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Direct numerical simulations of the Batchelor trailing vortex by a spectral
method
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The nonlinear vorticity dynamics of the Batchelor trailing vortex is presented. Direct numerical
simulations of the three-dimensional, incompressible, Navier-Stokes equations by a spectral method
are used. It is shown that the initial vortex core is subjected to three transformations: a twisting
phase, a lateral expansion of its cross section and formation of a spiral structure. These
transformations are accompanied by a gradual deceleration of axial velocity. Mean kinetic energy is
then transferred to radial velocity. When the transfer is maximum a secondary instability is initiated
leading to the spiral structure. These transformations are in agreement with vortex breakdown
observed in recent experiments. 98 American Institute of Physid$1070-663(98)00402-4

I. INTRODUCTION The Batchelor trailing vortex is the velocity field

) . u=(0,wW(r),u(r)), whereU(r) andW(r) are given by
Using the  boundary-layer-type  approximation,

Batchelot derived a similarity solution of fluid equations for U(r)=exp —(r/a)?), )
the flow in a trailing vortex far downstream. This solution

depicts an axisymmetric swirling wake flow. The viscous (1—exp(—(r/a)?))

and inviscid linear stability of this solution, in the limit of W(r)=q 3

parallel flow, has been studied by Lessen, Singh and Paillet, (r/a)

Leibovich and StewartsohMayer and Powelf, Khorram? : L . .
L Here,r is the radial distance of a cylindrical coordinate sys-
and Duck and Khorranfi.In the inviscid case, no unstable . ; . L .
tem (r, ¢,x) aligned with the vortexgq is the swirl intensity

axisymmetric disturbances were found. The perturbation . S . : 4
. . anda the vortex core size. The time is non-dimensionalized
with azimuthal wave numbem=1 was found to have an

by U(0)/a and the Reynolds number is fixed to

unstable region of larger extent, in wave number, than anXJ(O)alv=1000 In order to accommodate the profile&)
other. In the viscous case, the critical Reynolds numbers for ' P

the modesn=0 andm=1 are found to be 322,4 and 17,527 angW(r) of the .vortex n a trllply periodic Fogner represen-
respectively. tation, we consider a periodic array of vortices with trans-

In this paper, we use direct simulations of the three- o'>¢ periodicity lengti.,=L,=L, greater than the vortex

dimensional incompressible Navier-Stokes equatifSE) core (L/a~5), and a.Ionglt_udmaI .per|od|C|ty Ien_gthx n
. ... order to allow three-dimensional disturban¢sse figure 1L
by a spectral method to account for the nonlinear vorticity. : . - i
. " To makeW(r) compatible with the periodic representation,
dynamics of the Batchelor trailing vortédBTV). We present
. . SR : we use
the numerical method and its validation in sections Il and lll,

respectively. The results are presented in section IV and sec-

tions V and VI are devoted to our discussion and conclusion, rp:L \/Sinz(z_wy) +sir? 2_772) , (%)
respectively. 2m L L
instead of
Il. NUMERICAL METHOD
r=\(y?>+2%). (5

We have chosen to use pseudo-spectral methods both for o ] ] ) )
their precision and for their ease of implementafidn.order ~ This periodic r_ad|§1!3 coordinate is easier than the so-called
to exactly conserve energy in the constant density inviscid'mbr'cate series?” It will be shown in section Il that this

limit, and also to minimize storage, we use the so-calledi€finition does not affect the vortex dynamics. .
rotational formulatiorf.SpecificaIIy we solve As we are interested in the instabilities of an isolated

5 vortex, and not the instabilities of an array of vortices, the

Ju p u planesy=nL, z=mL can be taken as fixed free-slip bound-
—=—-VII+uXw+vAu, II=—+—-, V.u=0. (1 : ' o

ot @rv po 2 @ aries. We thus expand the velocity fiale= (u,v,w) as
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FIG. 2. Dispersion relation fog=—0.458 andn=1.

o with
x 27 27 27
kXZL—XIX, kyZL—Iy, kZZL—ZIZ. (7)
FIG. 1. Representation of the cylindrical coordinate system used in the y
definition of the Batchelor trailing Vortekop) and of the integrating box In the following, we will denote the resolution as

(bottom). Note that the origin of the cylindrical coordinate systenOis.
Thex, y andz velocity components ane, v andw respectively. The planes
y=nL, z=mL (n andm integers, are reflection symmetry planes of the
flow. The axial periodicity length., allows three-dimensional disturbances.

NyXNy XN, when the limits of the sums(6) are
0=<xiy<N,,0=i,<N,/2,0<i,<Nj2. By using these sine
and cosine transformations in the lateral directions, we gain a

u(x,y,zt)= > Uk ky kg, H)e"*cogkyy)cogk,z), 50 ' ' '
ky Ky ok
— - ik H
o(xy.z)= X o(ke,ky K, t)e*sink,y)cosk,2), o} —— unearTeory ]
K Ky Ky ----,2.;%
®e® | = s
wix,y,z)= > Wk ky,k,,t)eR*cogkyy)sin(k,z). T S ]
Ky Ky ok
< el
TABLE |. Fields lateral dependence. 20 /;'/'/ i
A2 P 1
Field y dependence z dependence ,,'f’/,- """""""""""""""" -
u cosine cosine 10} /,/ ]
v sine cosine 2
w cosine sine
u? cosine cosine
wy sine sine 0.0 . . L
wy cosine sine 0.0 50 100 15.0 200
wy sine cosine !
(UX @)y cosine cosine
(UX @)y sine cosine
(UX w), cosine sine FIG. 3. Amplitude of the modém=1, q= —0.458 versus time for three
p cosine cosine different values of the energies of the perturbatign §olid curve: linear

theory. Discontinued curves: nonlinear calculations.
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FIG. 4. A three-dimensional vector plot of the vorticity field of the BTV at
t=0.

factor of 4 in storage and number of operations for the imple- 20 s ‘ ‘
R . . i . . 0.0 10.0 20.0 30.0 40.0

mentation in comparison with a genefabmplex periodic t

transform. All fields are expanded in the same manner; Table

| shows their lateral dependence.

By projecting on the space of divergence-free fields,

FIG. 6. Amplitudes ofm=1, 2 and 3 modes versus time. Nonlinear calcu-

lations.
can be reduced to atons
au KimK; .
a—t’“=; (5m,-—emj% (X @)~ vkUp, (8) .
Un ~ =
wheree,; is given by St~ Cm=Dm, m=123, (10
.1 - whereC, is the nonlinear convective term afy, the linear
[em]=| 1 1 1], (9)  diffusive term in the Fourier space. Time integration scheme
i 1 1 reads
For temporal evolution, we have chosen to use an Adams- (1— vk? At/Z)GﬂpL (At/2) (3@?,1—(5?{1)
Bashforth Crank-Nicolson discretization scheme. Equations u”m“: . (11

2
(8) are written in the following form: (1+vk*(At/2))

For the first time step, we use a backward Euler scheme

U =Un+At[CO - DR 1. (12)
0.40 T T T
This time stepping scheme is globally second-order accurate
- m=1 . .
e 22 in time.
-— m=3
0.30 | 4
© 020 p
.\
010 | 4
Y
[
0.00 ¥
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FIG. 5. Dispersion relations of the modes 1, 2 and 3 of BTV wijth FIG. 7. A three-dimensional vector plot of the vorticity field at the time of
—0.458. saturation of the linear instability of the modes=1 andm=2.
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FIG. 10. Three-dimensional plot of the vorticity field at an advanced time.

FIG. 8. Contour lines of a cross section-y plane,z=L/2) of the pressure V. NUMERICAL RESULTS

field just after the initiation of the secondary instability. Three integrating . . . . .
boxes are presented. The numerical results described herein are obtained with

a resolution of 4& 200X 200. We present in figer4 a three-

dimensional plot of the vorticity field of the BTV at initial

time with g=—0.458. We use the three first linearly un-
lll. VALIDATION OF THE NUMERICAL METHOD stable modes as a perturbation to the BTV. Figure 5 shows

. . ) . the corresponding dispersion relations. We then follow their
We use the linear stability results to validate the nonlin-,iinear evolution by integrating the incompressible

ear temporal calculations. We solve, by a shooting methody,yier-stokes equations. Figure 6 shows the different ampli-
the pressure equatlorl of the linearized Euler equations for fides versus time. We observe, for small times, a linear
Fourier modep(x,t) = p(r)explkx+imé—iot), o=w;+io.  growth phase for the three modes. Fer3, we can see the
The dispersion relation,o(k), with a swirl intensity nonlinear saturation of modes=1 andm=2. To this state
q=—0.458 andn=1 is presented in figure 2. These valuescorresponds a formation of two helices of vorticity which
correspond to the most unstable helical mbdéelocity  twist together as shown in figure 7. After the saturation of
eigenfunctions with the maximum growth rate=0.2424 are  the |inear growth of then=3 mode, an inhibition phase of
superposed to the basic velocity profile BTV as a small perthe linear growth of the three modes occurs up=£d.2.5. At
turbation. The Navier-Stokes equations are then integrateghis time, we can see a new growth of the modes1 and

and the growth rate of the perturbation calculated. Figure 3n=2 suggesting the initiation of a secondary instability.
shows that the nonlinear calculations reproduce the growthrhjs secondary instability creates a lateral structure as shown
rate o for small times. Three different energies of the pertur'in figure 8 which represents a cross section of the pressure

bation are used. We see that in order to accelerate the manjge|d (we present three boxes of integrationo this structure
festation of the nonlinear regime, we can multiply the initial

energy of the perturbation by 4 without spoiling the quality
of the growth rate. It is clear by looking at figures 2 and 3
that the transformatiof¥) does not affect the vortex dynam-
ics.

FIG. 9. Three-dimensional plot of the vorticity field at the same time asFIG. 11. Three-dimensional plot of the vorticity field at an advanced time
figure 8. when a random noise is used as a perturbation.
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FIG. 12. Mean energies of the three velocity components: axialradial Bt
u, and azimuthali, versus time. 05 | =y ]
—~— - dE{u,)/dt

corresponds the formation of a lateral arm in the vorticity

field as can be seen in figure 9: the initial structure has ex-
ploded. In figure 10, we present an advanced time of the
exploded structure. We see the formation of many lateral
arms that encircle the center of the structure, due to the ro-
tation present in the flow, giving it a spiral form. We find the

same breakdown mechanism of the BTV using random noise
as initial perturbation rather than linearly unstable modes.
We present in figure 11 the spiral form of the exploded struc-

dE/dt

0.0

05

473

ture that we obtain in this case.

0.5

0.0

dE/dt

............ dE(u,)/dt
—— dE(u,)/dt
——=- dE(uAdt

40.0

200 30.0 40.0

FIG. 14. Time dependence of mean energiep) and rates of energy trans-
fer (bottom) of the three velocity components in the same conditions as in
figures 12 and 13 but with random noise as initial perturbation.

Let us define the spatial mean energy®), of a scalar
field, ®(x,t) a function of the locatiorx and timet, by

1 P?
E(®)=¢ JQ - (x.)dQ, (13

where() stands for a volume of the fluid. By looking at the
spatial mean energies of the three velocity field components:
axial, radial and azimuthal we can explain the origin of the
BTV breakdown and its lateralradia) nature. Figure 12
shows the mean energies versus time. The azimuthal compo-
nent(the swir) is slightly affected by the evolution. In con-
trast, the mean energy of the axial component of the velocity
is diminished. This corresponds to a deceleration of the flow.

FIG. 13. Rates of energy transfer between the three velocity components: N€ deceleration is accompanied by an energy transfer to the
axial u,, radialu, and azimuthal, versus time.

radial velocity component. This can be understood by the
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FIG. 16. Time dependence plots @, (solid) and o, (dot) for q
=—0.458 and with linear modes as initial perturbation$;,,, (long-dash
............ dE(u,)/dt > . LS .
—— dE(uYdt and o, (dot-dash for g=0.8 and a random noise as initial perturbations.

——- dE(u,/dt

dE/dt

4
100.0

FIG. 15. Time dependence of mean energiep) and rates of energy trans-
fer (bottom of the three velocity components in the same conditions as in
figures 14 but witlg=0.8. The change of sign of corresponds to a change
of the sign of the fluid rotation.

incompressibility of the flow. The transfer of energy is maxi-
mum at a time that coincides with the initiation of the sec-
ondary instability as shown in figure 13.

The same mechanism is found when we use a random
noise as initial perturbation or another value of the swirl
parametelq as seen in figures 14 and 15.

The mechanism of the BTV breakdown presented here is
in accordance with that observed in recent experiments of
turbulence®

Finally, it is interesting to note that the BTV breakdown

V. DISCUSSION

the relative energy loss of the axial velocity betwden0
and the time of initiation of the secondary instability is al-
ways about 30% as shown in figure 17.

Vortex breakdown refers to “an abrupt change in the

(E(u,)-E(uO)VE(u(0))

structure of the core of swirling flow.®! There are two pre-

0.0

06

0.0

10.0 20.0 30.0 40.0

is also characterized by a simultaneous intensification of VOIR|G. 17. Time dependence plots of relative energies of the axial velocity
ticity and dissipation. ThlS is shown in figure 16 where componentu,. Solid: = —0.458 and with linear modes as initial pertur-

wrznax_ ma_)4 w|2 and o'max max 0. 52”((9 u; +(9 u; ) are bations. Dot:q=—0.458 and with random noise as initial perturbations.
Dash:q= 0.8 and with random noise as initial perturbations. The initial axial

plotted as functions of time. It is also interesting to note thatvelocity is u,(0).
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dominant forms of vortex breakdown: the nearly axisymmetflow undergoes deceleration accompanied by energy transfer
ric bubble and the nonaxisymmetric spiral type breakddfvn. from the axial velocity component to the radial one. When
Ludewied® and Jone¥ using linear instability theory con- the energy transfer is maximum, a secondary instability is
cluded that the spiral-type is the basic mode of vortex breakinitiated. The vortex breaks down in the lateral direction;
down. Experimental investigations of vortex breakdownvorticity arms are formed, and the rotation of the flow rolls
were carried out in flows above delta wings at high angle olup these arms to give to the exploded BTV a spiral form.
attack and in pipe flows. Bubble-type breakdown is characThis mechanism is robust. It is reproduced for different ini-
terized by a nearly axisymmetric region of reversed flowtial conditions and different values of the swirl parameter
with a stagnation point at the forward etfdin the case of

the spiral-type breakdown, when a dye filament is introduced

on the vortex axis, “the spiral form is marked by a kink in ACKNOWLEDGMENTS
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