning of an appre-
ciable decrease of the incompressible kinetic energy. Th
change of behavior is probably linked to the vortex recon
nections that begin att;5 ~see following!.

Another important quantity studied in viscous decayin
turbulence is the scaling of the kinetic energy spectrum du

nd

FIG. 13. Time evolution of total energyEtot ~dot-dashed!, incompressible
kinetic energyEkin

i ~solid!, compressible kinetic energyEkin
c ~dotted!, quan-

tum energyEq ~dashed!, and internal energyEint ~long–dashed! for run d.
Note the transfer of energy from the incompressible part to the other co
tributions.
Nore, Abid, and Brachet
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FIG. 14. Evolution of the total incompressible kinetic energy in the Taylor–Green flow: run a withj50.1/(2A2) andN5128 ~long–dashed!, run b with
j50.1/(4A2) andN5256 ~dashed!, run c with j50.1/(6.25A2) andN5400 ~dot-dashed! and run d withj50.1/(8A2) andN5512 ~solid!. Figure 14~a!
showsEkin

i and Fig. 14~b! the associated dissipation2dEkin
i /dt. Note thatEkin

i becomes independent ofj as j decreases and that the time of maximu
dissipationtmax is shifted fromtmax;6 for run a totmax;10 for other runs.
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ing time evolution, particularly at the time of maximum e
ergy dissipation where ak25/3 range can be observed~see
Ref. 19, Fig. 16!.

The time evolution of the energy spectra in the NLS
case are displayed in Fig. 15. One can observe a smak
buildup of the incompressible kinetic energy spectra an
high k buildup of the compressible kinetic energy spect
The overall effect of the energy transfers at large time~see
Fig. 15! is that a part of the large-scale original incompre
ible kinetic energy has fed the other energy component
higher wave numbers. In the same way as explained in
two-dimensional case~see discussion in Sec. III D 2!, the
high k region, k>kbump;16, of all the energy spectra~ex-
cept the compressible kinetic energy spectrum! can be attrib-
uted to the contribution of the individual vortex lines. Th
small k region, k<kbump;16, is associated with motion a
scales larger than the vortex lines separation. The evolu
in time of the exponentn(t) of the spectral fit Ekin

i

5A(t)k2 n(t) is displayed in Fig. 16~a! for different spectral
fitting intervals. It can be seen on Fig. 16~a! that the spectra
exponent is comparable with the Kolmogorov valuen55/3
for times close totmax. An example of a fit in this regime is
given in Fig. 16~b!. Note that a similar fit performed at th
end of the NLSE run in the two-dimensional test flow gav
much steeper exponent of 4.6~see Sec. III D 3!. Although
the fits were actually performed on very narrow wave nu
ber intervals, it is tempting to speculate on the scalings
would be observed with a larger value ofkbump than the one
we can reach with our maximum resolution. First, let
remark that a fit done on an interval at the right ofkbump

would yield n;1, the correct value for an isolated vorte
~see the discussion at the end of Sec. III B 2!. This might
explain the systematic lower value for the computedn(t)
when the fit range is increased up tokbump;16. Second, it
Phys. Fluids, Vol. 9, No. 9, September 1997
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can be seen on Fig. 16 that this systematic deviation un
goes a sharp decrease aftert;4. This might be related to the
onset of vortex reconnection~see following!. We thus specu-
late that it is not unreasonable to expect to find Kolmogo
scaling within that range in an asymptotic regime whe
kbump is much larger than the integral scale wave numbe

A striking difference between the behavior of the thre
dimensional NLSE dynamics spectra and the tw
dimensional vortical flow spectra is the evolution of the to
length of vortices in the three-dimensional flow. In contra
to the corresponding two-dimensional quantity, namely
number of point vortices defined through Eq.~59! or Eq.~60!
that remain almost constant in time~see Fig. 9!, the three-
dimensional total length of vortices defined through Eq.~67!
or Eq. ~66! displays an increase in time by a factor 3
shown in Fig. 17. This difference of behavior between t
two- and the three-dimensional cases can be related to vo
stretching, classically present in the three-dimensional c
and absent in the two-dimensional case.

The early time behavior of the vortex lines is shown
Figs. 18~a! and 18~b!. It can be seen by inspection of thes
figures that the vortex lines have been distorted but no
connection has yet taken place.

The standard classical argument concerning vor
stretching by a large scale incompressible flow can be
tended to an assembly of parallel NLSE vortex lines. I
cylinder of base,s1, and length,L1, containingn vortex lines
parallel to its generators, is stretched along the vortex li
by a large-scale incompressible flow into a cylinder of ba
s2, and length,L2, volume conservation implies thats1L1

5s2L2 with s2,s1 andL2.L1. Thus a large-scale stretch
ing is trivially accompanied by an increase of total length
NLSE vortices. Note that this is a property of thecollection
of NLSE vortices: an individual vortex line, when stretche
2659Nore, Abid, and Brachet
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FIG. 15. Energy spectra for run d: incompressible kinetic energyEkin

i ~solid!, compressible kinetic energyEkin
c ~dot-dashed!, quantum energyEq ~dashed!, and

internal energyEint ~long–dashed!. ~a! t50; ~b! t52; ~c! t54; ~d! t56; ~e! t58, and~f! t510. Note the transfer of incompressible energy towards ot
energies and the buildup of the compressible kinetic energy spectrum at largek.
s

tex
the

ex
keeps its circulation 4pa and its typical diameterj constant,
whereas the diameter of the collection decreases and thu
vortex line density increases.

Consequently, the short time (0<t<4) increase of total
2660 Phys. Fluids, Vol. 9, No. 9, September 1997
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vortex lines seen in Fig. 17 can be related to the vor
stretching classically present in the TG vortex. Indeed
global flow evolution seen in Figs. 18~a! and 18~b! is iden-
tical to the early time inviscid dynamics dominated by vort
Nore, Abid, and Brachet
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als
FIG. 16. Exponentn(t) in the spectral fitEkin
i (k)5A(t)k2 n(t) for run d. ~a! Comparesn(t) computed from least-square fits over wave number interv

2<k<12 ~triangles!, 2<k<14 ~circles!, and 2<k<16 ~squares!. ~b! Solid line shows least-square fit over 2<k<16 at timet55.5 @with A(5.5)50.08 and
n(5.5)51.70].
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stretching near the walls of the impermeable box which
described in Refs. 19 and 31. Such a similarity is not surp
ing since it can be demonstrated that isolated NLSE vo
lines follow Eulerian dynamics.8 Thus the short time evolu
tion of the NLSE flow mimics the continuous Eulerian flo
in the same way that classical vortex line element meth
are used to simulate Euler equations.32,33

However, this analogy cannot cope with vortex reco
nection. Indeed it is well known that the main limitation
vortex line element methods is that the calculation must
stopped, after a finite time, when too much stretching ta
place at some location.

Detailed visualizations of the NLSE results~data not
shown! show that many reconnections take place through

FIG. 17. Vortex filament length divided by 2p in run d. This length is
determined by the two procedures illustrated in Fig. 9. Solid and das
curves show results of procedure~a! ~59! and procedure~b! ~60!, respec-
tively. Because of vortex stretching, the total length has increased b
factor of 3, in contrast to the two-dimensional case.
Phys. Fluids, Vol. 9, No. 9, September 1997
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the flow aftert;5. The resulting rather intricate vortex lin
tangle is shown in Figs. 18~c!, 18~d!, 18~e!, and 18~f!. Note
that, in the evolution of the viscous TG vortex,19 there is also
a qualitative~and a quantitative! change in vortex dynamics
aroundt;5.

Because of the high complexity of the vortex tangle f
t>5, it is convenient to define a space-averaged quan
v f , which is the curl of the filtered momentum densit
(rv j ) f , defined as follows:

~rv j
ˆ ! f~k!

5H ~rv j
ˆ ! f~k! for kx<kmax, ky<kmax, kz<kmax

~with kmax516!

0, otherwise.

The isosurfaces ofv f that are displayed in Fig. 19 can b
directly compared to Fig. 16–19 of Ref. 19. Both the NLS
and the viscous figures show a similar evolution of the s
tial localization of turbulent activity. Att55, the activity is
localized within vortices close to the midsectionz5p/2 of
the walls (x5y50,p) of the impermeable boxx50,p, y
50,p, z50,p. In both cases, after a transient att;6, the
turbulent activity spreads into a substantial fraction of t
impermeable box. As discussed in detail in Ref. 19, it
known that viscous reconnection processes are of prime
portance in understanding the complex later-time dynam
in the TG vortex.

The similarity of the energy transfer and spectral beh
ior between the NLSE and viscous TG vortices in the int
val 5<t<10 ~see Figs. 14 and 16 together with their corr

d

a
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FIG. 18. Three-dimensional visualizations of¹3(rv) for the Taylor–Green flow at various times with coherence lengthj50.1/(8A2) andN5512 in the
impermeable box@0,p#3@0,p#3@0,p#: ~a! t52; ~b! t54; ~c! t56; ~d! t58; ~e! t510; and~f! t512.
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sponding Figs. 7 and 9 in Ref. 19! is thus quite remarkable
A possible tentative interpretation could be that, althou
vortex line reconnection is necessary to reach this late-t
regime, the detailed physical reconnection mechanisms
largely irrelevant. This would explain the observed quant
tive similarity of the overall depletion of incompressible k
netic energy, despite the obviously different viscous and
persive reconnection processes.

D. Discussion

As seen in the previous section, the spectral behavio
NLSE can be compared to viscous turbulence only fok
<kbump. It is thus of interest to estimate the scaling ofkbump

in terms of the characteristic parameters of the large s
2662 Phys. Fluids, Vol. 9, No. 9, September 1997
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flow and of the fluid. It was noted, in Sec. III D 2, tha
kbump;dbump

21 , wheredbump is the average distance betwee
neighbor vortices. The flow parameters are the character
integral scale l 0 ~with corresponding wave numberk0

; l 0
21) and the characteristic large-scale velocityu0 which

are, in the case of the TG flow,l 0;1 andu0;1. The fluid
characteristics are the sound velocityc and the coherence
lengthj ~with corresponding wave numberkj;j21). Using
the expression~49! for the number of defectsnd and the
relationG; l 0u0, one finds

nd;
l 0u0

cj
. ~69!
Nore, Abid, and Brachet
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FIG. 19. Three-dimensional perspective plots of volumes in whichuv f u2>0.6 uv f umax
2 , wherev f is the curl of the filtered momentum density (rv j ) f ~see

text!. Parameters as in Fig. 18;~a! t54, ~b! t55, ~c! t56, ~d! t57, ~e! t58, and~f! t59.
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Assuming that the vortices are uniformly spread over
large scale areal 0

2, one obtains

nd;
l 0
2

dbump
2

. ~70!

Equating these two evaluations ofnd yields the relation

dbump;A~c/u0!j l 0, ~71!

or, in terms of wave numbers and Mach numberM5u0 /c,

kbump;AMk0kj. ~72!

At a given value of the Mach number and of the integ
scale, Eq.~72! shows that the range over which NLSE b
havior can be compared to viscous turbulence increase
Phys. Fluids, Vol. 9, No. 9, September 1997
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Akj. However, when running a numerical computation, o
must fix k0 to the smallest wave number andkj to the larg-
est. Thus, the range is in fact limited byAMk0kj, and, in
order to maximize it,M should as large as possible. How
ever,M is bounded by the requirement that acoustic wa
generated by compressibility do not dominate the dynam

1. Compressibility effects

All the vorticity dynamics results presented so far we
performed withc52 corresponding to a rms Mach numbe
M rms[uurms

advu/c50.25. It is known that, in compressible tu
bulence, the compressibility effects become noticeable
M rms>0.3.34 In the present study, we have compared t
NLSE results with the published incompressible viscous
2663Nore, Abid, and Brachet

o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



y
ac

he
t

h
e
th
hi
um
ea

m

i
o

e-

e
lu
so

nt

o
th
ee
n
n

-
a

ry
-
d
to
er
.
t

ly
re
ho

in
and
rs:

ed

ion

s.

the
ing
x

re-
of

e of

in
in

e, at

and
he
as

as
ni-

v
f
n

s of
low
e-

9
2

results. An interesting project, that is left for further stud
would be to compare the NLSE results, at a given rms M
number, with the correspondingcompressibleviscous TG
vortex. In order to ascertain compressibility effects in t
NLSE simulations, we have performed several runs aN
5256 andj50.1/(2A2), with various values ofM rms.

Table III shows the effect of variation of the rms Mac
number on the ARGLE converged results. The principal
fect of decreasingM rms is to decrease the total vortex leng
l . The incompressible kinetic energy is almost constant w
the compressible kinetic energy is negligible. The quant
and internal energies, although small, are seen to incr
whenM rms goes to zero.

As it is very costly to decrease theM rms while maintain-
ing the number of vortices constant, we checked that co
pressibility effects would dominate forM rms>0.3. The en-
ergy dissipations corresponding to Table III are displayed
Fig. 20. It can be seen on this figure that the maxima
dissipation corresponding toM rms50.5 andM rms50.33 oc-
cur at earlier times~respectively, 2 and 5) than those corr
sponding toM rms50.25 andM rms50.125 ~respectively, 10
and 7). Thus, forM rms>0.25, compressibility effects ar
seen to affect the early time dynamics. This is why the va
of M rms50.25 was used as a compromise in the high re
lution computations of Sec. IV.

2. Evidence for universality of reconnection
processes

The number and complexity of the reconnection eve
leading from the simple ordered state displayed in Fig. 18~a!
to the complex vortex tangle shown in Fig. 18~f! is so great
that a detailed understanding of its formation seems imp
sible. We were led in the previous section to speculate
there should be a certain amount of universality betw
Navier–Stokes reconnection processes and NLSE recon
tion processes. In this section, we test this hypothesis o
simpler flow where reconnection events are tractable.

It is well known, both experimentally35 and numerically
using the Navier–Stokes equations,36 that the secondary in
stability of three-dimensional round jets leads to the form
tion of sidejets. The formation of the primary~Kelvin–
Helmoltz! instability and the early onset of the seconda
instability ~when pairs of axially counter-rotating vortex fila
ments appear! can be explained by basically invisci
mechanisms.33 However reconnection is crucial in order
allow the separation and migration of pairs of count
rotating vortex filaments away from the axis of the jet36

Thus vortex line element methods are unable to capture
later part of the secondary instability dynamics.

In order to ascertain the ability of NLSE to qualitative
reproduce the postreconnection development of a th
dimensional round jet’s secondary instabilities, we have c
sen to study a jet defined by Michalke.37 The velocity profile
is

U~r !5
U0

2 F11tanhS R~12r /R!

2u D G , ~73!
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where U0 is the centerline velocity on the jet axisx, r

5Ay21z2 is the radial coordinate,u is the momentum thick-
ness, andR is the jet radius. We have simulated the NLSE
the geometry adapted to the jet as described in Ref. 13
performed several runs with the following jet paramete
U051;u50.16;R51; andc51.25;j50.05/A2.

The corresponding unperturbed ARGLE converg
state,c jet , is shown in Fig. 21~a! to consist of an array of
vortex rings. The converged three-dimensional jet solut
c jet is then perturbed via

c~x,r !5c jet~x,r !1eU–“c jet~x,r !.

An axisymmetric perturbation velocityU leads to the pri-
mary Kelvin-Helmoltz instability shown in Fig. 21~b!. The
addition of a small nonaxisymmetric component toU as in
the viscous computations36 leads to the states shown in Fig
21~c! and 22.

These final states display a striking resemblance with
viscous results shown in Ref. 36. Pairs of counter-rotat
axial vortices give rise to the outwardly migrating vorte
rings shown in Fig. 22 as in the viscous calculations.

Although the results presented in this section are p
liminary, they nevertheless strongly support the conjecture
universality of reconnection processes, at least in the cas
secondary instabilities of free-shear flows.

V. CONCLUSION

The main result of the NLSE simulations presented
this paper is that two diagnostics of Kolmogorov’s regime
decaying turbulence are satisfied. These diagnostics ar
the time of the maximum of energy dissipation;~i! a
parameter-independent kinetic energy dissipation rate,
~ii ! a k25/3 spectral scaling in the inertial range. Thus, t
NLSE simulations were shown to be very similar, as far
energetics is concerned, with the viscous simulations.

Experimentally, towed grid superfluid turbulence h
been used in helium II to probe the decay of eddies by mo
toring the attenuation of second sound.17 It was found that
the line density of quantum vortices follow the Kolmogoro
law v;t23/2. This result was interpreted by the locking o
the normal fluid and the superfluid via mutual friction. A
experiment that would correspond to the numerical result
the present article should be performed at a temperature
enough for the normal component of the flow to be n

TABLE III. Characteristics of the ARGLE runs withN5256 and j
50.1/(4A2).

Run e f b g

c 1 1.5 2 4
M rms 0.5 0.33 0.25 0.125

TARGLE 60 60 60 60
dtARGLE 0.0125 0.0167 0.0125 0.0125

Ekin
i 0.122 360 0.125 479 0.129 603 0.140 687

Ekin
c 0.000 756 0.000 265 0.000 26 0.000 273

Eq 0.002 582 0.003 598 0.004 598 0.007 597
Eint 0.004 560 0.006 008 0.007 772 0.013 079

Enstrophy 8.573 721 11.596 907 14.544 741 23.687 03
l /2p 197.362 453 118.646 476 83.703 032 34.078 93
Nore, Abid, and Brachet
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glected. In this low temperature regime, second sound
tenuation measurements cannot be performed.

In the case of helium, the viscosity at the critical po
(T55.174 K, P52.23105 Pa! is given by ncp50.27
31027 m2 s21. The quantum of circulation,G5h/mHe has
the value 0.9931027 m2 s21. Thus, ncp;0.25G. Using G

; l 0u0 and ~71!, one findsdbump; l 0 /ARcp; l l whereRcp is
the integral scale Reynolds number at the critical point a
l l the Taylor microscale. In other words, the value ofdbump

in a superfluid helium experiment performed atT51 K is
thus of the same order as the Taylor microscale in the s
experimental setup run with viscous helium at the criti
point.38

Preliminary measurement@J. Maurer,~private communi-
cation!# in the swirling flow of Ref. 23 did not seem to sho
a significant change in energy dissipation for temperature
low as 1.6 K, where the normal fluid and the superfluid are
the same proportion. It would be interesting to know if th
behavior persists atT,1 K. A Kolmogorov regime at such a
low temperature was predicted in Ref. 39 based on a sim
fied model of a self-crossing vortex line.

An open interesting question is to know how far t
analogy between superfluid and ordinary turbulence can
pushed. In particular, in the field of viscous turbulence, it
well known that Kolmogorov’s theory is only approximat
since it neglects intermittency.28 Inertial range ‘‘intermit-
tency corrections’’ are routinely measured40,23,41,42on veloci-
metry data, by looking at the scaling of high order mome
of velocity increments. If the corresponding superfluid qua
tities could be measured experimentally~this would suppose
the existence of a velocimetry probe working belowT51
K!, significant differences might appear.

Another point is that Kolmogorov’s scaling still elude
the derivation from first principles, i.e., from the Navier

FIG. 20. Incompressible kinetic energy dissipation,2dEkin
i /dt, under NLSE

dynamics: c51 ~dotted!; c51.5 ~dot-dashed!; c52 ~solid! and c54
~dashed!. All runs are performed withN5256 andj50.1/(4A2) ~see Table
III !.
Phys. Fluids, Vol. 9, No. 9, September 1997
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Stokes equations.28 This is a baffling situation, because al-
though approximate, Kolmogorov’s scaling is well supported
experimentally. There is some hope that NLSE could she
new light on these hard problems.
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APPENDIX: NUMERICAL METHODS

We have chosen to use pseudospectral methods both
their precision and for their ease of implementation.43 For
NLSE, we use the fractional step method described in Re
44. Our numerical methods are thus standard; their only sp
cialty stems from the conjunction of the Taylor–Green sym
metries with NLSE.

FIG. 21. Three-dimensional visualizations of¹3(rv): ~a! initial three-
dimensional round jet;~b! large ring resulted from the Kelvin-Helmholtz
instability; ~c! secondary instability. Note the formation of axial contra-
rotating vortex filaments.
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1. Taylor–Green spectral representation for NLSE

a. Taylor –Green spectral representation

The symmetries of the TG velocity field~61! imple-
mented in the code are rotational symmetry of anglep
around the axis (x5z5p/2), (y5z5p/2), and (x5y
5p/2) and mirror symmetry with respect to the planesx
50,p, y50,p, z50,p. The advective velocity is parallel to
these planes that form the sides of theimpermeable box
which confines the flow. It is demonstrated in Ref. 19 th
these symmetries are equivalent to the following Fourier
pansions for the velocity fieldu(x,y,z,t), solution of the
Navier–Stokes equations with initial datauadv ~61!:

ux~x,y,z,t !5 (
m50

`

(
n50

`

(
p50

`

ûx~m,n,p,t !

3sin mx cosny cospz,

uy~x,y,z,t !5 (
m50

`

(
n50

`

(
p50

`

ûy~m,n,p,t !

3cosmx sin ny cospz, ~A1!

uz~x,y,z,t !5 (
m50

`

(
n50

`

(
p50

`

ûz~m,n,p,t !

3cosmx cosny sin pz

whereû(m,n,p,t) vanishes unlessm,n,p are either all even
or all odd integers. There exist additional relationships
tween the expansion coefficients corresponding to the r
tional symmetry of anglep/2 around the axis (x5y5p/2):

ûx~m,n,p,t !5~21!r 11ûy~n,m,p,t !,
~A2!

ûz~m,n,p,t !5~21!r 11ûz~n,m,p,t !

wherer 51 whenm,n,p are all even andr 52 whenm,n,p
are all odd.

FIG. 22. Reconnection after secondary instability of a three-dimensi
round jet: note the formation of radially propagating small rings wh
correspond to side jets.
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It is easy to show that expressions~A1! applied torv j

@see Eq.~26!# correspond to the following decomposition fo
the complex scalarc(x,y,z,t), solution of NLSE:

c~x,y,z,t !5 (
m50

`

(
n50

`

(
p50

`

ĉ~m,n,p,t !

3cosmx cosny cospz, ~A3!

with ĉ(m,n,p,t)50 unlessm,n,p are either all even or al
odd integers. The additional conditions are then:

ĉ~m,n,p,t !5~21!r 11ĉ~n,m,p,t !, ~A4!

with the same convention as above. Implementing these
lations yields savings of a factor 64 in computational tim
and memory size when compared to general Fourier exp
sions.

b. Taylor –Green Clebsch potentials

The Taylor–Green velocity field~61! has an associate
vorticity field

vx~x,y,z!52 cos~x! sin ~y! sin ~z!,

vy~x,y,z!52 sin ~x! cos~y! sin ~z!, ~A5!

vz~x,y,z!52 sin ~x! sin ~y! cos~z!.

In order to use our preparation method~see Sec. III C!,
Clebsch potentialsl(x,y,z), and m(x,y,z) such that v
5“l3“m are needed. Thusl and m must be invariants
under the vorticity field dynamics.

Looking for a general invariant,s, under the vorticity
field dynamics, one must solve the equation

v j] j s~x,y,z!50, ~A6!

which gives, dividing by sin (x) sin (y) sin (z):

]xs

tan ~x!
1

]ys

tan ~y!
22

]zs

tan ~z!
50. ~A7!

This equation is separable: using the substitutions(x,y,z)
5u(x)v(y)w(z), and dividing bys, one gets the equation

]x ln @u~x!#

tan ~x!
1

]y ln @v~y!#

tan ~y!
22

]z ln @w~z!#

tan ~z!
50. ~A8!

Thus, each term of~A8! must be equal to a constant,cx , cy ,
andcz , respectively, satisfying

cx1cy22cz50. ~A9!

Each separated equation to be solved is then:

]x ln @u~x!#

tan ~x!
5cx , ~A10!

whose general solution is given byu(x)5const(cosx)2cx.
Two independent solutions of~A9! are cx521,cy50,cz

521/2 andcx50,cy521,cz521/2.
Using these two solutions fors, one can define the

Clebsch potentials

l1~x,y,z!5A2 cos~x!A cos~z!,
~A11!

m1~x,y,z!5A2 cos~y!A cos~z!.

al
Nore, Abid, and Brachet
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It is easy to check that“l13“m1 is equal to~A5!. How-
ever, these Clebsch potentials are real for cos (z).0 and
purely imaginary for cos (z),0. In order to be able to apply
our preparation method described in Sec. III C, we need
and periodic Clebsch potentials.

One can easily check that, replacing~A11! by

l~x,y,z!5A2 cos~x!Au cos~z!u,
~A12!

m~x,y,z!5A2 cos~y!Au cos~z!u sgn~cosz!

does not change the vorticity field, provided that cos (z)Þ0.
However, the singularity of (l,m) on the plane defined by
cos (z)50 due to the derivative of the function sgn is of th

form 2d@cos (z)#Au cos (z)u50 and is thus harmless.

c. Compatibility of the Clebsch potentials with the
representation

Expanding (l,m) defined by~A12! as cosine series:

l~x,y,z!5 (
ml50

`

(
nl50

`

(
pl50

`

l̂~ml,nl,pl,t !

3cosmlx cosnly cosplz,
~A13!

m~x,y,z!5 (
mm50

`

(
nm50

`

(
pm50

`

m̂~mm,nm,pm,t !

3cosmmx cosnmy cospmz,

it is easy to check, looking at the parity of~A12! under each
of the transformations:

cosx→2 cosx,

cosy→2 cosy, ~A14!

cosz→2 cosz,

that the only nonzero terms in~A13! are such thatml is odd
while nl and pl are even andmm is even whilenm and pm

are odd. Then, because of the form of (l,m) ~A13!, to check
that a given function of (l,m) is odd or even under each o
the parity transformations~A14! is equivalent to checking its
parity under the substitutions:

l→2l,
~A15!

m→m,

or,

l→l,
~A16!

m→2m.

Thus, even powers ofl andm involve only even wave num
bers whereas odd powers ofl m involve only odd wave
numbers.

Writing the real and imaginary parts ofc4 ~55! in terms
of l and m, it is straightforward to check that, under th
substitutions ~A15! and ~A16!, Rec4→Rec4 and Imc4

→2Imc4. Thus, the initial datac4 has a real part that in
volves only even wave numbers and an imaginary part
involves only odd wave numbers. Furthermore,c4 obeys the
Phys. Fluids, Vol. 9, No. 9, September 1997
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supplementary conditions~A4! because the correspondin
rotation amounts to a circular permutation of each of
factors in~55!.

The numerical integration, using ARGLE, shows that t
final state has a good spectral convergence, in contrast
the Clebsch initial datac4 ~see Fig. 12!.

2. Time stepping schemes

Two pseudospectral codes were written for integrat
ARGLE and NLSE using the expansion~A3!. Expressing the
evolution equation in the form

]c

]t
5Lc1NL~ t !,

whereNL stands for the simplest nonlinear term~17! andL
for the linear operator, the following time stepping schem
are used.

a. Time stepping for ARGLE

The time stepping for ARGLE is first-order accurate

c~ t1Dt !5
c~ t !1NL~ t !Dt

12LDt

whereL5a“2 and NL5(V2bucu2)c. If a fixed point is
reached, it is the correct steady state, independently of
time step.

b. Time stepping for NLSE

We use the fractional steps method described in Ref.
with L5 ia“2 and NL5 i (V2bucu2)c. In one fractional
step, the following linear problem is solved in spectral spa

ĉk~ t1Dt !5exp ~2 iak2Dt !ĉk~ t !.

The result is then transformed to physical space where
second fractional step is solved as:

c~x,t1Dt !5exp $ i @V2buc~x,t !u2#Dt%c~x,t !.

The two steps are alternated in order to maintain seco
order accuracy in time through Strang-type splitting. Th
conserve the modulus ofc. The conservation of the tota
energyEtot @see Eq.~33!# is monitored as an accuracy chec

The ARGLE and NLSE codes were validated by co
parison with three-dimensional general pseudospec
codes.12,13At a resolution of 5123 ~the maximum used in this
article! with a time stepDt51/6400, one time unit of NLSE
integration requires 7.5 h of CPU time on a Cray 90 m
chine.

3. Computations of the spectra

a. Computations of the energy spectra of a two-
dimensional vortex

The numerical computations of the spectra were p
formed with Mathematica using the functionf defined in
~17!. We begin to carry on these computations withj
51/A2, c51, and the density at infinityr051 and we will
recover the dimensional spectra at the end of this section
r(r ) explicitly appears into the integrals~41!, ~42!, we first
need to compute it numerically. To wit, we use an expans
2667Nore, Abid, and Brachet
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in mapped Chebychev polynomials. The mapping is defi
by r 5 lz/(12z2) or z5(2r / l )/(11A114(r / l )2), which
maps the interval 0<r ,` into the interval 0<z<1 and
wherel is a nonzero parameter controlling the distribution
collocation points. SinceAr(r ) is an odd function ofr , the
expansion will be over only odd polynomials. ThusAr(r ) is
expanded as

Ar~r !5 (
n50

N11

Arn
ˆ T2n11S 2r / l

11A114~r / l !2D , ~A17!

whereArN
ˆ andArN11
ˆ are fixed to satisfy the boundary con

ditions

lim
r→`

Ar~r !51,

lim
r→`

r ~Ar~r !21!50.

The axisymmetric two-dimensional vortex solution is o
tained by minimization of the following free energy:

F @r#5E 2prdr F1

2 S ]Ar

]r D 2

1
Ar2

2r 2
1

Ar4

2
2Ar21

1

2

2
r 2

2~11r 4!
G .

The r independent term in the above expression has b
included to cancel the large-r logarithmic divergence of the
kinetic energy of the vortex. The minimization is obtained
time integration of the corresponding Euler–Lagrange eq
tion. The expansion~A17! used withl 52 converges rapidly.
With N510 Chebychev polynomials, this expansion rep
duces the numerical values for the vortex profileAr(r )
given in Ref. 26 with five digit accuracy.

We then need to evaluate numerically integrals invo
ing Bessel function~41!. In order to take into account th
singularity atr 5`, we cut the integral in two parts:

ĝ~k!5
1

~2p!
E

0

r max
dr r g~r ! J0~kr !

1
1

~2p!
E

r max

1`

dr r g~r ! J0~kr !.

The first term is evaluated numerically with the full expre
sions ofg andJ0(kr). In the second term, we replaceJ0(kr)
by its asymptotic form andrg(r ) by fitting to a large-r ex-
pansion(n52

5 bn /r n. The approximate formula is thus:

ĝ~k!'E
0

r max
dr r g~r ! J0~kr !

1 (
n52

5 E
r max

1`

dr r
bn

r n
A 2

pkr
cos S kr2

p

4 D .

Using dimensional analysis, it is straightforward to sho
that, withr051, all the spectra~41!, ~42! verify

E Ed~kd!dkd5c2~jA2!2E Em~km!dkm ,
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where Ed and kd denote the dimensionalized spectra a
wave number corresponding to arbitrary values ofj and c
while Em and km denote the spectra and wave number c
responding toj51/A2 andc51. Thus the spectraEd(kd)
are obtained fromEm(km) as

Ed~kd!5c2~jA2!3Em~jA2kd!. ~A18!

b. Computations of the energy spectra in the periodic
codes

The energy spectra are computed in the following w
First, we evaluate

2ac̄] jc

Aucu21e2
, ~A19!

wheree is a small regularizing parameter. Then, using t
relation ~26!, the real part of~A19! is found to be 2a] jAr
and the imaginary part to beArv j . Furthermore, in order to
separate the kinetic energy corresponding to compressib
we decomposeArv j into Arv j5(Arv j )

i1(Arv j )
c with

“.(Arv j )
i50. Using these quantities, we compute the sp

tra ~37! @with the simplest form off ~17!#.
The angle-averaged spectra are then evaluated by s

ming the square modulus of the above quantities in shell
Fourier space. A modem,n,p belongs to the shell numbere
as @Am21n21p211/2#.

The density momentum spectrumJ(k) is computed in
the same way, by using the imaginary part of 2ac̄] jc and
decomposed into a compressible partJc and an incompress
ible partJi .
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Taylor-Green, C.R.A.S II311, 775 ~1990!.

21J. Domaradzki, W. Liu, and M. Brachet, ‘‘An analysis of sugrid-sca
interactions in numerically simulated isotropic turbulence,’’ Phys. Flu
A 5, 1747~1993!.

22S. Douady, Y. Couder, and M. E. Brachet, ‘‘Direct observation of t
intermittency of intense vorticity filaments in turbulence,’’ Phys. Re
Lett. 67, 983 ~1991!.

23G. Zocchi, P. Tabeling, J. Maurer, and H. Willaime, ‘‘Measurement of
scaling of the dissipation at high Reynolds numbers,’’ Phys. Rev. Lett.50,
3693 ~1994!.

24S. Fauve, C. Laroche, and B. Castaing, ‘‘Pressure fluctuations in swi
turbulent flows,’’ J. Phys.~France! II 3, 271 ~1993!.

25E. A. Spiegel, ‘‘Fluid dynamical form of the linear and nonlinear Schr¨-
dinger equations,’’ Physica D1, 236 ~1980!.

26M. P. Kawatra and R. K. Pathria, ‘‘Quantized vortices in imperfect Bo
gas,’’ Phys. Rev.151, 1 ~1966!.

27H. Goldstein,Classical Mechanics, Addison-Wesley Series in Physic
~Addison-Wesley, Reading, MA, 1980!.

28U. Frisch,Turbulence, the Legacy of A. N. Kolmogorov~Cambridge Uni-
versity Press, Cambridge, 1995!.

29H. Lamb, Hydrodynamics ~Cambridge University Press, Cambridg
1963!.

30V. Arnold, Mathematical Methods of Classical Mechanics~Springer-
Verlag, New York, 1978!, Vol. 60.

31M. Brachet, M. Meneguzzi, A. Vincent, H. Politano, and P. L. Sule
‘‘Numerical evidence of smooth self-similar dynamics and possibility
Phys. Fluids, Vol. 9, No. 9, September 1997

Downloaded 12 Jan 2001  to 129.199.120.5.  Redistribution subject t
g

subsequent collapse for three-dimensional ideal flows,’’ Phys. Fluids A4,
2845 ~1992!.

32A. J. Chorin, ‘‘Numerical study of slightly viscous flow,’’ J. Fluid Mech
57, 785 ~1973!.

33E. Meiburg, J. C. Lasheras, and J. E. Martin, ‘‘Experimental and num
cal analysis of the three-dimensional evolution of an axisymmetric je
Turbulent Shear Flows7, 195 ~1991!.

34T. Passot and A. Pouquet, ‘‘Numerical simulation of compressible hom
geneous flows in the turbulent regime,’’ J. Fluid Mech.181, 441 ~1987!.

35D. Liepmann and M. Gharib, ‘‘The role of streamwise vorticity in th
near-field entrainment of round jets,’’ J. Fluid Mech.245, 643 ~1992!.

36M. Abid and M. Brachet, ‘‘Numerical characterization of the dynamics
vortex filaments in round jets,’’ Phys. Fluids A5, 2582~1993!.

37A. Michalke, ‘‘On the inviscid instability of the hyperbolic-tangent veloc
ity profile,’’ J. Fluid Mech.19, 543 ~1964!.

38C. Nore, M. Abid, and M. E. Brachet, ‘‘Kolmogorov turbulence in low
temperature superflows, Phys. Rev. Lett.78, 3896~1997!.

39B. V. Svistunov, ‘‘Superfluid turbulence in the low-temperature limit,
Phys. Rev. B52, 3647~1995!.

40Y. Gagne, E. Hopfinger, and U. Frisch, ‘‘A new universal scaling for fu
developed turbulence: The distribution of velocity increments,’’ NAT
ASI 237, 315 ~1990!.

41F. Belin, P. Tabeling, and H. Willaime, ‘‘Exponents of the structure fun
tions in a low temperature helium experiment, ’’ Physica D93, 52 ~1996!.

42A. Arneodoet al. ‘‘Structure functions in turbulence, in various flow con
figurations, at Reynolds number between 30 and 5000, using exte
self-similarity,’’ Europhys. Lett.34, 411 ~1996!.

43D. Gottlieb and S. A. Orszag,Numerical Analysis of Spectral Method
~SIAM, Philadelphia, 1977!.

44R. Klein and A. J. Majda, ‘‘Self-stretching of perturbed vortex filaments
Physica D53, 267 ~1991!.
2669Nore, Abid, and Brachet

o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.


