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Direct numerical simulations of the Batchelor trailing vortex by a spectral
method
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Institut de Recherche sur les Phe´nomènes Hors Equilibre. UMR CNRS et Universite´ d’Aix-Marseille I,
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The nonlinear vorticity dynamics of the Batchelor trailing vortex is presented. Direct numerical
simulations of the three-dimensional, incompressible, Navier-Stokes equations by a spectral method
are used. It is shown that the initial vortex core is subjected to three transformations: a twisting
phase, a lateral expansion of its cross section and formation of a spiral structure. These
transformations are accompanied by a gradual deceleration of axial velocity. Mean kinetic energy is
then transferred to radial velocity. When the transfer is maximum a secondary instability is initiated
leading to the spiral structure. These transformations are in agreement with vortex breakdown
observed in recent experiments. ©1998 American Institute of Physics.@S1070-6631~98!00402-4#
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I. INTRODUCTION

Using the boundary-layer-type approximatio
Batchelor1 derived a similarity solution of fluid equations fo
the flow in a trailing vortex far downstream. This solutio
depicts an axisymmetric swirling wake flow. The visco
and inviscid linear stability of this solution, in the limit o
parallel flow, has been studied by Lessen, Singh and Pail2

Leibovich and Stewartson,3 Mayer and Powell,4 Khorrami5

and Duck and Khorrami.6 In the inviscid case, no unstabl
axisymmetric disturbances were found. The perturbat
with azimuthal wave numberm51 was found to have an
unstable region of larger extent, in wave number, than
other. In the viscous case, the critical Reynolds numbers
the modesm50 andm51 are found to be 322,4 and 17,52
respectively.

In this paper, we use direct simulations of the thre
dimensional incompressible Navier-Stokes equations~NSE!
by a spectral method to account for the nonlinear vortic
dynamics of the Batchelor trailing vortex~BTV!. We present
the numerical method and its validation in sections II and
respectively. The results are presented in section IV and
tions V and VI are devoted to our discussion and conclus
respectively.

II. NUMERICAL METHOD

We have chosen to use pseudo-spectral methods bot
their precision and for their ease of implementation.7 In order
to exactly conserve energy in the constant density invis
limit, and also to minimize storage, we use the so-cal
rotational formulation.7 Specifically we solve
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The Batchelor trailing vortex is the velocity fiel
u5(0,W(r ),U(r )), whereU(r ) andW(r ) are given by

U~r !5exp~2~r /a!2!, ~2!

W~r !5q
~12exp~2~r /a!2!!

~r /a!
. ~3!

Here,r is the radial distance of a cylindrical coordinate sy
tem (r ,f,x) aligned with the vortex,q is the swirl intensity
anda the vortex core size. The time is non-dimensionaliz
by U(0)/a and the Reynolds number is fixed t
U(0)a/n51000. In order to accommodate the profilesU(r )
andW(r ) of the vortex in a triply periodic Fourier represen
tation, we consider a periodic array of vortices with tran
verse periodicity lengthLy5Lz5L, greater than the vortex
core (L/a;5), and a longitudinal periodicity lengthLx in
order to allow three-dimensional disturbances~see figure 1!.
To makeW(r ) compatible with the periodic representatio
we use

r p5
L

2p
Asin2S 2p

L
yD1sin2S 2p

L
zD , ~4!

instead of

r 5A~y21z2!. ~5!

This periodic radial coordinate is easier than the so-ca
‘‘imbricate’’ series.8,9 It will be shown in section III that this
definition does not affect the vortex dynamics.

As we are interested in the instabilities of an isolat
vortex, and not the instabilities of an array of vortices, t
planesy5nL, z5mL can be taken as fixed free-slip boun
aries. We thus expand the velocity fieldu5(u,v,w) as
© 1998 American Institute of Physics
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u~x,y,z,t !5 (
kx ,ky ,kz

û~kx ,ky ,kz ,t !eikxxcos~kyy!cos~kzz!,

v~x,y,z,t !5 (
kx ,ky ,kz

v̂~kx ,ky ,kz ,t !eikxxsin~kyy!cos~kzz!,

~6!

w~x,y,z,t !5 (
kx ,ky ,kz

ŵ~kx ,ky ,kz ,t !eikxxcos~kyy!sin~kzz!.

TABLE I. Fields lateral dependence.

Field y dependence z dependence

u cosine cosine
v sine cosine
w cosine sine
u2 cosine cosine
vx sine sine
vy cosine sine
vy sine cosine

(u3v)x cosine cosine
(u3v)y sine cosine
(u3v)z cosine sine

p cosine cosine

FIG. 1. Representation of the cylindrical coordinate system used in
definition of the Batchelor trailing Vortex~top! and of the integrating box
~bottom!. Note that the origin of the cylindrical coordinate system isO1 .
Thex, y andz velocity components areu, v andw respectively. The planes
y5nL, z5mL ~n and m integers!, are reflection symmetry planes of th
flow. The axial periodicity lengthLx allows three-dimensional disturbance
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kx5
2p

Lx
i x , ky5

2p

Ly
i y , kz5

2p

Lz
i z . ~7!

In the following, we will denote the resolution a
Nx3Ny3Nz when the limits of the sums~6! are
0< i x,Nx ,0< i y,Ny/2,0< i z,Nz/2. By using these sine
and cosine transformations in the lateral directions, we ga

FIG. 2. Dispersion relation forq520.458 andm51.

FIG. 3. Amplitude of the mode~m51, q520.458! versus time for three
different values of the energies of the perturbation E0. Solid curve: linear
theory. Discontinued curves: nonlinear calculations.
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factor of 4 in storage and number of operations for the imp
mentation in comparison with a general~complex! periodic
transform. All fields are expanded in the same manner; Ta
I shows their lateral dependence.

By projecting on the space of divergence-free fields,~1!
can be reduced to

]ûm

]t
5(

j
S dm j2em j

kmkj

k2 D ~u3v!̂ j2nk2ûm , ~8!

whereem j is given by

@em j#5F 1 2 i 2 i

i 1 1

i 1 1
G . ~9!

For temporal evolution, we have chosen to use an Ada
Bashforth Crank-Nicolson discretization scheme. Equati
~8! are written in the following form:

FIG. 4. A three-dimensional vector plot of the vorticity field of the BTV
t50.

FIG. 5. Dispersion relations of the modes 1, 2 and 3 of BTV withq5
20.458.
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]ûm

]t
5Ĉm2D̂m , m51,2,3, ~10!

whereĈm is the nonlinear convective term andD̂m the linear
diffusive term in the Fourier space. Time integration sche
reads

ûm
n115

~12nk2 Dt/2!ûm
n 1 ~Dt/2! ~3Ĉm

n 2Ĉm
n21!

~11nk2 ~Dt/2!!
. ~11!

For the first time step, we use a backward Euler scheme

ûm
1 5ûm

0 1Dt@Ĉm
0 2D̂m

0 #. ~12!

This time stepping scheme is globally second-order accu
in time.

FIG. 6. Amplitudes ofm51, 2 and 3 modes versus time. Nonlinear calc
lations.

FIG. 7. A three-dimensional vector plot of the vorticity field at the time
saturation of the linear instability of the modesm51 andm52.
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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III. VALIDATION OF THE NUMERICAL METHOD

We use the linear stability results to validate the nonl
ear temporal calculations. We solve, by a shooting meth
the pressure equation of the linearized Euler equations f
Fourier modep(x,t)5 p̂(r )exp(ikx1imu2ivt), v5v r1 is.
The dispersion relation,s(k), with a swirl intensity
q520.458 andm51 is presented in figure 2. These valu
correspond to the most unstable helical mode.4 Velocity
eigenfunctions with the maximum growth rates50.2424 are
superposed to the basic velocity profile BTV as a small p
turbation. The Navier-Stokes equations are then integra
and the growth rate of the perturbation calculated. Figur
shows that the nonlinear calculations reproduce the gro
rates for small times. Three different energies of the pert
bation are used. We see that in order to accelerate the m
festation of the nonlinear regime, we can multiply the init
energy of the perturbation by 4 without spoiling the qual
of the growth rate. It is clear by looking at figures 2 and
that the transformation~4! does not affect the vortex dynam
ics.

FIG. 8. Contour lines of a cross section~x2y plane,z5L/2! of the pressure
field just after the initiation of the secondary instability. Three integrat
boxes are presented.

FIG. 9. Three-dimensional plot of the vorticity field at the same time
figure 8.
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IV. NUMERICAL RESULTS

The numerical results described herein are obtained w
a resolution of 4032003200. We present in figure 4 a three-
dimensional plot of the vorticity field of the BTV at initial
time with q520.458. We use the three first linearly un
stable modes as a perturbation to the BTV. Figure 5 sho
the corresponding dispersion relations. We then follow th
nonlinear evolution by integrating the incompressib
Navier-Stokes equations. Figure 6 shows the different am
tudes versus time. We observe, for small times, a line
growth phase for the three modes. Fort53, we can see the
nonlinear saturation of modesm51 andm52. To this state
corresponds a formation of two helices of vorticity whic
twist together as shown in figure 7. After the saturation
the linear growth of them53 mode, an inhibition phase o
the linear growth of the three modes occurs up tot512.5. At
this time, we can see a new growth of the modesm51 and
m52 suggesting the initiation of a secondary instabilit
This secondary instability creates a lateral structure as sho
in figure 8 which represents a cross section of the press
field ~we present three boxes of integration!. To this structure

s

FIG. 10. Three-dimensional plot of the vorticity field at an advanced tim

FIG. 11. Three-dimensional plot of the vorticity field at an advanced tim
when a random noise is used as a perturbation.
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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corresponds the formation of a lateral arm in the vortic
field as can be seen in figure 9: the initial structure has
ploded. In figure 10, we present an advanced time of
exploded structure. We see the formation of many late
arms that encircle the center of the structure, due to the
tation present in the flow, giving it a spiral form. We find th
same breakdown mechanism of the BTV using random n
as initial perturbation rather than linearly unstable mod
We present in figure 11 the spiral form of the exploded str
ture that we obtain in this case.

FIG. 12. Mean energies of the three velocity components: axialux , radial
ur and azimuthaluu versus time.

FIG. 13. Rates of energy transfer between the three velocity compon
axial ux , radialur and azimuthaluu versus time.
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Let us define the spatial mean energy,E(F), of a scalar
field, F(x,t) a function of the locationx and timet, by

E~F!5
1

V E
V

F2

2
~x,t !dV, ~13!

whereV stands for a volume of the fluid. By looking at th
spatial mean energies of the three velocity field compone
axial, radial and azimuthal we can explain the origin of t
BTV breakdown and its lateral~radial! nature. Figure 12
shows the mean energies versus time. The azimuthal com
nent~the swirl! is slightly affected by the evolution. In con
trast, the mean energy of the axial component of the velo
is diminished. This corresponds to a deceleration of the fl
The deceleration is accompanied by an energy transfer to
radial velocity component. This can be understood by

ts:

FIG. 14. Time dependence of mean energies~top! and rates of energy trans
fer ~bottom! of the three velocity components in the same conditions as
figures 12 and 13 but with random noise as initial perturbation.
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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incompressibility of the flow. The transfer of energy is ma
mum at a time that coincides with the initiation of the se
ondary instability as shown in figure 13.

The same mechanism is found when we use a rand
noise as initial perturbation or another value of the sw
parameterq as seen in figures 14 and 15.

The mechanism of the BTV breakdown presented her
in accordance with that observed in recent experiments
turbulence.10

Finally, it is interesting to note that the BTV breakdow
is also characterized by a simultaneous intensification of v
ticity and dissipation. This is shown in figure 16 whe
vmax

2 5max
x

uvu2 and smax
2 5max

x
0.5( i j (] iuj1] jui)

2 are

plotted as functions of time. It is also interesting to note t

FIG. 15. Time dependence of mean energies~top! and rates of energy trans
fer ~bottom! of the three velocity components in the same conditions a
figures 14 but withq50.8. The change of sign ofq corresponds to a chang
of the sign of the fluid rotation.
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the relative energy loss of the axial velocity betweent50
and the time of initiation of the secondary instability is a
ways about 30% as shown in figure 17.

V. DISCUSSION

Vortex breakdown refers to ‘‘an abrupt change in t
structure of the core of swirling flow.’’11 There are two pre-

n

FIG. 16. Time dependence plots ofv2
max ~solid! and s2

max ~dot! for q
520.458 and with linear modes as initial perturbations;v2

max ~long-dash!
ands2

max ~dot-dash! for q50.8 and a random noise as initial perturbation

FIG. 17. Time dependence plots of relative energies of the axial velo
componentux . Solid: q520.458 and with linear modes as initial pertu
bations. Dot:q520.458 and with random noise as initial perturbation
Dash:q50.8 and with random noise as initial perturbations. The initial ax
velocity is ux(0).
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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dominant forms of vortex breakdown: the nearly axisymm
ric bubble and the nonaxisymmetric spiral type breakdow12

Ludewieg13 and Jones14 using linear instability theory con
cluded that the spiral-type is the basic mode of vortex bre
down. Experimental investigations of vortex breakdow
were carried out in flows above delta wings at high angle
attack and in pipe flows. Bubble-type breakdown is char
terized by a nearly axisymmetric region of reversed fl
with a stagnation point at the forward end.12 In the case of
the spiral-type breakdown, when a dye filament is introdu
on the vortex axis, ‘‘the spiral form is marked by a kink
the filament followed by a corkscrew-shaped twisting of t
dye.’’ 15 ‘‘The spiral form in particular reveals the sudde
ness of breakdown and suggests the occurrence of a sta
tion point at the vortex axis.’’16 The spiral structure rotate
in the same sense as the surrounding fluid.12

Krause,17 Krause and Althaus18 stated that an advers
pressure gradient at large radial distances is extremely
portant in the initiation and development of vortex brea
down for an isolated slender vortex. The pressure grad
leads to a deceleration of the axial velocity componen12

Conservation of mass requires radial out-flow. A redistrib
tion of the axial into the circumferential vorticity compone
follows from the conservation of angular momentum and
vorticity transport equation.12 The circumferential vorticity
component induces an additional axial velocity compon
against the main flow direction. This leads to a stronger
celeration of the axial, and then enhancement of the rad
velocity components. Formation of a stagnation point on
axis of the slender vortex follows.12 Brown and Lopez19 also
noted that deceleration on the axis of a slender vortex
plies radial out-flow by conservation of mass. The strai
and parallel vortex lines upstream of the point of decele
tion are stretched and tilted in the region of radial out-flo
The vorticity vector acquires a circumferential compone
The axial flow is then decelerated by induction, and stret
ing and tilting of the vortex lines are enhanced. ‘‘This no
linear interaction between stretching and tilting and decele
tion of the axial flow may be promoted by a positive ax
pressure gradient at larger radial distances.’’12

Many numerical simulations of vortex breakdown ha
been performed with an adverse pressure gradient applie
the lateral boundaries.20–22 Good agreement with exper
ments was found. The numerical simulations herein are
in good agreement with experiments. But no adverse p
sure gradient at lateral boundaries is imposed. Vortex bre
down still occurs. The temporal nature of calculations a
the periodic boundary conditions prevent the formation o
stagnation point. Only the spiral-type breakdown is o
served. The formation of a stagnation point in the flow
then not a necessary condition for the spiral-type breakdo
to occur. The absence of an adverse pressure gradient
suggests that the initiation of deceleration of the axial vel
ity is a diffusive process in this case.

VI. CONCLUSION

We have accounted for the nonlinear vorticity dynam
of the Batchelor Trailing Vortex. We have shown that t
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flow undergoes deceleration accompanied by energy tran
from the axial velocity component to the radial one. Wh
the energy transfer is maximum, a secondary instability
initiated. The vortex breaks down in the lateral directio
vorticity arms are formed, and the rotation of the flow ro
up these arms to give to the exploded BTV a spiral for
This mechanism is robust. It is reproduced for different i
tial conditions and different values of the swirl parameterq.
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