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Superfluid turbulence is studied using numerical simulations of the nonlinearddoeo equation
(NLSE), which is the correct equation of motion for superflows at low temperatures. This equation
depends on two parameters: the sound velocity and the coherence length. It naturally contains
nonsingular quantized vortex lines. The NLSE mass, momentum, and energy conservation relations
are derived in hydrodynamic form. The total energy is decomposed into an incompressible kinetic
part, and other parts that correspond to acoustic excitations. The corresponding energy spectra are
defined and computed numerically in the case of the two-dimensional vortex solution. A preparation
method, generating initial data reproducing the vorticity dynamics of any three-dimensional flow
with Clebsch representation is given and is applied to the Taylor—GTi&grnvortex. The NLSE TG

vortex is studied with resolutions up to 51The energetics of the flow is found to be remarkably
similar to that of the viscous TG vortex. The rate of tireeversible transfer of kinetic energy into

other energy components is comparable, both in magnitude and time scale, to the energy dissipation
of the viscous flow. This transfer rate depends weakly on the coherence length. At the moment of
maximum energy dissipation, the energy spectrum follows a power law compatible with
Kolmogorov’'s —5/3 value. Physical-space visualizations show that the vorticity dynamics of the
superflow is similar to that of the viscous flow in which vortex reconnection events play a major
role. It is argued that there may be some amount of universality of reconnection processes, because
of topological constraints. Some preliminary support for this conjecture is given in the special case
of secondary instabilities of round jets. The experimental implications of the close analogy between
superfluid and viscous decaying turbulence are discussedl9%7 American Institute of Physics.
[S1070-663(197)00909-4

I. INTRODUCTION equation (NLSE), sometimes also called the Gross—
Pitaevskii equatiod* The NLSE is a partial differential
Superfluid flows are described mathematically by theequation(PDE) for a complex wave field related to the su-
Landau two-fluid model, in contrast to classical ideal or vis-perflow’s density and velocity by Madelung's
cous fluids, which are described by the Euler or Navier-transformatior?. The superflow is irrotational, except near
Stokes equations, respectivélyvhen the temperature is low the nodal lines(also called topological defect linesf the
enough for the normal fluid to be negligibla practice be-  complex wave field. These lines are known to follow Eule-
low T=1 K for helium at normal pressureLandau’s model rian dynamic€® They are nonsingular, in contrast to the
reduces to the Euler equation for an ideal fluid, which issingular vortex lines in Landau’s model. These topological
irrotational except on singular vortex lines around which thedefects correspond to the quantum vortices of superfluid he-
circulation of the velocity is quantized. The quantum naturelium; they appear naturally—with the correct amount of ve-
of velocity circulation appears, in this model, as a suppleqocity circulation—in this model. In this context, NLSE is
mentary condition, compatible with the Euler equation. the correct dynamical equation of motion for superflifids.
When both normal fluid and superfluid vortices areRecently, because of the current availability of high-speed
present, their interaction, called “mutual friction,” must be computers allowing numerical simulations to be performed,
taken into account. Such models, pioneered by Schivare, there has been a surge of interest in studying the dynamical
necessary, for example, to study superfluid turbulence in thproperties of NLSE®?'* NLSE has been shown to contain
counterflow produced by a heat current. intricate  dynamical mechanisms, such as vortex
At low temperatures, an alternative mathematical detreconnectiod* vortex nucleatiod® and vortex—sound
scription of superflows is given by the nonlinear Salinger  interaction®®
One of the open problems in superfluidity is to explain
dAlso at: Laboratoire d’Informatique pour la Manique et les Sciences de the critical velocity at which superfluidity breaks down. This
I'Ingénieur, BP 133 91403 Orsay, Cedex, France. problem is related to the onset of superfluid turbulence. A
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guestion which has long been open is the degree of analogsentation is used to generate initial data for NLSE. The cor-

between superfluid and ordinary turbulence. Quoting fronresponding vortex dynamics is compared to high resolution

Feynman’s review of 1955: “The resistance to flow some-simulations of the Taylor—Green flow published in the litera-

what above initial velocity must be the analogue in superture. Evidence for Kolmogorov turbulence in NLSE is found,

fluid helium of turbulence, and a close analogue at tHit.” and its validity and meaning are discussed. Section V is our

Note that, experimentally, one should distinguish betweerconclusion. The numerical methods and computer codes are

counterflow superfluid turbulence and towed grid superfluiddescribed in an appendix.

turbulence’’ Counterflow superfluid turbulence is produced

by a heat current.and is charaqterlzed by opposite Mas$ &1 sic DEFINITIONS AND PROPERTIES OF THE

fluxes of normal fluid and superfluid. It has thus no classical ODEL

analog. In contrast, in towed grid superfluid turbulence, the

normal and superfluid components of the flow have the same Most of the material contained in this section can be

velocity. It is the analog of ordinary turbulence and can existskipped by the reader already familiar with the NLSE model

at very low temperatures. In the rest of this article, we referof superflow?>®-8>°we present the hydrodynamic form of

to towed grid superfluid turbulence simply as “superfluid NLSE with an arbitrary nonlinearity. We show that NLSE

turbulence.” corresponds, through Madelung’s transformation, to a baro-
The basic goal of the present article is to qualify thetropic fluid with an arbitrary equation of state. We also dis-

degree of analogy between superfluid and ordinary turbucuss basic hydrodynamic features such as time-independent

lence by comparing numerical simulations of NLSE and ex-Solutions and acoustic propagation. The equation of state and

isting numerical simulations of Navier—Stokes equationsthe model parameters used for the numerical simulations pre-

The comparison is made using the Taylor—GréE@) vor-  sented in this article are defined at the end of the section.

tex, a three-_dimensional vortical flow characterized by a VIS Eluid dynamical form of the nonlinear wave

cous decaying turbulence that is well documented in thegquation

literature® The TG vortex is a standard turbulent flow used _ ,
in numerical computation& 2! that is related to an experi- The most straightforward way to understand the relation

mentally studied swirling flo#2-24The relation between the P€tween nonlinear wave dynamics and fluid dynamics is to
experimental flow and the TG vortex is a similarity in overall firt define the nonlinear wave dynamics through the follow-

geometry? a shear layer between two counter—rotating ed"9 action functionaf®
dies. The TG vortex, however, is periodic with free-slip i[_ay I
boundaries while the experimental flow is contained inside a . 4= ZaJ dt[ J d3x 5( rFraa zﬁﬁ—:)
tank between two counter—rotating disks. The TG vortex is
also a highly symmetric flow which permits economical with
computationgsee Ref. 19 and Appendix.1

The paper is organized as follows: Section Il is devoted .ﬁzf d3x[a| Vy|2+ (|91, 2
to the basic definitions and properties of the model of super- .
flow. A short presentation of the hydrodynamic form, where ¢(x,t) is a complex wave field angs its complex
through Madelung’s transformation, of NLSE with an arbi- conjugateg is a positive real constant, arids a polynomial
trary nonlinearity is given. Simple solutions are discussedjn |¢|ZEI¢ with real coefficients:
Most of this section can be skipped by the reader already
familiar with the NLSE model of superflow who will find, at f(|¢|z): —Q|l//|2+ é|¢|4+ f3|¢|e+ cee b f |w|2n_ 3
the end of the section, the nonlinearity used for the numerical 2 A

simulations presented in this article. The nonlinear wave dynamics is governed by the NLSE

In Sec. lll, the basic tools that are needed to numericallyyhich is the Euler—Lagrange equation of motion frcor-
study three-dimensional turbulence using NLSE are develfesponding tq1):

oped and validated. The conservation relations for mass, mo-

-7 } 1)

mentum, and energy are derived. Energy spectra are defined, d¢ 67
and computed in the case of a simple vortex solution. A E__'é_a'

preparation method for the initial data is developed. Using
this method, the vorticity dynamics of any three-dimensional’
incompressible flow that admits a Clebsch representation can -
be reproduced with NLSE. The method is validated on a =~ —-=ila V2=t (|y|*)]. (4)
two-dimensional vortical test flow. The energy spectra are
computed, and it is shown that their low wave number be-  The key step is Madelung’s transformafidn
havior is controlled by the classical flow, while their high b
wave number behavior is controlled by tf@onstant num- =1p exp ( i 2—) (5)
ber of vortices. @

In Sec. IV, a Clebsch representation is given for thewhich maps the nonlinear wave dynamics finto equa-
Taylor—Green vortex, a reference flow in the numericaltions of motion for a fluid of densityp and velocity
study of (viscoug three-dimensional turbulence. This repre- v=V ¢. Indeed with the help of5), (1) can be written
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5 ap 1 ) independent solutions of NLSE}) are also trivially solu-
A== J dt d X[Pﬁ*‘ >P(V)"+2af(p) tions of the Real Ginzburg—Landau equatiGRGLE)
1 aW__ 87 20 0 (]2
+5[2a V(\/;)]Z] (6) i 5I—[aV y— ot (|¢]9)]. (13
and the corresponding Euler—Lagrange equations of motiomhey are thus extrema of the energy functiaral
read The simplest solution of this type corresponds to a con-
P stant density fluid at rest. In this simple cages constant in
P V.(pv)=0 (7)  space and13) reads
at '
/(1% = — Q+ Bly|*+3f 3| y|*+ - +nfy| 4" ?=0.
dp 1 2 e ,AVp (14)
Tt T Ve t2ati(p) =2 Jo =0. ®  This equation, for given values of the coefficietsand f,
(i=3,...n), relates the fluid densityy|? to the value of

Neglecting the last term dB) (the so-called “quantum pres-
sure” term), these equations are the continuity and Bernoulli Note that the() term of f does not play a crucial role in
equation$ for an isentropic, compressible, irrotational fluid. the NLSE dynamics. Indeed, it corresponds to a constant in
Note that the quantum pressure term contains higher orde([‘m) that could be removed from the Bernoulli E8) by the
spatial derivatives than the other termdq&. It will turn out change of variables— ¢+ 2 Qt. This change of Bernoulli
(see Sec. Il Cthat there are circumstances in which it can potential ¢ amounts to a change of phase— ye'® in
safely be neglected. , NLSE (4). We will however, by convention, not perform
Using this identification, one can define the correspondyyeqe changes of variable, in order that stationary solutions

ing “t_hermodynamic functions” for the barotropic fluid. The _of (13) coincide with stationary solutions ¢#). The Q) term
fluid is called barotropic because only one thermodynamiGy ¢ will thus be related to the density|2 of the fluid at rest
variable(e.g., the density) is enough to define its state at through Eq.(14).

rest. By inspection of6), the fluid’s internal energper unit
massis given by
2af(p) 2. Vortex solution

p ©) Another important type of time-independent solutions of
NLSE are the vortex solutions. Madelung'’s transformation is
singular whenp=0 (i.e., when both the real and the imagi-
nary parts ofy are zerg. As two conditions are required, the
h=2af'(p). (10 singularities generically happen on points in two dimensions
and lines in three dimensions. The circulationwofround
such a generic singularity is 47«. These topological de-
h=e+pl/p, (1)  fects are known in the context of superfluidity as “quantum
vortices.”™ Solutions of(13) with cylindrical symmetry can
be obtained numericallf It can be shown that, asgoes to
p=2a[pf'(p)—f(p)]. (120 zero,p~r? andv=2ae,/r wheree, is the azimuthal unit

The physical dimensions of the variables useinand vector andr the radia_ll di;tanc_e .Of a cylindrical cpordinate

(3) are fixed by the following considerations. Madelung’s SYSt€M & ,€,&) having its origin on the vortex line. The

transformation(5) imposes thaf |#|2]=[p]=M L3 and density admn; a horizontal Fangent at the qngmo while

[]=L2T1. Using(9), one getd f(p)/p]=T"* and thus, the velocity dlverges as the inverse of t_he distance. Then the

from (3), [Q]=T"%, [B]=T % p~tand[f,]=T"L p* . In momentum densityv is a regular quantity.

the case of a Bose condensate of particles of nmass, has An important property of vortex solutions is that they are

the valuefi/2m.2 regular solutionsof NLSE. The singularity lies only in
Madelung'’s transformatiois). This means that, when vor-
tices are present, the fluid dynamical form of the aciién

B. Elementary solutions and the corresponding Euler—Lagrange equations of motion

In this section, the elementary solutions of NLSE are(7)’ (8 are not well defined. We shall come back to this
’ unbtle point in Sec. lll A.

s
presented. These correspond to a condensate at rest or @
axisymmetric two-dimensional vortex at rest. The acousticC. Acoustic regime
excitations around such solutions are discussed.

and Bernoulli's Eq(8) readily gives the fluid's enthalpyer
unit massas

The thermodynamic identity

yields, for the fluid’s pressure, the expression

The nature of the extra quantum pressure terii8jrcan
be understood by computing the dispersion relation corre-
sponding to acoustic waves propagating around a constant
Further insight into the relation between nonlinear wavedensity levelp,. Settingp=py+ 8p [with f’(pg)=0], V¢
and fluid dynamics can be obtained by considering stationary= du in (7) and in the gradient of8), one gets at linear order
solutions of the equations of motion. Indeed, time-9,28p=_2apof”(po)Adp— a’A?5p. The dispersion re-

1. Fluid at rest
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lation for an acoustic waveSp=e{exp[i(wt—k-x)]+c.c} servation laws are shown to be globally regular on vortices,
(with e<1) is thusw=2apof"(po)k?+ a’k®. This rela- and lead to the usual form for the fluid’'s equation of motion.
tion shows that the quantum pressure has a dispersive effect We use the expression for the total energy density in
that becomes important for large wave numbers. For smafphysical space and Parseval’s formula to define energy spec-
wave numbers, one recovers the usual propagation, with %a; these allow us to separate the various contributions to the

sound velocity given by total energy. The energy spectra are computed for the two-
PRT dimensional time-independent vortex solution.
P We then describe a method for preparing initial data
c={—| =v2apof"(po). 15 preparing -
((7P) apol’(po) = This method allows us to generate initial data for NLSE that

This means that, for small wave number acoustic waves, th@ill reproduce the vorticity dynamics, without too much

last term of(8) does not play a significant role. The length SCund wave emission, of any given three-dimensional in-
scale compressible flow field, provided that this field admits a

Clebsch representation.

E=Vallpof"(po)] (16) The preparation method is validated on a two-
. . . . . ...._dimensional vortical test flow. The vortex dynamics repro-
at which dispersion becomes noticeable is known as the “co- S . ;
; duces that of the classical incompressible flow, without too
herence length. o i
: . : much sound emission. The energy spectra are computed;
All numerical results presented in this paper are per-, . o ) .
. ) ; : . their low wave number behavior is consistent with that of the

formed using the simplest choice of nonlinearity for NLSE : . S o
) : ) classical flow, while their high wave number behavior is

corresponding to a compressible fluid, namely

controlled by the(constant number of vortices.

f(p)=—Qp+ épz_ (17) A Conserved quantities and Madelung'’s
2 transformation
This simplest choice corresponds to the following thermody-  As stated in Sec. Il B 2 and by using Madelung’s trans-
namic quantities: formation (5), a vortex line is given byy=\p exp (#/2«)
20 B =0. Thus, on a vortex linep is not determined and so the
e= —( —Qp+ —pz) , (19 equations of motioné7) and(8) are not well defined. This is
p 2 a mathematical pathology of the transformation, without any
h=2a(—Q+Bp), (19)  physical meaning. To avoid this problem, we use Noether’s
theorem’ to derive equations of motion well defined on a
p=app’. (200 vortex line.

The invariance of(1) with respect to phase rotation,
space translation, and time translation, respectively, yield the
following conservation laws for mass, momentum, and en-

The form of f used in our numerical computatiolis?), to-
gether with(15) and(16), lead to the following relations:

c=+\2ap, ergy (using the Einstein convention on repeated indices
£=al®, @) o)+ adi el pag— pa1=0, (23
po=Q/p. 0t[ia(¢&j?—%ﬁ l//)]+0"k[2012(<9k%1¢+ é’k‘/’aj%

When performing numerical computations, we will further +(2a| 2" (|92 — 2af (| ¥]2) — @20, | ¥]?) =0

fix the density top,=1. The coefficients of17) used in the ! ’(24)

computations are thus defined in termsoofind ¢ by the L o

relations: 2%+ 2af (|92 - 2% a( oy o
a=cél\2, — 9y )+t (WD) (Paab—pa)]=0. (25
B=cl(2¢), (22 Using Madelung’s transformatiofb) in the form:

ll. CONSERVED QUANTITIES, INITIAL DATA pvi=ia(pd— o),

PREPARATION, AND VALIDATIONS and with the thermodynamic definitions of the internal en-

. L .,_ergy, e (9), enthalpy,h (10), and pressure) (12), the con-
. This sectlo_n is devoted 1o the development gnd vallda'servation laws, after some algebra, can be cast in the form:
tion of the basic tools that are needed to numerically study
three-dimensional turbulence using NLSE. ap

We will redefine Madelung’s transformation when vor- g T %i(pvi) =0, (27)
tex lines are present; this is necessary because the original
transformation(5) is singular on vortex lines. This enables us Jpv;| i
to derive mass, momentum, and energy conservation rela-gt +a‘[pvivi+4a2&i \/’;ai\/;ﬂp_azakkp)ai]zo’

tions, both in wave and hydrodynamic variables. These con- (28
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spectra. The spectra corresponding to the two-dimensional
time independent vortex solution are calculated.

1
2a%(9;\p) 2+ SPVjU+pe

d
ot

1 ip
=— ﬁi( pvih+ Epvivjvj) —d; CYz?ﬂj(ij) 1. Definitions of the energy spectra

Starting from the energy conservation 1§29), the total
—2a2\/,—)via“\/; ) (29 energy E,,; can naturally be decomposed into the kinetic,
internal, and “quantum” energies:

These conservation laws, apart from the extra quantum pres- _

sure termgrecognizable by ther? facton, are the standard Eiot=Euint Einit Eq.- (33

conservation lawsfor a classical barotropic fluid. Using (9) and (29), each of these parts can be formally de-
Let us now show that27)—(29) are nonsingular, even fined as thegspace integral of the square of a field:

for vortex solutions. In fact, as goes to zerop~r? andv

=2aegy/r, whereg, is the azimuthal unit vector and the 1 J’ 3 2

radial distance of a cylindric coordinate system,g,.e,) kin 2(27)3 a™( \/;v') ' (34
having its origin on a vortex line. Thus, in E@8), the term

pvev~4ale,0e, (® is the tensor produgis not defined at 1

r=0. The same thing happens fora?V\peVp Bin= 2(277)3f d3x[2 Vaf(p)]z’ (35
~4a”e ®e but the sum of these two terms is independent of

0 and therefore is well defined at the origin. Since the re- 1

maining terms are all regular at a vortex line, E@8) is Eq= 3f d3x(2aaj \/;)2. (36)
regular. In Eq(29), asr goes to zeropvv>~4a?e,/r. This 2(2m)

singulazrity cancels with that of —2a*JpVAJp  These denominations are justified by the expression in terms
~—4a“ey/r. The other terms are regular. of p andv of Ey;,, by expressiorn9) for the fluid’s internal

In order to derive equations of motion Similar(@ and energy and by the Correspondence betv\Egand the guan-
(8) and well defined on a vortex line, we u2y) and(28)to  tym pressure term if31).

obtain Because of energy conservati¢®9), E,, will remain
v, constant during evolution under NLSE dynamics. However,
pW—v]ﬂi(pvi)+z9i[pvivj+4a2z9i \/Eaj Jp+(p each of the individual energy componegg, , Ei,;, andE,
can, and, in general, will vary in time. Thus, by monitoring
- azﬁkkp)5}] =0, (30) their values, some understanding of the energy transfers in

the system can be achieved. Such an understanding can be

which leads to enhanced by a scale-by-scale energy breakdown for each in-

av; 5 dividual component. Each component being the space inte-
p W""Uiaivj) =—0j(p— a“dyp) gral of a squared field, Parseval's theorem allows us to con-
struct energy spectra. Indeed, defining the normalization of

—ai(4a29\pa\p). (31)  the Fourier transform ag(r)=Jd%e i'ig(k), one gets

As r goes to zero, all the terms bp(v-V)v~—4ae /r  9(k)=(2m) *fd%eiig(r), and Parseval’s theorem reads

and V- (4a2V JpaV\p)~4a?e Ir are regular. Just as for [d3k|g(k)|?=(2m) 3fd%r|g(r)|2. Thus, by computing the
the Eq.(28), these singularities cancel on a vortex line. ToFourier transform Of\/;vj, 2\af(p), and 2ud; Jp, respec-
recognize the Bernoulli E48), we need to rewrite the right- tively, and integrating their square modulus over the angles,
hand side of(31). Using Eq.(12) for p and writing dyp one gets the following energy spectra:

= d(\Np)2=2pap+2(3x\p)?, one can find that the . )
right-hand side of Eg.(31) is equal to —pd(h ):J d3reirnkn\/;vj

1
Eyin(k) = Ef dQy

—2a?A\pl\p), and thus Eq(31) reads (2
v _ ,Ap 1 1 . 2
Pl Tt T, “Pai<h‘2“ ik ® Euk=;] do, (Zw)sfd?’re””knwaf(p) . (37

which is the gradient of Eq8) multiplied by p for an irro-
tational fluid. This equation is the standard Euler equation E (K)= 1

. . q( )__ ko
for a barotropic fluid, apart from the quantum pressure term, 2

2a?A\pl\p.

2
i

1 )
3J derel" k20, \p
)

(2

whered(Q, denotesk? sin §dd de in spherical coordinates.

They verify by construction the relationsEy,

= [5dKEqn(K), Ein=3dKEn(K), and Eq=[GdKEq(K).

Furthermore, in order to separate the kinetic energy corre-
In this section, we will use the conserved energy densitysponding to compressibility effects, we decompsﬁﬂ;j in

derived in Sec. Ill A and Parseval’s identity to define energyypv;=(\pv;)'+ (\pv;)¢ with V-(ypv;)'=0. The corre-

B. Energy spectra
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(@)

(b)

FIG. 1. Plots of the energy spectta) and momentum density spectrufin) corresponding to an axisymmetric two-dimensional vortex. The spectra are
computed fron(41) and(42) with 18 Chebychev polynomials and with coherence lergt®.1/(8y2), and sound velocitg= 2. Fig. 1(a) shows the kinetic
energyE,;, (solid), the quantum energl, (dashed and the internal energl,, (long—dashed

sponding spectra are namEﬁjin(k) and Eg;,(k), satisfying
the relationE,,(k) = E;,(k) + Egn(K). We also compute the
spectrum associated wigy;, i.e.,

2

ir k , (38)

1 3
(277)3f dretpu,

called the momentum density spectrum.

1
J(k)=§f dQ,

The precise way in which the angle average is performed

in the case of periodic fields is explained in Appendix 3.
We will also wish to compute spectra in the, §) plane.

The appropriate definitions of the two-dimensional energy

spectra and momentum density spectrum are

2
1 [2n .
Ekin(k)ZEJ’O kdé (277)2J d?reikny/py, (393
1 (2n 1 . 2
Eint(k)zifo kdé 2 )Zj d?re'"nkn2\/af(p)| ,
s
(39b)
1 (2n 1 . 2
Eq(k)=§J0 kdé 2 ),J d?re"k2ad,\p| , (399
v
and
1(2m 1 2. ik ’
I)=3| kdo oy d2reiriknpy, (40)

2. The energy spectra of a two-dimensional vortex

2yaf(p), E4(k) to the gradient of 21\/5, and J(k) to the
curl of 2ape,/r. Using the expression of the Fourier trans-
form appropriate to an isotropic functiom(r), g(k)
=(2w)‘1f§drrJ0(kr)g(r), where Jy is the zero order
Bessel function, we can express the energy spé8faas

. 2a
f drrJO(kr)—a—\/;

0 r or

2

3

1
Exin(k)= m{

K[ (= 2
Eint(k):E[Jo drrJo(kr)ZVaf(p)} : (41)
K[ (= 2
Eq(k)= E_jo drrdg(kr)2avp| |
and the momentum density spectri4®) as
1 [ (= darp op?
J(k)—rﬂ_l(_fo drrJO(kr) r (9_r (42)

Appendix 3 contains a description of the numerical
method used to compute the integrékl) and (42). The
energy and momentum density spectra computed with this
procedure are displayed in Fig. 1 wifl+ 0.1/(842) andc
=2.

Each of the spectra displays a change of behavior around

the wave numberk,~1/£=113. The spectral(k) and

Eint(K) show exponential decay féek,. This is related to

the absence of singularity of the integrandg4f) and(39b)

nearr=0. Indeed, it is well known that the Fourier trans-

For an axisymmetric two-dimensional vortex, the diver-form of a function that is analytic in a finite strip decays
gence ofypv; and of pv; are zero. Thus the compressible €xponentially at large wave numbéfsE (k) and Eq(k)

parts of the corresponding spectra vanish.
Each of the spectré39) and (40) is related to the two-

have a power-law behavior fdek, that reflects their sin-
gularity inr=0. Indeed, the Fourier transform gf{r)~r*

dimensional Fourier transform of an isotropic function: (with s a positive realis g(k)~k~3~2. Thus the associated

Ewin(k) to the curl of 2v\pe,/r, Ejy(k) to the function

Phys. Fluids, Vol. 9, No. 9, September 1997
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FIG. 2. A schematic representation of relatigde) and (47). The Clebsch potentials(x,y,z),x(X,y,z) map the left-hand side of the figure into the
(\, 1) plane shown in the right-hand side. The circulatioru® around the contour in physical spageéis equal to the area inside the corresponding curve
in the (\,u) plane?”.

k=273, The smallr behavior of both the integrands (§9a w0=VAXVp. (45)
and (399 is r°. This argument explains the 3 power-law )
behavior at largeé of E,in(k) andEg(k) in Fig. 1(a). The circulationl” of u® around any contour” (see Fig. 2

The above Fourier transform scaling argument can b&an be written
used to relate the<k, power-law behavior of the spectra in
Fig. 1 to the larger behavior of the corresponding_inte- = fﬁ uddv.q| = jg AV -di= 3g Ndu, (46)
grands. Bottpv; and \/Evj behave as ~! at larger, which 7 4 v’

gives ak ! scaling fork<k,. The k*® small k scaling of L S _
Eq(K) corresponds to the % larger scaling of g, \/l—)- Fi. WhereZ” is the circuit in the §,u) plane corresponding to

nally, thek! smallk scaling ofE; (k) is related to the ~2 the circuit " in physical spacdsee Fig. 2. Using Stokes’
larger scaling of p—1). formula, this integral can be written in tha () plane as

C. Initial data preparation method for vortical flows F:f L,d)‘/\d'““' (47)

Given a large scale flowu®® that admits a global hereA is th d g is th ‘ losed
Clebsch representatidiithe initial data preparation method WREre/a 1 t. e outer product an§' is the surface enclose
’ by the circuitZ”. Note that, when a global Clebsch repre-

developed in this section will generate a vortex array whose

. T Sentation (43) exists, the dynamical systemdM/ds
NLSE dynamics will mimic the large scale flow vortex dy- —w[M(s)] admits X as first inteqrals such that
namics. The preparation method consists of two steps. In the, 2 9

' : : M =con M(s)]=const. A neric three-
first step, the Clebsch representationud is used to con- )\.[ (s)_] const, M (s)]=const S a generic three

. ; dimensional divergence-less vector field is nonintegribée,
struct a wave field/(x,y,z) whose nodal lines are vortex

. . . . lobal Clebsch representation does not generically exist.
lines of u?®. In this way, one can generate a field with the 9 P 9 y

distribution of nodal lines that reproduces the global circula- Equations(44) and(47) admit a simple geometrical rep-

. . ) . resentation in terms of vortex lines and velocity circulation.
tion of u®. A second preparation step is needed in order to y

minimize the emission of acoustic waves. Indeed, starting {\ vortex line in physical space is mapped into a point in the

NLSE integration from an arbitrary initial data would genen-?)\"“) plane A CII‘F:UII defining ‘?‘Vortex tube in physical
. o . space is mapped into a contodr in the (\,u) plane. The
cally lead to a transient emission of acoustic waves. Note. ; adv , i
. : circulation of u®® around %" corresponds to the surface in-
that this is a general property of compressible flows.

sideZ” in the (\,u) plane. This representation can be used
1. Vortex arrays defined by global Clebsch variables to construct a complex three-dimensional field with a defect
line corresponding to a vortex line of%. Indeed, defining

. dV .
We consider a large scale flouf® that admits a global the three-dimensional field as

Clebsch representatiGhin terms of two potentials:

)\:)\(X,y,z), (43) (/l(xryaz):’(z[)\(x!ylz)!/'l“(xayrz)]! (48)

= u(X,y,2), where J(\,u) is a complex two-dimensional field with a
and of a functionV(x,y,z) such that: simple zero alk=Ay4, w=puq, the three-dimensional field

adv ¢ has, by construction, a nodal line along the vortex line of

U=AVu—VV, (44 ya defined by (x,y,2) =g, (X,Y,2) = uq. Furthermore,
with V-u®=0. The vorticityw=V xu?¥ can thus be writ- if i has several simple zeroes, then the corresponding three-
ten dimensional fields of (48) will have several nodal lines.
2650 Phys. Fluids, Vol. 9, No. 9, September 1997 Nore, Abid, and Brachet
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In practice, the number of zeroes @fis fixed by the D. Validations on a two-dimensional vortical test flow

ratio of the total surface spanned on the &) plane by the In this section, we introduce a simple two-dimensional
defining Clebsch potentialgt3) to the quantum of circula-  test flow: a system of four counter-rotating vortices. This
tion, 4ma, i.e., flow is a time-independent solution of the incompressible

r two-dimensional Euler equation. The trivial Eulerian dynam-

Ng=

dral (49)  ics of the test flow allows us to perform a global test of the

preparation method introduced above. Furthermore, we de-
where[ ] denotes the integer part of a real. See Secs. Il D velop and test a vortex counting procedure that will be used
and IV A for a practical implementation of this procedure. in the three-dimensional TG flow to measure the vortex line

density.

2. Minimization of the modified energy functional 1. Vortex array for the two-dimensional test flow

Under compressible fluid dynamics, the vortex array ob-  The two-dimensional vortical test flow is given by
tained using Clebsch potentials will generally lead to a re- ady

gime containing a great deal of acoustic radiation. In orderto Uy (X,Y)= sin(x) cos(y),

study vortex dynamics using NLSE, we thus need to prepare 4, . 2
the initial data in such a way that the acoustic emission is as Uy " (x,y) = = cos(x) sin (y).

small as possible. We know that the RGI(E3) with an The Clebsch potentials,

initial data containing a nodal line converges towards the

exact time-independent vortex solutigi) described in Sec. N(x,Y) =12 cos(x), (53)
1B 2.

The procedure we have developed is a generalization of pxy)= V2 cos(y),
this property of RGLE. Our aim is to prepare an arbitrarycorrespond to the flow(52) in the sense thatV xu®®
assembly of moving vortices. To do so, we use the Galilean=V\ xV =2 sinx sin y}_ \ and u are chosen to be peri-
invariance of NLSE: odic functions of &,y) in order to permit computations in a

v (uaH)2 periodic box. .
P(X, 1) — (x—udMt, 1) exp[i — - t ] The mapping between thex,fy) plane and the X,u)
2a da plane is displayed in Fig. 3.
for any constant boost velocity®®. This transformation The two-dimensional complex fieldr, with a simple
maps any NLSE solutiogk(x,t) into another NLSE solution Z€ro at the origin of theX, ) plane reads
whose associated velocity and density fields are Galilean >
transforms of those associated withThus, the NLSE initial PN, ) =(N+ip) tanh (VA2 4%/ \2¢) , (54)
condition ¢, (x) exp (U?®/2a-x) corresponds to a vortex N

. . . adV . . . .
translating with velocityu®®. This initial condition can be where¢ is defined by Eq(21).

directly obtained as a time-asymptotic solution of the advec- : :
. . : The system of four zeroes in th& () plane displayed
tive real Ginzburg—Landau equatiéARGLE) in Fig. 3 corresponds to the product

9 uad 2
a—i”:av%p—wf'(|¢|2)—iuadV-v¢—( 4av) ¢ (50

e

1 1
l/f4(7\,,l/~)—l/fe<)\_ﬁa# )\!M_E>

and as a minimum of the associated modified energy func-

tional « - 1 N a4 1 55
B y the ﬁ’“ he| N, 2 (55)
-7ARGLE['/’1¢’]:I d*x| a Vl//_i_l//2+f(|l//|2)>- . .
2a According to the general procedure presented in Sec. Il C 2

(51 based on Clebsch potentials, the appropriate initial data for
Our preparation method consists of usi@Eg) and(51)  the ARGLE method wheny=[I'/(4wa)]=4 [see Eq(49)]
with a givenspace-dependemtivergence-free velocity field 1S given by
udx). Using the Madelung transformati@@6), (51) reads O6Y) = g N, (Y], (56)

where\ andu are defined in53). For the two-dimensional
test flow(52), the circulation around the bdX,7]X[0,7] is
given by

1 1
7 arGLELP, V] = EJ d3X[§(2aV Vp)2+2at(p)

1
+5plv= uadV(X)]z] : m(w a
r=f f dSquadV=4J dx sin (x)=8. (57)
The last term on the right-hand side will be minimized if the 070 0
velocity v is as close as possible to the imposed advectivdhus the ratio of the total circulation to the elementary de-
velocity u?%(x). fect's circulation isyq=8/4ma=2/ma with a=c¢/+\/2 [see
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FIG. 3. lllustration of the mappin@3) between the physical and the,() plane for the two-dimensional test flo2). The dots represent the zeroeqsf)
in the (\,«) plane and the corresponding vortices in physical space.

Eqg. (22)]. As we want to consider only multiples of four separation between these two behaviors stems from the
defects, the final expression for the initial data for ARGLE smallest distance between vortices. This distance can be es-

reads timated by counting on Fig. 6 16 vortices on the lire
HOY) = tal AOGY ) i (X,y) 741 (59) quréz which corresponds to a separation wavenunkgh,

The functiony corresponds to four multiple zeroes. The dy- The overall behavior of the ARGLE converged spectra
namics of a multiple zero under RGLE was studied in Ref. 7displayed in Fig. 5 can be understood by analogy with the
which showed that a multiple zero of orderspontaneously reproduction of a gray-scale picture, with ink dé¢és done
splits inton simple zeroes of order 1. The same behavior isclassically for engravings the spatial density of the dots

obtained under ARGLE dynamidsee Fig. 4. being taken to be proportional to the gray tone. The small

wave number spectrum of the reproduction will be that of the
2. Numerical results for energy spectra and spatial original picture, while the large wave number spectrum will
distribution of vortices: Minimization procedure be that of the individual dots. Thus, the incompressible ki-

All of our numerical results are obtained using pseu-”etic energy displayed in Fig. 5 contains two parts separated

dospectral codes. The details of spectral representations ah¥f Kbump: the smallk pgjr\} is associated with the global mo-
time-stepping schemes are explained in Appendix 1 and 2. (O corresponding ta™™ and the highk part is associated
this section, the periodic box [©,27]X[0,27]. with the |nd|y|dugl vortices. The klnet.lc energy spectrum
Figure 4 shows the ARGLE converged field obtaineg@ssociated withu® has the value 0.25 in the wave number
shell corresponding tk=1 (see Appendix 3 for the defini-
tion of the wave number she)lsThe main contribution to the

and resolutioN=512, corresponding toy=48 and the ini- | : o _ )
tial data solutiony= (/&112. Each of the four, order-12, defects incompressible kinetic energy of the system of vortices is
coming from the wave numbets<ky,,y,, and is found to

inside the boX 0,7]X[0,7] has unfolded into 12 elementary ,

vortices that have subsequently spread into the pattern showq?vgd? value 0.251 511 close to the value 0.25 corresponding

in Fig. 4. tou : Ir_1 this way, the ARGLE _con\{ergsd .system of vorti-
The corresponding ARGLE converged energy spectra?es mimics the imposed advective fieltf" given by (52).

are displayed in Fig. 5. It can be seen by inspection of Fig.

5(a) that, for wave numberk= 20, the compressible kinetic 3. Numerical results for energy spectra and spatial

energy is below the other energy spedeacept for a small  distribution of vortices: Vorticity dynamics

region near the spectral cutdf,,,=N/2). In the same wave Starting from the ARGLE converged system of vortices,

number range, the energy spectra of incompressible kinetithe time evolution under NLSE dynami¢$) of the different

energyEy;,, quantum energf,, and internal energ¥;,,  components of the total energy is displayed in Fig. 7. The

show the same overall features as the spectra of an isolatédtal energy is conserved throughout the run, with a relative

vortex computed in Sec. Il B 2. maximum error at the end of the run of less than 0.2%. It can
Figure 8b) shows that the high wave number region of be also seen that the compressible kinetic and quantum en-

the incompressible momentum spectrum is well representeergies remain small throughout the run, compared with the

by the sum of 192 vortex spectra computed in Sec. Il B 2. Inincompressible kinetic energy. The principal effect is a small

contrast, for small wave numbers, the spectrum corresponascillatory exchange between incompressible kinetic energy

ing to the ARGLE converged system of vortices cannot beand internal energy. The angular velocity at the cemter

represented as a sum of independent vortex spectra. They= /2 of a vortex system is given by

with coherence lengtli=0.1/(8y2), sound velocityc=2,

2652 Phys. Fluids, Vol. 9, No. 9, September 1997 Nore, Abid, and Brachet
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FIG. 4. A grey-scale plot of the initial condition density)(for the two-dimensional test flofEqg. (52)] with coherence lengti=0.1/(82), sound velocity
c=2, and resolutiolN=512. Each quarter of the periodicity box, mirror image of its neighbors, contains 48 point vortices rotating in the same direction.

1 large scales, decreases steeply. Indeed, a fit with a power law
§|V xur®=1 (Eiin=Ak™ ") gives an exponeni~4.6.

Finally, to close this section, we introduce and validate
in nondimensional units, which is of the same order of magthe procedures that will be used in the Sec. IV to measure the
nitude as the oscillation period. Although small compared taota| length of vortices in the three-dimensional flow. For the
the incompressible kinetic energy, the compressible kinetigimple two-dimensional test floy62), these procedures con-
energy grows from 0.06% of the total energy to 2.17% at thesijst merely of counting the total number of vortices, a con-

e.nd of the run. Thus a very small amount of acoustic emisstant throughout the run. We have used two different proce-
sion has taken place. dures:

The corresponding evolution in physical space is a dif- ) ) ) ]
ferential rotation of each of the four vortex systefméth the (@ A fit of the incompressible momentum density spec-
sign of rotation shown on Fig.)3The state at timé=15 is trum J' at high wave numbergin the range 3&k
displayed in Fig. 6 which shows that the number of vortices ~ =170) with the corresponding spectrulp,(k) of an

remain constant. The energy spectra at tireel5 are dis- individual vortex COYT?DUIE'd in Sec. Il B Psee F_ig.
played in Fig. 8. One of the main differences when compared ~ 1(b)]. The ratio of the integrals of the two spectra in the
to the spectra at time=0 (see Fig. 5 is the growth of the fitting range defines the number of vortices:
compressible kinetic energy associated with the small S170 3i(k)

amount of acoustic emission. The incompressible kinetic en- nd:N‘gL_ (59)
ergy in the interval &k<Kyym,, Which corresponds to the J 30 Jvorl(K)dk
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FIG. 5. Energy and incompressible momentum density spectra attti®e(same conditions as Fig.).4(a) Incompressible kinetic energﬁikin (solid),
compressible kinetic enerdyy;, (dot-dashey quantum energ, (dasheg} and internal energg;,, (long—dashed (b) Incompressible momentum density
spectrumd' = (pV);n. (dot-dashefl Solid line is the momentum density spectrum of a single vofsee Fig. 1b)] multiplied by 192. Note that for wave
numbers greater thaky,,;~16 the two curves coincide.

We have checked thatlata not shownthe value and the This vortex-line array is used as an initial condition for
evolution ofny do not change when the lowest value of the NLSE simulations computed with a specialized pseudospec-
fit interval is varied, provided that it is of the order @r  tral code, making use of the TG symmetries to speed up the

larger tham 2Ky, mp. computations and optimize the memory size, which is de-
(b)  The ratio of the “enstrophies” which gives scribed in Appendix 1. . _
N2 L2 We then compare the three-dimensional NLSE vortex
0 ZZok=3'(k) (60 dynamics, to previously published high-resolution simula-
d

tions of the TG flow*>~?! Evidence for Kolmogorov turbu-

RECLTS ) flov
o lence in NLSE is discussed.
The results of the two procedures are shown in Fig. 9 where

it can be seen that, at large time, the fitting procedGe? is

somewhat more precise. As we will be comparing the resulty, pefinition of the Taylor—Green flow and the

of the NLSE runs to the TG viscous incompressible ones, W@ssociated vortex array

will call in the remainder of the article the quantity ) ) ) )

Etlizok2Ji(k) enstrophy. _The TG flow is defined by the following advective ve-
The main result of this section is the global validation of I0€itY:

our preparation and data analysis procedures. The vortex sys- uid"(x,y,z): sin (x) cos(y) cos(z),

tem has been shown to reproduce the Eulerian dynamics cor-

responding to a differential rotation with constant angular ~ U3*(Xx,y,z)=— cos(x) sin (y) cos(z), (62)

frequency. The amount of acoustic emission was found to be 2%

small and our vortex counting procedure was validated. 2 (%¥,2)=0.

Note that the solution of the incompressible Euler equa-
IV. NUMERICAL EVIDENCE FOR KOLMOGOROV tion with initial data(61) has a vertical velocity component
TURBULENCE u,(x,y,z)#0 for t#0. The flow that develops fron61) is

thus a truly tridimensional flow. The TG flow was first intro-
duced in Ref. 18 to study vortex stretching.
The Clebsch potentials

The flow studied in this section — namely the Taylor—
Green vortex defined below — is a reference flow in the
numerical study of turbulence in the Navier—Stokes
equations® A(X,y,2)= cos(x)vy2|cos(2)|,

A Clebsch representation of the Taylor—Green flow is —_
given. This representation is used to generate a vortex-line p(xy,2)= cos(y)y2|cos(2)| sgricos(2)],
array, whose ARGLE-converged nonlinear wave field obeygwhere sgn gives the sign of its argumeatrrespond to the
all the TG symmetries, and is well resolved numerically,flow (61) in the sense thal xu?®= VAXV .
including an exponential spectral falloff at high wave num-  The mapping between physical spacey(z) and the
bers. (N, u) plane is displayed in Fig. 10. Only 1/8 of the total

(62
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FIG. 6. Same as Fig. 4 but at tinte- 15. The number of vortices has remained constant.
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FIG. 7. Time evolution of total energi,, (dot-dashell incompressible .10 . .

kinetic energyEL;, (solid line), compressible kinetic enerdsS,, (dotted, 10° 10' 10°

quantum energ¥, (dashed, and internal energs;, (long—dashed Note K

the small oscillatory exchange between incompressible kinetic energy and

internal energy while other energies remain negligible. FIG. 8. Same as Fig. &) but at timet=15.
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Thus the ratio of the total circulation to the elementary de-
fect's circulation isyy=8/47a=2/ma with a=c¢/\2 [see
Eg. (21)]. The final expression for the initial data for
ARGLE reads

P(x.y,2)= Yl N(%,y,2), u(x,y,2) 74, (65)

Thus each line in Fig. 10 corresponds to a multiple zero line
which, under ARGLE dynamics, will spontaneously split
into [ 1/2«] single zero linegsee Fig. 11

These formulas, when restricted 2e-0, are equivalent
to the formulag54), (55), (58) of the two-dimensional case.
The presence of the|cos @)| factor in(62) is responsible for
1600, 50 o0 5.0 the curvature of the vortex lines seen in Fig. 10. It is shown

t in Appendix 1 that65) is fully compatible with the symme-

tries of the TG flow.
FIG. 9. Time evolution of the number of point vortices in the two-

dimensional test flow52) determined by two different procedurda) A fit

of the incompressible momentum density spectfsquares The fit is per-
formed for 36<k=<170, see Fig. ®). (b) The ratio of the total “enstrophy”
and the enstrophy due to a single point vorteixcles. The fitting procedure

(a) yields the original number of vortice€l92) with an error of about Figure 11 shows a three-dimensional visualization of the
5%. ARGLE converged field obtained with coherence length
=0.1/(842), sound velocityc=2, and resolutioN="512,

periodicity box[0,2]X[0,27]X[0,27] is shown on the corrgspondin_g tony=48 an_d the ini_tial data solutiony

left side of this figure. The rest of the field can be obtained™ ¥4 - The eight, order-12, linesee Fig. 1phave unfolded

by reflection in the boundaries of the picture. The extende@nd converged into the vortex array displayed in Fig. 11.
vortex lines are thus closed vortex rings. The zeroes in the 1he corresponding ARGLE-converged energy spectra
(\,1) plane are defined in the same way as in the twoare shown in Fig. 1@). They are remarkably similar to the
dimensional test cageee Eqs(54) and(55) and Fig. 3. The spectra c_orrespondlng to the tV\{o—dlmenS|onaI test flsee
appropriate initial data for the ARGLE method presented inf19- 9. Figure 12?) shows the incompressible momentum
Sec. Il C 2 withng=[T'/(47a)]=4 [see Eq(49)] is given density spectruml)'(k). The highk part of this spectrum

240.0

220.0

180.0 |

B. Numerical results for the minimization procedure

by shows a conspicuous exponential decrease typical of a
smooth well-resolved field. This proves that the ARGLE dy-
P(X,Y,2)= Pa[ N(X,Y,2), u(X,Y,2) ], (63)  namics has rubbed out the lack of analyticity of the Clebsch
where\ and u are defined in(62) and y, is the function initial data(62).
defined in Eq.(55). For the TG flow(61), the circulation The radius of curvature of the vortex lines in Fig. 11 is
around the boX0,7]x[0,] on thez=0 plane(see circuit large compared to their radius. Thus these three-dimensional
7 in Fig. 10 is given by lines can be considered as straight, and then compared to a
collection of two-dimensional axisymmetric vortices inside
r= fWJ'WdSquad"=4J'de sin (x)=8. (64  the periodicity box[0,27]%[0,27]%[0,27]. Indeed, for
0o Jo 0 large wave numbers, the incompressible momentum density

Ny, V// |
k/
"
2% P
[~ | ® o
2" ®
I A W I U
o
c
'/ V4 n
1 2" 2"n 1
0 T A

FIG. 10. lllustration of the mappin¢62) between physical space anl,f) plane for the Taylor—Green floW61). The dots represent the zeros in the
(N, 1) plane corresponding to vortex lines in physical space. Note that only 1/8 of the total periodic[t9,Bex X[ 0,27] X[ 0,27] is shown on the left. The
rest of the field can be obtained by mirror reflection in the boundaries of the picture. The vortex lines are thus closed rings.
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FIG. 11. Three-dimensional visualization of the vector fiél# (pv) of the

initial data for the Taylor—Green flow with coherence

=0.1/(8y2), sound velocityc=2, andN=512 in the impermeable box
[0,77]1X[0,7r] X[0,7]. Direction of vector field at each point is indicated by

orientation of small rods.

spectrumJ' (k) of Fig. 12b) is well represented by multiply-
ing the spectruml, (k) of a single two-dimensional point

vortex by a factor,
R A
27 [55%0n(k) dk’

length

(66)
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This constant of proportionality is related to the lengtof

the three-dimensional vortex lines and to the lengthdf a
single two-dimensional point vortex seen in the three-
dimensional periodicity box of side7s2 This factor(66) is
then equal to the total number of three-dimensional vortex
lines[just as it is equal to the total number of point vortices
in the two-dimensional test flow, s€B9) and the comment
below]. This fitting procedure allows us to determine the
total length of vortex lines.

We have performed a series of ARGLE runs correspond-
ing to various resolutions, and parameters are summarized in
Table I. Here and in the remainder of the article, the velocity
of sound is set t@=2 unless otherwise specified.

Table | shows that, ag decreasegwhich requires an
increase in resolution the incompressible kinetic energy
converges towards the value 0.125 associated with the TG
vortex (61). The other energies decrease as the resolution
increases.

On the other hand, the total vortex lendtand the total
enstrophy increase. These two quantities are relpseg¢
(60)]. The lengthl can also be define¢hlthough in a some-
what less precise way, see Fig. & the ratio of the enstro-
phies:

| 2 K23i(K)

== " 6
2m fz)ckz‘]vort( k) dk ( 7)

The main conclusion that can be drawn from inspection of
Table | is that our initial data preparation method described
in Sec. Il C constructs vortical flows whose incompressible
kinetic energy converges towards the nominal TG value
0.125 as¢ decreases, while the other components of the en-
ergy tend to zero. In contrast, in this limit, the total enstrophy

(b)

FIG. 12. Energy and incompressible momentum density spectra att trie(same conditions as Fig. 11(a) Incompressible kinetic energizLin (solid),
compressible kinetic enerdgy;, (dot-dashel quantum energ¥, (dasheg, and internal energi;, (long—dashel (b) Incompressible momentum density
spectrum. Solid line is the momentum density spectrum of a single two-dimensional point \Fegeixb) multiplied by a factod/(24)] determined by a fit
at highk. This fitting procedure leads to the total vortex length in the periodicity [lsee text, Eq(59)].
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TABLE |. Characteristics of the ARGLE runs that will be used as initial 0.14

data for the NLSE dynamics. The values of the energies, enstrophy, an
vortex length are indicated at the final tinve Targie - 012
Run a b c d 010 L
Resolution 128 256 400 512
& 0.1/(2y2)  0.1/(4/2) 0.1/(6.25/2)  0.1/(8/2) 0.08 |
TarcLE 60 60 15 60 w
dtarcLe 0.025 0.0125 0.008 0.006 25 0.06 |
Elin 0.129022  0.129 603 0.126 182 0.124 262
Efin 0.000 488 0.000 26 0.000 358 0.000 129 0.04
Eq 0.007 925 0.004 598 0.003 173 0.002 382
Eint 0.013 004 0.007 772 0.005 444 0.004 099
Enstrophy 6.357 064 14.544 741 24.084 934 30.105 943
|12 36.584 050 83.703032  138.605561 177.864
) FIG. 13. Time evolution of total energl,, (dot-dashef] incompressible
>N/2 k2Ji(k) increases with the total length of vortices. The kinetic energyEl, (solid), compressible kinetic enerdst,, (dotted, quan-
large value ofl in run d is related to the large number of tum energyE, (dashed and internal energi, (long—dashegfor run d.
lines present in Fig. 11. :\l_cgtet'the transfer of energy from the incompressible part to the other con-
ributions.

The increase of the total vortex lendtlwith the resolu-
tion can be estimated by the following argument. In order to
maintain accuracy, wheg is decreased\ is increased as
(N/27)~0.72< ¢~ 1. Using (22), we obtain a~(c/+2)
X (2m/N) X 0.72. Note that/27r defined in(66) is the num-  C. Numerical results for the vorticity dynamics
ber of defect lines crossing the=0 plane inside the
[0,27]X[0,27] (X,y) box. This number is four times the
number of defects inside thed,7]Xx[0,7] box, given by
8/4m [see(64) and (65)]. Thus the total vortex length in-
creases with the resolution as

Perhaps the most striking result of the three-dimensional
vortex dynamics is that NLSE dynamics manages to transfer
a sizeable amount of the flow’s incompressible kinetic en-
ergy into other energy components. This behavior is dis-
played in Fig. 13 which shows the time evolution of the
different components of the total energy for rdnin sharp

| 32N contrast with the two-dimensional vortical flow evolution

—— (68) B , . , .

2w (2)2\2¢x0.72 shown in Fig. 6, an irreversible transfer of incompressible

kinetic energy into compressible kinetic, quantum, and inter-

In order to check that the runs of Table | are adequatelyal energies is manifest in Fig. 13.
resolved, we have compared the results of several ARGLE One of the main quantitative results of this article is the
runs with different resolutions but the same valueg @nd  excellent agreement of the incompressible kinetic energy dis-
. Table 1l shows that théd=128 run corresponding to a sipation rate shown on Fig. 8 with the corresponding
value of ¢/Ax=0.72 (where Ax=2m/N denotes the mesh data in the incompressible viscous TG flpRef. 19, Fig. 7,
size), is well converged. It is this value @f Ax that has been Ref, 21, Fig. 1b), and Ref. 28, Fig. 5.12 Both the time for
used in all the other runs presented in this paper. That thighaximum energy dissipatici,.~5—10 and the value of the

resolution is adequate is confirmed by inspection of the speissipation rate at that time(t,,,)~10"2 are in quantitative
trum of Fig. 1Zb) showing an exponential tail for most of agreement.

the largek regime. In the limit of decreasing £, the coordinates

(tmax:€(tmay) Of the maximum energy dissipation show a

weak dependence oé. This is remarkably similar to the
TABLE Il. Characteristics of the ARGLE runs used to check resolution. weak dependence of the corresponding viscous quantity in
the limit of viscosityr going to zero. In the viscous case, the

Run j a’ k . . .
! weak dependence in of €(t,59 IS considered a hallmark of
Resolution 64 128 256 numerical evidence for a Kolmogorov regime in decaying
i 0-1’§§ﬁ) 0-1’3%@) 0-1/%/5) turbulence?® By inspection of Fig. 14) for rund, ty.—8,
ARGLE - . . . . -
S 0.05 0.025 0.0125 while the first |nﬂect|on_ point ok(t) is m_thg range 4t<5
El, 0.128 984 0.129 041 0.129 570 and corresponds on Fig. (8} to the beginning of an appre-
(= 0.011 971 0.000 488 0.000 272 ciable decrease of the incompressible kinetic energy. This
Eq 0.087 639 0060%70%26 00602702%4 change of behavior is probably linked to the vortex recon-
Eint 0.401 425 .013 005 .01 - : .
Enstrophy 9.749 363 6.357 759 6356075  ections that. begin dt-5 (se_e fOIIOV\./mg'. . .
2w 56.106 275 36.588 050 36.583 538 Another important quantity sFudlgd in viscous decaying
turbulence is the scaling of the kinetic energy spectrum dur-
2658 Phys. Fluids, Vol. 9, No. 9, September 1997 Nore, Abid, and Brachet
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FIG. 14. Evolution of the total incompressible kinetic energy in the Taylor—Green flow: run aéwith1/(22) andN= 128 (long—dashe} run b with
£=0.1/(42) andN=256 (dashed, run ¢ with £=0.1/(6.25/2) andN=400 (dot-dashefland run d with£=0.1/(8y2) andN=512 (solid). Figure 14a)
showsE};, and Fig. 14b) the associated dissipationdEj;/dt. Note thatEl,, becomes independent gfas ¢ decreases and that the time of maximum
dissipationt,,. is shifted fromt,,,~6 for run a tot,,,~ 10 for other runs.

ing time evolution, particularly at the time of maximum en- can be seen on Fig. 16 that this systematic deviation under-
ergy dissipation where &~ °? range can be observedee goes a sharp decrease after4. This might be related to the
Ref. 19, Fig. 16. ) onset of vortex reconnectigsee following. We thus specu-
The time evolution of the energy spectra in the NLSE|ate that it is not unreasonable to expect to find Kolmogorov
case are displayed in Fig. 15. One can observe a skall scajing within that range in an asymptotic regime where
buildup of the incompressible kinetic energy spectra and Kpumpis much larger than the integral scale wave number.
high k buildup of the compressible kinetic energy spectra. A striking difference between the behavior of the three-
The overall effect of the energy transfers at large ti®®e  gimensional NLSE dynamics spectra and the two-
Fig. 19 is that a part of the large-scale original incompress-gimensional vortical flow spectra is the evolution of the total
ible kinetic energy has fed the other energy components ggngth of vortices in the three-dimensional flow. In contrast
higher wave numbers. In the same way as explained in thg the corresponding two-dimensional quantity, namely the
two-dimensional casgsee discussion in Sec. lllD2the  humber of point vortices defined through E§9) or Eq.(60)
high k region, k=kpms~ 16, of all the energy spectri@X-  that remain almost constant in tinieee Fig. 9, the three-
cept the compressible kinetic energy spectream be attrib-  gimensjonal total length of vortices defined through &)
uted to the contribution of the individual vortex lines. The gy Eq. (66) displays an increase in time by a factor 3 as
small k region, k<kpymg~16, is associated with motion at shown in Fig. 17. This difference of behavior between the
scales larger than the vortex lines separation. The evolutiofyo- and the three-dimensional cases can be related to vortex
in time of the exponentn(t) of the spectral fitE,,,  stretching, classically present in the three-dimensional case
=A(t)k™ "® is displayed in Fig. 1@) for different spectral and absent in the two-dimensional case.
fitting intervals. It can be seen on Fig. (Bbthat the spectral The early time behavior of the vortex lines is shown in
exponent is comparable with the Kolmogorov vahie 5/3  Figs. 18a) and 18b). It can be seen by inspection of these

for times close tdna,. An example of a fit in this regime is  figyres that the vortex lines have been distorted but no re-

much steeper exponent of 4(6ee Sec. llID ® Although  stretching by a large scale incompressible flow can be ex-
the fits were actually performed on very narrow wave NnuM+ended to an assembly of parallel NLSE vortex lines. If a
ber intervals, it is tempting to speculate on the scalings thaéylinder of bases;, and lengthl., containingn vortex lines
would be observed with a larger valuelgj,mpthan the one  parallel to its generators, is stretched along the vortex lines
we can reach with our maximum resolution. First, let uspy 3 |arge-scale incompressible flow into a cylinder of base,
remark that a fit done on an interval at the rightlgf,,, s,, and length,L,, volume conservation implies thatL,
would yield n~1, the correct value for an isolated vortex =s,L, with s,<s; andL,>L,. Thus a large-scale stretch-
(see the discussion at the end of Sec. Il)B2his might  jng js trivially accompanied by an increase of total length of
explain the systematic lower value for the computéd)  NLSE vortices. Note that this is a property of tbellection
when the fit range is increased up kg,m;~16. Second, it of NLSE vortices: an individual vortex line, when stretched,
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FIG. 15. Energy spectra for run d: incompressible kinetic en&igy(solid), compressible kinetic enerdsf,, (dot-dashel] quantum energi, (dashegl and
internal energyE;,; (long—dashed (a) t=0; (b) t=2; (c) t=4; (d) t=6; (e) t=8, and(f) t=10. Note the transfer of incompressible energy towards other
energies and the buildup of the compressible kinetic energy spectrum aklarge

keeps its circulation #a andits typical diameteg constant, Vvortex lines seen in Fig. 17 can be related to the vortex
whereas the diameter of the collection decreases and thus te&etching classically present in the TG vortex. Indeed the

vortex line density increases. global flow evolution seen in Figs. (& and 18b) is iden-
Consequently, the short time €t<4) increase of total tical to the early time inviscid dynamics dominated by vortex
2660 Phys. Fluids, Vol. 9, No. 9, September 1997 Nore, Abid, and Brachet
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FIG. 16. Exponenn(t) in the spectral fitEikin(k)=A(t)k’ "® for run d.(a) Comparesn(t) computed from least-square fits over wave number intervals
2<k=12 (triangles, 2<k=<14 (circles, and 2<k<16 (squares (b) Solid line shows least-square fit ovesX<16 at timet=5.5[with A(5.5)=0.08 and
n(5.5)=1.70].

stretching near the walls of the impermeable box which ighe flow aftert~5. The resulting rather intricate vortex line
described in Refs. 19 and 31. Such a similarity is not surpristangle is shown in Figs. 18), 18(d), 18), and 1&f). Note
ing since it can be demonstrated that isolated NLSE vortexhat, in the evolution of the viscous TG vort&here is also
lines follow Eulerian dynamic®Thus the short time evolu- a qualitative(and a quantitativechange in vortex dynamics
tion of the NLSE flow mimics the continuous Eulerian flow aroundt~5.
in the same way that classical vortex line element methods Because of the high complexity of the vortex tangle for
are used to simulate Euler equatidhs® t=5, it is convenient to define a space-averaged quantity,

However, this analogy cannot cope with vortex recon-ws, which is the curl of the filtered momentum density,
nection. Indeed it is well known that the main limitation of (pv;)¢, defined as follows:
vortex line element methods is that the calculation must be
stopped, after a finite time, when too much stretching takes
place at some location.

Detailed visualizations of the NLSE resuldata not (;Ej)f(k)
showr) show that many reconnections take place throughout g

(ij)f(k) for ky<Kmax kygkmaXa Kz=Kmax
=1 (with ky5=16)

800.0 T T T T o
i)

otherwise.

600.0
The isosurfaces oy that are displayed in Fig. 19 can be
directly compared to Fig. 16—19 of Ref. 19. Both the NLSE
and the viscous figures show a similar evolution of the spa-
tial localization of turbulent activity. At=5, the activity is
localized within vortices close to the midsectiar /2 of
the walls k=y=0,7) of the impermeable box=0,7, y
=0,7, z=0,7. In both cases, after a transienttat6, the
turbulent activity spreads into a substantial fraction of the
0.0, 5 5 oo 5 00 impermeable box. As discussed in detail in Ref. 19, it is
t known that viscous reconnection processes are of prime im-
portance in understanding the complex later-time dynamics
FIG. 17. Vortex filament length divided by72in run d. This length is  in the TG vortex.

determined by the two procedures illustrated in Fig. 9. Solid and dashed S A _
curves show results of proceduf® (59) and procedurdb) (60), respec- The similarity of the energy transfer and spectral behav

tively. Because of vortex stretching, the total length has increased by ilor between the NL_SE and viscous TG vortic_es in the inter-
factor of 3, in contrast to the two-dimensional case. val 5=<t<10 (see Figs. 14 and 16 together with their corre-

400.0

2n

200.0
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FIG. 18. Three-dimensional visualizations %# (pv) for the Taylor—Green flow at various times with coherence lergt.1/(8y2) andN=512 in the
impermeable bok0,7]X[0,7]X[0,7]: (a) t=2; (b) t=4; (c) t=6; (d) t=8; (e) t=10; and(f) t=12.

sponding Figs. 7 and 9 in Ref. 1% thus quite remarkable. flow and of the fluid. It was noted, in Sec. llID 2, that
A possible tentative interpretation could be that, althougmbump~dgulmp, wheredy,y, is the average distance between
vortex line reconnection is necessary to reach this late-timeeighbor vortices. The flow parameters are the characteristic
regime, the detailed physical reconnection mechanisms aiategral scalel, (with corresponding wave numbek,
largely irrelevant. This would explain the observed quantitawlgl) and the characteristic large-scale velodity which

tive similarity of the overall depletion of incompressible ki- are, in the case of the TG flowg~1 andug~1. The fluid
netic energy, despite the obviously different viscous and diseharacteristics are the sound velocityand the coherence

persive reconnection processes. length¢ (with corresponding wave numbgg~ & 1. Using
the expression(49) for the number of defectsy and the
D. Discussion relationI’~14ug, one finds

As seen in the previous section, the spectral behavior of
NLSE can be compared to viscous turbulence only Kor
<Kpump- Itis thus of interest to estimate the scalingkgfi,p _ |oﬂ 69)
in terms of the characteristic parameters of the large scale ¢ c& °
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FIG. 19. Three-dimensional perspective plots of volumes in whigh?=0.6 |w;|3,,, Wherew; is the curl of the filtered momentum densityy); (see
text). Parameters as in Fig. 18) t=4, (b) t=5, (c) t=6, (d) t=7, (e) t=8, and(f) t=9.

Assuming that the vortices are uniformly spread over the\/@ However, when running a numerical computation, one

large scale arek, one obtains

5 (70)
Ng~ .
dgump
Equating these two evaluations of yields the relation
dbumpN \/(C/UO)§|01 (71)
or, in terms of wave numbers and Mach numberug/c,
Kpumg~ VM KoK, (72)

must fixky to the smallest wave number akdto the larg-
est. Thus, the range is in fact limited Kokg, and, in
order to maximize itM should as large as possible. How-
ever,M is bounded by the requirement that acoustic waves
generated by compressibility do not dominate the dynamics.

1. Compressibility effects

All the vorticity dynamics results presented so far were

performed withc=2 corresponding to a rms Mach number,

M me=|u2%/c=0.25. It is known that, in compressible tur-

At a given value of the Mach number and of the integralbulence, the compressibility effects become noticeable for
scale, Eq(72) shows that the range over which NLSE be- M,,=0.33* In the present study, we have compared the
havior can be compared to viscous turbulence increases & SE results with the published incompressible viscous TG
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results. An interesting project, that is left for further study, TABLE Ill. Characteristics of the ARGLE runs wittN=256 and ¢
would be to compare the NLSE results, at a given rms Machr %-1/(42).
number, with the correspondingompressibleviscous TG

. o . Run e f b g
vortex. In order to ascertain compressibility effects in the
NLSE simulations, we have performed several runNat MC 015 01-353 0225 0‘125
=256 and¢=0.1/(2y2), with various values oM. Tome 6 e o s
. . ARGLE

Table 11l shows the effect of variation of the rms Mach 4, = 0.0125 0.0167 0.0125 0.0125
number on the ARGLE converged results. The principal ef- g 0122360  0.125479 0.129603  0.140 687
fect of decreasind/ s is to decrease the total vortex length  Eg, 0.000756  0.000 265 0.000 26 0.000 273
I. The incompressible kinetic energy is almost constant while  Eq 0.002 582 0.003 598 0.004598  0.007 597
the compressible kinetic energy is negligible. The quantum Etim A Oéog?;135$gl Oflogsggw 0'102;:47?41 0'2;36277%39

. . . nstrophy . . . .
and internal energies, although small, are seen to increasé U2m 197 362453  118.646476 83703032  34.078 932

whenM s goes to zero.

As it is very costly to decrease tié,., while maintain-
ing the number of vortices constant, we checked that com-
pressibility effects would dominate fdvl,,=0.3. The en- Where Ug is the centerline velocity on the jet axis r
ergy dissipations corresponding to Table Ill are displayed in= Jy%+ 7?2 is the radial coordinate] is the momentum thick-
Fig. 20. It can be seen on this figure that the maxima ohess, andR is the jet radius. We have simulated the NLSE in
dissipation corresponding t#l,,,s=0.5 andM,,,s=0.33 oc- the geometry adapted to the jet as described in Ref. 13 and
cur at earlier timegrespectively, 2 and 5) than those corre- performed several runs with the following jet parameters:
sponding toM = 0.25 andM ,,s=0.125 (respectively, 10 U,=1;0=0.16;R=1; andc=1.25;¢=0.05/\/2.
and 7). Thus, forM,,,=0.25, compressibility effects are The corresponding unperturbed ARGLE converged
seen to affect the early time dynamics. This is why the valuestate, i, is shown in Fig. 2(a) to consist of an array of
of M,,s=0.25 was used as a compromise in the high resovortex rings. The converged three-dimensional jet solution
lution computations of Sec. IV. Yiet is then perturbed via

lﬂ(X,r) = ¢jet(xlr) + GU'ijet(Xir)-

An axisymmetric perturbation velocity leads to the pri-
mary Kelvin-Helmoltz instability shown in Fig. 2t). The
addition of a small nonaxisymmetric componentUaas in
The number and complexity of the reconnection eventshe viscous computatioffsleads to the states shown in Figs.
leading from the simple ordered state displayed in Figa)l8 21(c) and 22.
to the complex vortex tangle shown in Fig.(1)8is so great These final states display a striking resemblance with the
that a detailed understanding of its formation seems imposriscous results shown in Ref. 36. Pairs of counter-rotating
sible. We were led in the previous section to speculate thadxial vortices give rise to the outwardly migrating vortex
there should be a certain amount of universality betweemings shown in Fig. 22 as in the viscous calculations.
Navier—Stokes reconnection processes and NLSE reconnec- Although the results presented in this section are pre-
tion processes. In this section, we test this hypothesis on lBminary, they nevertheless strongly support the conjecture of
simpler flow where reconnection events are tractable. universality of reconnection processes, at least in the case of
It is well known, both experimentalfj and numerically  secondary instabilities of free-shear flows.
using the Navier—Stokes equatiotighat the secondary in-
stability of three-dimensional round jets leads to the formav. CONCLUSION
tion of sidejets. The formation of the primar§Kelvin—
Helmoltz) instability and the early onset of the secondarythis
instability (when pairs of axially counter-rotating vortex fila-
ments appear can be explained by basically inviscid
mechanism$3 However reconnection is crucial in order to

2. Evidence for universality of reconnection
processes

The main result of the NLSE simulations presented in
paper is that two diagnostics of Kolmogorov’s regime in
decaying turbulence are satisfied. These diagnostics are, at
the time of the maximum of energy dissipatiofi) a

allow the se : S . _parameter-independent kinetic energy dissipation rate, and

paration and migration of pairs of counter-;.. K513 | ling in the inertial Th h

rotating vortex filaments away from the axis of the Jet. (i) . spgctra scaling In the Inertia range. fhus, the
NLSE simulations were shown to be very similar, as far as

Thus vortex line element methods are unable to capture the L ; . . !
. o . energetics is concerned, with the viscous simulations.
later part of the secondary instability dynamics.

In order to ascertain the ability of NLSE to qualitatively beeExperlmentaIIy, towed grid superfluid turbulence has

: n used in helium Il to probe the decay of eddies by moni-
reproduce the postreconnection development of a thre%ring the attenuation of second sourfdt was found that
dimensional round jet’'s secondary instabilities, we have cho;

. . . . ) the line density of quantum vortices follow the Kolmogorov
sen to study a jet defined by MichalReThe velocity profile law w~1-%2, This result was interpreted by the locking of

IS the normal fluid and the superfluid via mutual friction. An
experiment that would correspond to the numerical results of
U(r)= Uo 1+tan R(1-r/R) 73 the present article should be performed at a temperature low
2 20 ' enough for the normal component of the flow to be ne-
2664 Phys. Fluids, Vol. 9, No. 9, September 1997 Nore, Abid, and Brachet
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FIG. 20. Incompressible kinetic energy dissipatierd EL;,/dt, under NLSE
dynamics: c=1 (dotted; c=1.5 (dot-dashe c=2 (solid and c=4
(dashegl All runs are performed witthN =256 and§=0.1/(4\/§) (see Table
).

glected. In this low temperature regime, second sound a
tenuation measurements cannot be performed.

In the case of helium, the viscosity at the critical point
(T=5.174 K, P=2.2x10° Pa is given by vep=0.27
x10"7 m? s~1. The quantum of circulatior, =h/my, has
the value 0.9%10 " m? s *. Thus, v,;~0.29". Using I

~ i - B - ; FIG. 21. Three-dimensional visualizations Bfx(pv): (a) initial three-
lotlo and (71), one findsdyum;~lo/ VRop 1\ WhereR, is imensional round jet(b) large ring resulted from the Kelvin-Helmholtz

the integral scale Reynolds number at the critical point an stability; (c) secondary instability. Note the formation of axial contra-
I\ the Taylor microscale. In other words, the valuedgf,,  rotating vortex filaments.
in a superfluid helium experiment performedTat1 K is
thus of the same order as the Taylor microscale in the same
experimental setup run with viscous helium at the critical
point 38

Preliminary measuremepd. Maurer,(private communi-
cation)] in the swirling flow of Ref. 23 did not seem to show
a significant change in energy dissipation for temperatures
low as 1.6 K, where the normal fluid and the superfluid are in
the same proportion. It would be interesting to know if this
behavior persists at<1 K. A Kolmogorov regime at sucha ACKNOWLEDGMENTS

low temperature was predicted in Ref. 39 based on a simpli-
fied model of a Se]f-crossing vortex line. Computations were performed on the C94-C98 of the

An open interesting question is to know how far the Institut du Developpement et des Ressources en Informa-

analogy between superfluid and ordinary turbulence can béque Scientifique. We would like to thank L. Tuckerman for

pushed. In particular, in the field of viscous turbulence, it isher helpful discussions on this work.

well known that Kolmogorov's theory is only approximate,

since it neglects intermittend. Inertial range “intermit-

tency corrections” are routinely measuf@&>*-%?on veloci-  AppENDIX: NUMERICAL METHODS

metry data, by looking at the scaling of high order moments

of velocity increments. If the corresponding superfluid quan-  We have chosen to use pseudospectral methods both for

tities could be measured experimentallyis would suppose their precision and for their ease of implementattdrizor

the existence of a velocimetry probe working beldw 1 NLSE, we use the fractional step method described in Ref.

K), significant differences might appear. 44. Our numerical methods are thus standard; their only spe-
Another point is that Kolmogorov's scaling still eludes cialty stems from the conjunction of the Taylor—Green sym-

the derivation from first principles, i.e., from the Navier— metries with NLSE.

Stokes equatior®. This is a baffling situation, because al-
though approximate, Kolmogorov's scaling is well supported
experimentally. There is some hope that NLSE could shed
Jew light on these hard problems.
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It is easy to show that expressio(s1) applied topv;
[see Eq(26)] correspond to the following decomposition for
the complex scalay(x,y,z,t), solution of NLSE:

] [

P(xy,z)= >, go g(m,n,p,t)

m=0 n=0
X CcOSmMX cosny cospz, (A3)

with fp(m,n,p,t)zo unlessm,n,p are either all even or all
odd integers. The additional conditions are then:

(m,n,p,H)=(—1)" L(n,m,p,1), (A4)

with the same convention as above. Implementing these re-
lations yields savings of a factor 64 in computational time
and memory size when compared to general Fourier expan-
sions.

b. Taylor —Green Clebsch potentials

FIG. 22. Reconnection after secondary instability of a three-dimensional

round jet: note the formation of radially propagating small rings which The Taylor—Green Ve|OCIty fiel@1) has an associated

correspond to side jets. vorticity field
wx(X,y,2)=— cos(x) sin(y) sin(2),
1. Taylor—Green spectral representation for NLSE wy(X,y,2)=— sin (x) cos(y) sin (2), (A5)

a. Taylor—Green fpectra/ representat/or-l | _ w,(X.y,2)=2 Sin(X) sin (y) cos(2).
The symmetries of the TG velocity fielb1) imple-
mented in the code are rotational symmetry of angle ,
around the axis X=z=m/2), (y=z=m/2), and &=y Clebsch potentials\(x,y,z), and u(X,y,2) such tha_tw
= 7/2) and mirror symmetry with respect to the planes = YAXVu are needed. Thus and u must be invariants
=0,7r, y=0,1r, z=0,7. The advective velocity is parallel to Under the vorticity field dynamics. o
these planes that form the sides of tilepermeable box _  L0oking for a general invariant, under the vorticity
which confines the flow. It is demonstrated in Ref. 19 thatf€ld dynamics, one must solve the equation
these symmetries are equivalent to the following Fourier ex- 0;3;S(x,y,2)=0, (AB)
pansions for the velocity fieldi(x,y,z,t), solution of the
Navier—Stokes equations with initial datd® (61):

In order to use our preparation methgsee Sec. Il

which gives, dividing by sinx) sin (y) sin (@:

o w 9yS . dys ) 9,5 o A7
Lxyzh=3 3 3 Gmnp) an( n(y) ‘@n@ O (A7
m=0 n=0 p=0
_ This equation is separable: using the substitusfx,y,z)
Xsinmx cosny cospz, =u(x)v(y)w(z), and dividing bys, one gets the equation
S - w - a In[u(x)] dyInfo(y)] _d,In[w(z)]
= + -2 =0. (A8
Y20 = 2 20 20 By(mnp.0 @n(y | tan(y) tan (2) (A8
X COSMX Sin Ny cos pz, (A1) Thus, each term dfA8) mpst _be equal to a constany,, c,,
andc,, respectively, satisfying
uZ(X!yizlt): 2 Z Z az(m,n,p,t) Cx+cy_2CZ: 0. (Ag)
m=0n=0p=0 Each separated equation to be solved is then:
) X cosmx cosny sin pz 2, In U]
whereu(m,n,p,t) vanishes unless,n,p are either all even tan (x) =Cx (A10)

or all odd integers. There exist additional relationships be- L . iy
tween the expansion coefficients corresponding to the rota¥0se general solution is given hy(x) =const(cosqg ™.

tional symmetry of angler/2 around the axisx=y=m/2): WO independent solutions ofA9) are cy=—1c,=0c,
=—1/2 andc,=0,c,=—1c,=—1/2.

Gx(m,n,p,t)z(—1)r+1&y(n,m,p,t), Using these two solutions fos, one can define the

i )= (— 1) i ) (A2) " Clebsch potentials
u,(m,n,p,t)=(—1 u,(n,m,p,t
’ ’ N1(X,y,2) =12 cos(x)/ cos(2),
wherer =1 whenm,n,p are all even and=2 whenm,n,p (A11)
are all odd. mi(X,y,2)= V2 cos(y)+ cos(z).
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It is easy to check thaV\;%xV w, is equal to(A5). How-
ever, these Clebsch potentials are real for eps@ and
purely imaginary for coszj<0. In order to be able to apply

our preparation method described in Sec. Ill C, we need real

and periodic Clebsch potentials.
One can easily check that, replacitgll) by

)\(x,y,z)=\/§ cos(x)y| cos(z)|,
m(x.y,2)=/2 cos(y)[ cos(z)[ sgricosz)

does not change the vorticity field, provided that c)s-Q.
However, the singularity of X,u) on the plane defined by

(A12)

cos @) =0 due to the derivative of the function sgn is of the

form 26 cos @)]v| cos @)|=0 and is thus harmless.

c. Compatibility of the Clebsch potentials with the
representation

Expanding §,u) defined by(A12) as cosine series:
A(XY,2)= E E 2 )\(mx,nmpwt)
my=0 n\=0 p,=0
X €OSmyX COSN,Yy COSP,z,

m—On—OpM

(A13)

X cosm,Xx cosn,y cosp,z,

it is easy to check, looking at the parity ¢A12) under each
of the transformations:

COSX— — COSX,

COSy— — COSY, (A14)

COSZz— — COSZ,

that the only nonzero terms {#\13) are such thatn, is odd
while n, andp, are even andn, is even whilen, andp,
are odd. Then, because of the form af ) (A13), to check
that a given function of X, ) is odd or even under each of
the parity transformation@\14) is equivalent to checking its
parity under the substitutions:

A\,
- (A15)
B,
or,
A=A,
- (A16)
n— = .

Thus, even powers of andu involve only even wave num-
bers whereas odd powers &f x involve only odd wave
numbers.

Writing the real and imaginary parts gf, (55) in terms

of A and u, it is straightforward to check that, under the

substitutions (A15) and (A16), Rey,—Rey, and Imy,
—Imyy,. Thus, the initial datay, has a real part that in-

supplementary condition§A4) because the corresponding
rotation amounts to a circular permutation of each of the
factors in(55).

The numerical integration, using ARGLE, shows that the
final state has a good spectral convergence, in contrast with
the Clebsch initial data, (see Fig. 12

2. Time stepping schemes

Two pseudospectral codes were written for integrating
ARGLE and NLSE using the expansioih3). Expressing the
evolution equation in the form

&w—Lw-i-NL()

whereNL stands for the simplest nonlinear teftv) andL
for the linear operator, the following time stepping schemes
are used.

a. Time stepping for ARGLE

The time stepping for ARGLE is first-order accurate
P(t)+NL(t)At

1-LAt
whereL=aV? andNL=(Q— |#|?) ¢. If a fixed point is

reached, it is the correct steady state, independently of the
time step.

P(t+At) =

b. Time stepping for NLSE

We use the fractional steps method described in Ref. 44,
with L=iaV? and NL=i(Q— B|#|?) 4. In one fractional
step, the following linear problem is solved in spectral space:

D(t+At)=exp (—iak?At) ().

The result is then transformed to physical space where the
second fractional step is solved as:

YOx,t+ A =exp il — Bly(x,D[2IAt Y(x.b).

The two steps are alternated in order to maintain second-
order accuracy in time through Strang-type splitting. They
conserve the modulus ap. The conservation of the total
energyE,,; [see Eq(33)] is monitored as an accuracy check.

The ARGLE and NLSE codes were validated by com-
parison with three-dimensional general pseudospectral
codest>*3 At a resolution of 512 (the maximum used in this
article) with a time stepAt=1/6400, one time unit of NLSE
integration requires 7.5 h of CPU time on a Cray 90 ma-
chine.

3. Computations of the spectra

a. Computations of the energy spectra of a two-
dimensional vortex

The numerical computations of the spectra were per-
formed with Mathematica using the functidndefined in
(17). We begin to carry on these computations wigh
=1/\2, c=1, and the density at infinitg,=1 and we will
recover the dimensional spectra at the end of this section. As

volves only even wave numbers and an imaginary part thap(r) explicitly appears into the integralgl), (42), we first

involves only odd wave numbers. Furthermagg,obeys the
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in mapped Chebychev polynomials. The mapping is definedvhere E; and ky denote the dimensionalized spectra and
by r=1z/(1—-2%) or z=(2r/1)/(1+1+4(r/1)?), which  wave number corresponding to arbitrary valuestadind c
maps the interval &r<« into the interval Gsz<1 and while E,, andk,, denote the spectra and wave number cor-
wherel is a nonzero parameter controlling the distribution ofresponding tof=1/\2 andc=1. Thus the spectr&y(ky)
collocation points. Since/p(r) is an odd function of, the  are obtained fronk,,(k,,) as

expansion will be over only odd polynomials. Thyp(r) is o 3
N 2r/1 b. Computations of the energy spectra in the periodic

=3 N7

) . (A17)  codes

1+1+4(r/)?
. The energy spectra are computed in the following way:
where/py and/py ; are fixed to satisfy the boundary con- First, we evaluate
ditions _
2apd;h
lim p(r)=1, s
) o0 _ where e is a small regularizing parameter. Then, using the
rlTlr( p(r)—1)=0. relation (26), the real part ofA19) is found to be 2d;\p
_ _ _ _ o and the imaginary part to béﬁvj . Furthermore, in order to
The axisymmetric two-dimensional vortex solution is ob-separate the kinetic energy corresponding to compressibility,
tained by minimization of the following free energy: we decompose\/ﬁv,- into \/Evj=(\/5vj)'+(\/ﬁvj)° with
1 avp 2 Jp? 4 1 V.(JEU,—)'=O. Using these quantities, we compute the spec-
_(_p) L YP NP Jp2+ = tra (37) [with the simplest form of (17)].
2\ or 2r? 2 2 The angle-averaged spectra are then evaluated by sum-

ming the square modulus of the above quantities in shells in
Fourier space. A mode,n,p belongs to the shell numbered

S 2(1+rY] as[ymZ+nZ+pZ+1/2].

The p independent term in the above expression has been The density momentum 'spect'ruMk) 'S computed n
included to cancel the largelogarithmic divergence of the e Same way, by using the imaginary part afy2J;i and

kinetic energy of the vortex. The minimization is obtained by_decompoised into a compressible piriand an incompress-
time integration of the corresponding Euler—Lagrange equaP!€ partJ'.

tion. The expansiofA17) used withl =2 converges rapidly.

With N=10 Chebychev polynomials, this expansion repro- 1| | andau and E. LifchitzFluid Mechanics(Pergamon, Oxford, 1980

duces the numerical values for the vortex profile(r) 2K. W. Schwarz, “Three-dimensional vortex dynamics in superffthite:
given in Ref. 26 with five digit accuracy. 3Iine—Iine and ]jne—boundary_interactions,” Phys. Rev3B 57”82(1985.

We then need to evaluate numerically integrals involv- '(EN '?(')Gé{oig's (ng;)dy”am'cs of a superfluid condensate,” J. Math. Phys.
ing Bessel function41). In order to take into account the 4y, L Ginzburg and L. P. Pitaevskii, “On the theory of superfluidity,”
singularity atr =<, we cut the integral in two parts: Sov. Phys. JETR4, 858 (1958.

5R. J. Donnelly,Quantized Vortices in Helium l(Cambridge University
“ 1 I max Press, Cambridge, 1991
g(k)= mj drrg(r) Jo(kr) SA. L. Fetter, “Vortices in an imperfect bose gas IV. Translational veloc-
m)Jo ity,” Phys. Rev.151, 100(1968.
7J. C. Neu, “Vortices in complex scalar fields,” PhysicaB, 385(1990.

(A19)

.f‘7[p]=f 27rrdr

r2

+ +mdr rg(r) Jo(kr) 8F. Lund, “Defect dynamics for the nonlinear Schimger equation de-
(2m) ), g 0 ' rived from a variational principle,” Phys. Rev. Let59 245 (199J.
max 9P. Nozieges and D. Pinesthe Theory of Quantum Liquidéddison Wes-

The first term is evaluated numerically with the full expres-_ley, New York, 1990.

: OT. Frisch, Y. Pomeau, and S. Rica, “Transition to dissipation in a model
sions ofg andJy(kr). In the second term, we repladg(kr) of superflow,” Phys. Rev. Lett59, 1644(1992. P

by its asymptotic form andg(r) by fitting to a larger ex- 1y pomeau and S. Rica, “Model of superflow with rotons,” Phys. Rev.
pansionEﬁ‘:z,Bn/r“. The approximate formula is thus: Lett. 71, 247 (1993.
12C. Nore, M. Brachet, and S. Fauve, “Numerical study of hydrodynamics
~ " max using the nonlinear Schdinger equation,” Physica B5, 154 (1993.
g(k)”f drr g(r) Jo(kr) 13C. Nore, M. Abid, and M. Brachet, “Simulation numieue d’ecoulements
0 cisailles tridimensionnels daide de I'equation de Schinger non lin-
5 eaire,” C.R.A.S319 733(1994.
n E +°°d & i Kr— Z 143, Koplik and H. Levine, “Vortex reconnection in superfluid helium,”
= . rr o V 7kr COS| K= 7 /- Phys. Rev. Lett71, 1375(1993.
max 15C. Nore, M. Brachet, E. Cerda, and E. Tirapegui, “Scattering of first

; ; ; e i ; sound by superfluid vortices,” Phys. Rev. Lef2, 2593(1994).
Using dimensional analysis, it is straightforward to ShowleR. P. FeynmanApplication of Quantum Mechanics to Liquid Helium

that, withpo=1, all the spectr&41), (42) verify Vol. | of Progress in Low TemgNorth-Holland, Amsterdam, 1955
7M. Smith, R. Donnelly, N. Goldenfeld, and W. Vinen, “Decay of vorticity
_ 2 2 in homogeneous turbulence,” Phys. Rev. L&t, 2583(1993.
f Ea(kg)dka=c (gﬁ) f Em(km)dkm, 18G. 1. Taylor and A. E. Green, “Mechanism of the production of small

2668 Phys. Fluids, Vol. 9, No. 9, September 1997 Nore, Abid, and Brachet

Downloaded 12 Jan 2001 to 129.199.120.5. Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



eddies from large ones,” Proc. R. Soc. London, Sel58 499 (1937). subsequent collapse for three-dimensional ideal flows,” Phys. Fluids A
19M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, and  2845(1992.
U. Frisch, “Small-scale structure of the Taylor-Green vortex,” J. Fluid 3?A. J. Chorin, “Numerical study of slightly viscous flow,” J. Fluid Mech.

Mech. 130, 411 (1983. 57, 785(1973.
20M. Brachet, “Geomérie des structures petite ®helle dans le vortex de  33E. Meiburg, J. C. Lasheras, and J. E. Martin, “Experimental and numeri-
Taylor-Green, C.R.A.S IB11, 775(1990. cal analysis of the three-dimensional evolution of an axisymmetric jet,”

213, Domaradzki, W. Liu, and M. Brachet, “An analysis of sugrid-scale Turbulent Shear Flowg, 195 (1991).
interactions in numerically simulated isotropic turbulence,” Phys. Fluids **T. Passot and A. Pouquet, “Numerical simulation of compressible homo-
A 5, 1747(1993. geneous flows in the turbulent regime,” J. Fluid Medi81, 441 (1987).
223, Douady, Y. Couder, and M. E. Brachet, “Direct observation of the 3D. Liepmann and M. Gharib, “The role of streamwise vorticity in the
intermittency of intense vorticity filaments in turbulence,” Phys. Rev. near-field entrainment of round jets,” J. Fluid Me@#5, 643 (1992.
Lett. 67, 983(1991). 36M. Abid and M. Brachet, “Numerical characterization of the dynamics of
2G. Zocchi, P. Tabeling, J. Maurer, and H. Willaime, “Measurement of the vortex filaments in round jets,” Phys. Fluids % 2582(1993.
scaling of the dissipation at high Reynolds numbers,” Phys. Rev. §8tt.  3’A. Michalke, “On the inviscid instability of the hyperbolic-tangent veloc-

3693(1994. ity profile,” J. Fluid Mech.19, 543 (1964).

243, Fauve, C. Laroche, and B. Castaing, “Pressure fluctuations in swirling®C. Nore, M. Abid, and M. E. Brachet, “Kolmogorov turbulence in low-
turbulent flows,” J. Phys(France Il 3, 271(1993. temperature superflows, Phys. Rev. L&®&, 3896(1997).

g, A. Spiegel, “Fluid dynamical form of the linear and nonlinear Sehro 3B. V. Svistunov, “Superfluid turbulence in the low-temperature limit,”
dinger equations,” Physica @, 236 (1980. Phys. Rev. B52, 3647(1995.

%M. P. Kawatra and R. K. Pathria, “Quantized vortices in imperfect Bose *°Y. Gagne, E. Hopfinger, and U. Frisch, “A new universal scaling for fully
gas,” Phys. Rev151, 1 (1966. developed turbulence: The distribution of velocity increments,” NATO

2’H. Goldstein, Classical MechanigsAddison-Wesley Series in Physics  ASI 237, 315(1990.
(Addison-Wesley, Reading, MA, 1980 41F, Belin, P. Tabeling, and H. Willaime, “Exponents of the structure func-

28, Frisch, Turbulence, the Legacy of A. N. Kolmogor@ambridge Uni- tions in a low temperature helium experiment, ” Physic8%) 52 (1996.
versity Press, Cambridge, 1995 “2A. Arneodoet al. “Structure functions in turbulence, in various flow con-

24, Lamb, Hydrodynamics (Cambridge University Press, Cambridge, figurations, at Reynolds number between 30 and 5000, using extended
1963. self-similarity,” Europhys. Lett.34, 411(1996.

30y, Arnold, Mathematical Methods of Classical Mechani¢Springer- 4D, Gottlieb and S. A. Orszad\umerical Analysis of Spectral Methods
Verlag, New York, 1978 Vol. 60. (SIAM, Philadelphia, 1971

3IM. Brachet, M. Meneguzzi, A. Vincent, H. Politano, and P. L. Sulem, **R. Klein and A. J. Majda, “Self-stretching of perturbed vortex filaments,”
“Numerical evidence of smooth self-similar dynamics and possibility of Physica D53, 267 (1991).

Phys. Fluids, Vol. 9, No. 9, September 1997 Nore, Abid, and Brachet 2669

Downloaded 12 Jan 2001 to 129.199.120.5. Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



