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Direct numerical simulations of the three-dimensional Euler equations at resolutions up to 
2563 for general periodic flows and 8643 for the symmetric Taylor-Green vortex are 
presented. The spontaneous emergence of flat pancakelike structures that shrink exponentially 
in time is observed. A simple self-similar model that fits these observations is discussed. 
Focusing instabilities similar to those leading to streamwise vortices in the context of free shear 
layers [J. Fluid Mech. 143, 253 (1984)], are expected to subsequently concentrate the 
vorticity and produce isolated vortex filaments. A finite time singularity for the Euler equation 
is not excluded as the result of interactions among these filaments. 

I. INTRODUCTION 

A main characteristic of incompressible three- 
dimensional flows is vortex stretching. It is usually believed 
(but not yet proved mathematically) that in real fluids, 
this effect is interrupted by viscous diffusion after suffi- 
ciently small scales have been formed. In contrast, in an 
ideal fluid the question arises whether vorticity can be 
stretched an infinite amount in a finite time, leading to 
singularities for the Euler equation. A physical motivation 
for this study is the relation between these possible singu- 
larities and the small-scale-structures of boundary-free tur- 
bulence in the limit of infinite Reynolds numbers. 

The only rigorous results for the Euler equation in 
three dimensions are local in time. For initial conditions 
corresponding to a vorticity which is differentiable (or at 
least Holder continuous), a solution exists and preserves 
its initial regularity for a finite time. A simple proof is given 
in Ref. 1. In particular if the velocity is initially analytic, it 
remains so as long as the vorticity is Holder continuous.2 
Results of local existence were also proved in Sobolev 
spaces for solutions with finite energy.3 In this frame, oc- 
currence of a singularity at a finite time t* requires that the 
maximum vorticity blows up faster than (t* -- t) -I. Con- 
versely, if the strain tensor remains bounded, a smooth 
solution exists for all time. 4 

The existence of a finite time singularity for the Euler 
equation was conjectured on the basis of phenomenological 
turbulence models which do not retain the geometric struc- 
ture of the high vorticity regions (see Ref. 5 for review). A 
singularity was also suggested by analyzing the variation of 
the energy dissipation in direct numerical simulations of 
the Navier-Stokes equations when the viscosity is de- 
creased: a singularity is suspected if the amplitude and time 
of the maximum dissipation seem to converge to finite 
limits.6’7 This analysis is in fact rather delicate since it 
involves simultaneous asymptotics on viscosity and time. 

An indication of singularity was also obtained in Ref. 8 for 
the so-called Taylor-Green vortex,’ using analytic contin- 
uation techniques on temporal Taylor series of the solu- 
tions beyond the convergence disk by means of PadC ap- 
proximants. This result was questioned in Ref. 10 where it 
was pointed out that accuracy in the analytic continuation 
deteriorates too quickly to lead to any definite conclusion. 

A more straightforward approach consists in the direct 
simulation of the inviscid problem during a time consistent 
with the spatial resolution. An indication of global regu- 
larity was obtained by monitoring the vorticity maximum, 
for an initial condition consisting in two vortex tubes.” 
The algorithm was a finite-difference scheme with an adap- 
tive mesh. Evidence of a singular behavior was, however, 
reported by these authors in the case of axisymmetric 
flows.” Still considering the time evolution of vorticity but 
using spectral methods, presumptions of finite time singu- 
larity were presented in Ref. 13. 

Finite-difference schemes with adaptive mesh enable 
one to integrate during relatively long times. Nevertheless, 
it is rather difficult to control the accuracy in the resolution 
of the smallest scales and the computation of the vorticity 
maximum. 

In the case of space-periodic flows, a more robust ap- 
proach is provided by the analyticity strip methodI based 
on the tracing of complex space singularities as time 
evolves. Assume that at a given time, the solution can be 
continued to complex space variables x+iy inside the an- 
alyticity strip ] y ] < 6. The width S can easily be derived 
from the large-wave-number behavior of the spatial Fou- 
rier transform of the solution. Indeed, for large k, the am- 
plitude of the Fourier modes decreases like e,-sk (up to an 
algebraic prefactor) . For an initial value problem, it is pos- 
sible to measure S accurately as long as it remains larger 
than a few mesh sizes. During this whole time interval, 
spectral convergence of the Fourier expansion is ensured, a 
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condition requested to resolve precisely the smallest scales 
of the exact solution. 

The analyticity strip method is especially adapted to 
the Euler equation since, as already mentioned, for analytic 
initial data, low-order derivatives of the velocity field blow 
up when analyticity is lost. It was used in Ref. 10 for the 
inviscid Taylor-Green vortex. Resolutions up to 2563 col- 
location points were reached on a Cray- 1, by implementing 
the specific properties of this highly symmetric t-low in the 
numerical algorithm. It appeared that, as long as the com- 
putation was reliable, 6 was decreasing exponentially in 
time. If this behavior can be extrapolated indefinitely, it 
would correspond to global existence of analytic solutions 
for the three-dimensional Euler equation. 

The aim of the present paper is to examine thoroughly 
the regularity properties of the three-dimensional Euler 
equation, based on numerical simulations at the highest 
available resolutions on a 256 Mwords, 4 processors Cray- 
2. In Sec. II, the numerical algorithms are briefly presented 
for initial conditions corresponding to both the Taylor- 
Green vortex and random periodic data with an initial 
energy spectrum peaked at small wave numbers. In Sec. 
III, the analyticity properties of the flow are derived from 
the large-wave-number behavior of the energy spectrum, 
using the analyticity strip method. In Sec. IV, visualiza- 
tions in physical space of high vorticity regions, in the form 
of “vorticity pancakes” are displayed. A simple model of 
self-similar evolution which fits the numerical observations 
is also presented. In Sec. V, a possible mechanism for a 
subsequent instability of the vorticity pancakes focusing 
into vortex tubes is discussed. Sec. VI is the conclusion, 

II. THE NUMERICAL APPROACH 

The Euler equation 

a,v+ (v*V>v= -VP, 

v*v=o, 

is integrated numerically in a 2r-periodic box, using spec- 
tral methods. Time marching is done with a second-order 
leapfrog or Adams-Bashforth finite-difference scheme. 

In a first series of runs, we considered the Taylor- 
Green vortex’ which is an incompressible three- 
dimensional flow developing from the single mode initial 
conditions 

v,= sin x cos y cos z, 

vu= - cos x sin y cos z, (2) 

l&=0. 

This flow displays several symmetries that are imple- 
mented in the numerical simulation in order to reduce 
memory requirement and operation number. With the 
same code as the one used to simulate viscous flows,” 
inviscid calculations at resolutions up to 8643 collocation 
points were performed. In this algorithm, the solution is 
dealiased by suppressing at each time step the Fourier 
modes for which at least one wave-vector component ex- 
ceeds two-thirds of the wave-number cutoff. 
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FIG. 1. Energy spectrum E(k) (crosses) together with a mean-square tit 
(solid line) of the form c/c-b- 26k for the Taylor-Green vortex with a 
resolution of 8643, at time t=2.1. The fit is performed in the range 5 <k 
< 279. 

We also considered random initial conditions with a 
spectrum of the form E(k) =ck2e-(tikO)2with k,= 1 and 
c=O.O3. With the same code as the one described in Ref. 
16, dealiased simulations at resolutions up to 2563 were 
performed. In order not to reduce significantly the effective 
resolution, aliasing was suppressed as in Ref. 17, a method 
which retains 94% of the maximum wave number but dou- 
bles the operation number. 

At the maximum resolutions, our codes require all the 
machine memory. They are multitasked on the four CPU’s 
in order to maximize the computing power. 

Ill. SPECTRAL PROPERTIES 

In the framework of spectral methods for problems 
with periodic boundary conditions, it is easy to investigate 
the regularity properties of the solution by implementing 
the analyticity strip method. It consists in analyzing the 
time evolution of the energy spectrum 

E(k,t) =; c I %k’,t) I 2, (3) 
k-lAk/2)<lk’l<k+(Ak/2) 

obtained by averaging on spherical shells of width Ak= 1. 
In Eq. (3), ?(k’,t) denotes the spatial Fourier transform of 
the solution. 

As long as the velocity field is analytic, the energy 
spectrum E(k,t) decays exponentially at large k (with a 
possible algebraic prefactor) . The logarithmic decrement is 
twice the width S(t) of the analyticity strip of the solution 
when continued to complex spatial variables. The temporal 
evolution of the analyticity strip is obtained by fitting the 
computed energy spectrum E( k,t) with the assumed func- 
tional form 
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FIG. 2. Time evolution of the logarithmic decrement 6(f) obtained by 
fitting the energy spectrum on the ranges 5 < kc 71, 5 <k < 161, and 5 
<k < 279 for the inviscid Taylor-Green vortex integrated with resolu- 

tions 2563 (dotted line), 512j (dashed line), and 8643 (solid line), re- 
spectively. 

c(t)k- n(t)e--2d(t)k (4) 

An example of a mean-square fit of this form is pre- 
sented in Fig. 1 for the Taylor-Green vortex at time t=2.1 
when integrated at a resolution of 8643 collocation points. 
The crosses give the computed energy spectrum while the 
solid line is the result of the fit performed in the range 
5 < k < 279. In order to avoid spectral oscillations resulting 
from the symmetries of the Taylor-Green flow, the energy 
spectrum was in this case averaged on shells of width Ak 
=2. Except at the lowest wave numbers where no univer- 
sal behavior is expected, the fit appears to be very good. 

The measure of S(t) is reliable as long as it remains 
larger than a few mesh sizes, a condition required for the 
smallest scales to be accurately resolved and spectral con- 
vergence ensured. Figure 2 shows 6 (t) versus time for the 
inviscid Taylor-Green vortex integrated at resolutions 
2563, 5123, and 8643. The fits of the energy spectrum were 
performed on ranges 5<k<71, 5<k<161, and 5<k 
< 279, respectively. We clearly see that after a short tran- 
sient, S(t) decays like 

is(t) =soe-“T, (5) 

with a characteristic shrinking time T=O.57 and S,=2.5, 
up to a time t=3 when it becomes comparable to twice the 
smallest resolved scale. 

Figures 3 (a) and 3 (b) display the time variation of the 
enstrophy 

i-l(t) = 
s 

+m k2E(k,t)dk 
0 

and of its normalized derivative 

2.2 

2.0 

1.8 

1.6 

1.4 

- 1.2 
c 

1.0 

.6 

.6 

.4 

.2 
0 0 .5 .5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 

t t 

0 .5 I.0 1.5 2.0 2.5 3.0 3.5 4.0 
t 

FIG. 3. Time variation of the enstroq& $$;“) =fO+ -‘kzE( k)dk (a) and of 
its normalized derivative S(t) = ( -mg) [fl(t)/sl( t)3’2] (b), for the 
Taylor-Green vortex, at resolutions 2563 (dotted line), 5123 (dashed 
line), and 8643 (solid line). 

135 rn ii(t) 
S(t)= 98 ( 1 w)3’2 

(7) 

(which identifies with the skewness when isotropy is 
assumed6), for the Taylor-Green vortex at resolutions 
2563, 5123, and 8643. We notice that the enstrophy remains 
insensitive to the resolution during a time significantly 
longer than the period during which the logarithmic dec- 
rement is accurately computed. An analogous phenome- 
non is visible on S at least for the two runs with the highest 
resolutions. The logarithmic decrement is indeed mostly 
sensitive to the small scales. 

Assuming that the exponential decay of the logarith- 
mic decrement of the Taylor-Green vortex can be extrap- 
olated indefinitely, this would indicate that this flow re- 
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FIG. 4. Energy spectrum E(k) (crosses) together with a mean-square fit 
(solid line) of the form ck-“e- 26k for the random periodic flow with a 
resolution of 2563, at time f= 1.2. The fit is performed in the range 5 <k 
<119. 

FIG. 5. Time evolution of the logarithmic decrement S(t) for the general 
periodic flow, obtained by fitting the energy spectrum in the ranges 5 <k 
< 90 and 5 <kc 110, for simulations at resolutions 2C03 (dashed line) 
and 256’ (solid line), respectively. 

mains analytic for all times. On the other hand, it 
immediately follows from its definition that S should tend 
to zero when t goes to infinity in order to prevent a finite- 
time blowup of the enstrophy. Such a decay is not visible 
on Fig. 3(b) where S is seen to grow monotonically. The 
integration time is in fact too short to reveal the asymptotic 
behavior of S and R. 

We now turn to simulations of general periodic flows 
with random initial conditions in order to check the gener- 
icness of the results obtained with the Taylor-Green vor- 
tex. The latter indeed displays specific features, like sym- 
metries and lines of zero vorticity. The initial conditions 
we chose correspond to an energy spectrum of the form 
E,(k) =I# c(~&)’ with ko= 1 and c=O.O3. In the case of 
the realization we used, the initial energy Eo=6.5x 10m2 
and the initial enstrophy ln,=O.29. Dealiased numerical 
simulations were performed at resolution 2003 and 2563 
collocation points. Figure 4 shows that the energy spec- 
trum is again well fitted with the functional form (4). An 
essentially exponential decay is obtained for 6 (t), up to the 
moment when it becomes of the order of a few mesh sizes 
and the accuracy of the simulation deteriorates (Fig. 5). 
This result strongly supports the genericity of the behavior 
observed for the Taylor-Green vortex. 

In order to compare the approach mainly used in this 
paper, consisting of monitoring the logarithmic decrement 
of the energy spectrum, and the method consisting of fol- 
lowing the time evolution of the vorticity maximum 
suplol, the latter quantity is plotted in Fig. 6 in lin-log 
coordinates for the random periodic flow. We observe that 
the growth is exponential from tz0.1 to 1.05, and also, but 
with a larger rate, from t= 1.05 to 2. Later on, spectral 
accuracy is lost. We observe that at the instant where the 
growth rate varies (t-1.05 and 2), the position of the 

vorticity maximum displays a discontinuity, indicating a 
jump from one vorticity structure to another. This effect is 
also visible, although to a much less extent, on the loga- 
rithmic decrement (Fig. 5 ) . 

In addition to the logarithmic decrement, the represen- 
tation of the energy spectrum; by the functional form (4) 
provides the exponent n(t). For both the Taylor-Green 
vortex and the random flow, we observed in Figs. 7(a) and 
7(b) that n(t) varies between 4 and 5, and appears to 
approach 4 at the end of the runs. A similar observation is 

FIG. 6 Tie evolution of the vorticity maximum sup 1 w 1 for the random 
periodic flow at resolution 2563. 
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trum for the Taylor-Green vortex (a) and fof the general periodic flow 
(b) in the same conditions as Figs. 2 and 5, respectively. 

reported in Ref. 13. A consequence of this spectral behav- 
ior is that, as already noticed, the enstrophy is not domi- 
nated by the smallest scales. 

IV. FORMATION OF VORTEX LAYERS 

The decay in time of the logarithmic decrement mea- 
sured on the energy spectrum has a counterpart in physical 
space where it is associated with the generation of small- 
scale structures. In order to characterize this process, we 
choose to visualize the high vorticity regions of the flow. 
For both the Taylor-Green vortex and the general periodic 
flow, we observe the formation of pancakelike structures 
whose thickness decays in time. 

In the case of the Taylor-Green vortex, the pancake is 
formed near the center of the y=O face which is a mirror 

symmetry plane of the flow. Figure 8 displays the vorticity 
in this plane at times t=3, 3.25, 3.50, and 4. Shorter times 
(t=O and 2) were given in Fig. 1 of Ref. 10. We clearly 
observe the formation of a vorticity layer which shrinks in 
time without significant distortion. This process ‘is ob- 
served even when the layer becomes so thin that its inner 
structure is not longer accurately resolved. A model based 
on the special geometry of the Taylor-Green vortex and, in 
particular, the convergence of the fluid at z=r/2, was pre- 
sented in Ref. 10 (Appendix 4) and predicts an exponen- 
tial decay for the width of the analyticity strip of the so- 
lution. 

The formation of vorticity layers is in fact generic for a 
three-dimensional ideal flow. In Fig. 9, high vorticity re- 
gions are represented for the general periodic flow at times 
t=0.05, 1.10, 1.65, and 2.95. The visualizations were done 
on a Silicon Graphic machine, using the (three 
dimensional) interactive Vector Field Flight Simulator 
software developed at CERFACS in Toulouse. We see that 
initially isotropic blobs of vorticity contract in one direc- 
tion, while in the two others, the dimensions remain finite. 

In order to reproduce the dynamics of an isolated pan- 
cake structure in a more general context, we construct a 
simple self-similar model by looking for a velocity field of 
the form 

and a pressure 

where 

(i=Xi/Zi( t) a (9) 

The incompressibility condition leads to 

while the momentum equation gives 

(10) 

n;i, 
MWi+ C 

4 a Mj 8 N ap 
i i -$gjaf;+T Wjz. 

J J 
wi=-IfMrg.9 

‘(11) 

where overdots denote time derivatives. 
Assuming that the pancake structure shrinks in the c3 

direction, while the characteristic scales in the transverse 
directions remain of order unity, a solution of Eqs. ( 10) 
and ( 11) consistent with this evolution corresponds to the 
scaling factors 

M,=Mz=l, I,=I,=l; 

M3=Z3=e-t’T, N= 1. 
(12) 

The profile of the solution is given by the system 
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FIG. 8. Visualizations in physical space of high vorticity regions for the Taylor-Green vortex at 1=3, 3.25, 3.50, and 4. Note that the thickness of the 
pancake decays in time. 

aw3 v~q+-g=o, 

ap -= 
ac3 0, 

(13) 

where 1 denotes the projection in the plane perpendicular 
to the Ii3 direction. We notice that, as is usually the case for 
a boundary layer, the pressure does not change signifi- 
cantly when crossing the pancake. Note that although 
space dimension does not explicitly enter in the above scal- 
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ing, no nonzero solutions of Eq. (13) can be considered in 
the context of two-dimensional flows since the vorticity 

I *,Pw, 
-’ 65, 

w=curl v= 

\ I 

,r,& + w 1) 
ac3 

0 

(14) 

grows exponentially in time, while it is conserved in two 
dimensions. 

It is interesting to consider the strain matrix 
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FIG. 9. High vorticity regions for the random flow at times kO.05, 1.10, 1.65, and 2.95. 

0 0 Ta WI e’/ __ 
x3 

0 0 et2c 

$4 $w2 o 3 e’/ ~ 
a(, 

et/ ~ 
ac3 

+0(l). 

V1 =&IT -,- [$; g;, J-(gJqg] +0(l), 

(15) 
i 

aW2 aw, 
V2=etlT a;,t -TjgO +0(l), 

i 

It is easily checked that the eigenvalues of S read 

&=O( 11, 

A3= -4. 

The associated eigenvectors are 
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(17) 

V3 =&IT -,---, - [fp$; @)2+($$]+oW 

Our model thus predicts that the vorticity tends to be 
aligned with the strain eigenvector associated to the (fi- 
nite) intermediate eigenvalue. Furthermore, the two other 
eigenvectors make an angle of rr/4 with the c3 axis.~ 

The alignment of vorticity with the intermediate strain 
eigenvector was conjectured by Vieillefosse’8 on the basis 

(16) of a simplified analysis where the pressure is supposed to 
act in a completely isotropic way. As discussed in Refs. 19 
and 20, this assumption, which leads to a finite time 
blowup of the vorticity, is likely to become inconsistent as 
the singularity is approached and to change the dynamical 
picture drastically. Vieillefosse’s prediction concerning the 
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vorticity direction, is however, preserved in the revised 5 

models presented in Ref. 19 where the (nonlocal) aniso- 4 
tropic pressure effects are heuristically modeled in terms of 
prescribed random coefficients. The influence of these non- 3 

local effects on vortex stretching and alignment is in fact 2 

not fully understood. A formalism that clearly identifies 
the various competing factors was recently proposed in 

1 

Ref. 20. 0 
Coming back to our self-similar model, an explicit so- -1 

lution of Eq. ( 13 ) that explains some of the features seen in 
the visualizations of our numerical simulations (see below) 

-2 

is obtained in the form -3 

w1=.fu33), 
-4 

-5 

~2 = MT, (18) 
0 2 4 

ff 

w3 = - g3/T, 

or equivalently, when coming back to the primitive vari- 
ables 

FIG. 10. Variation of the strain eigenvalues with the parameter a, defined 
in (22). 

v1 =f(ze*“), 

v2=y/T, (19) 

v3= -z/T. 

Note that this velocity is in fact an exact solution of the 
Euler equation. It corresponds to the superposition of a 
shear flow [associated to a vortex layer in the (x,y> plane] 
and a uniform strain field in the (z,y) plane. 

Computing strain and vorticity for this flow, one ob- 
tains (setting T= 1) 

I (20) 

and 

0 
O= 2a , 0 0 

(21) 

with 

a=e*f’(ze*>. 

The eigenvalues of S are 

Al= -++ a’+:, 
d 

(22) 

a2= 1, (23) 

with the associated eigenvectors 

V1=(a,O,--f+JZ%, 

v2= (O,LO), (24) 

V3= (a,O,-&- 
II 

a2+$). 

Figure 10 displays the variations of the eigenvalues as a 
function of a. We notice that 1, and /2, cross each other for 
a= fi. The self-similar regime discussed at the beginning 
of this section corresponds to a large compared to the 
crossing value. The model (19) illustrates the evolution 
toward this asymptotic regime. We note that the strain 
eigenvector V, remains aligned with the vorticity. In con- 
trast Vi and V3 rotate in time in the (x,z> plane. While for 
small a (short times) the contracting direction V, is per- 
pendicular to the vorticity layer [which is parallel to the 
(x,y) plane], for large a (long times), it becomes inclined 
at 45” relative to the layer. Already when the eigenvalues 
cross each other, the angle is close to 55”. The same incli- 
nation of 45” is displayed by the dominantly expanding 
direction V,, in the long time regime. 

In order to validate the dynamics as exemplified by the 
above model, we have simultaneously visualized the vor- 
ticity and the strain eigenvectors in regions of strong vor- 
ticity. These visualizations, done for the general periodic 
flow, support both the alignment of vorticity with the in- 
termediate eigenvector and the rotation in time of the two 
other eigenvectors toward a direction making an angle of 
?r/4 with the vortex layer. The interactive change of view- 
point provided by VFFS software enabled us to obtain a 
rather clear representation of the direction of the vectors. 
In contrast, a fixed picture is ambiguous in this respect and 
is thus not shown. 

To get a quantitative insight, we have computed the 
histograms of the cosines of the angles between the vortic- 
ity and the three eigenvectors in the regions where the 
former exceeds 50% of its maximum. The results displayed 
in Fig: 11 confirm the alignment of the vorticity with the 
intermediate eigenvector. 

V. COLLAPSE OF VORTEX LAYERS AND 
GENERATION OF VORTEX TUBES 

The stability of a stretched vortex layer of the type 
described by ( 19) when slowly modulated in the x direc- 
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tion was studied in the context of free shear layers to model 
the formation of streamwise vortices.21’22 This analysis 
sheds light on the dynamics of the vorticity pancakes de- 
scribed in Sec. IV, beyond the time at which the integration 
has to be stopped due to loss of accuracy. In contrast with 
vorticity pancakes for which the vorticity is always di- 
rected in the expansion direction of the external strain [see 
Eq. (21)], in free shear layers the initial vorticity is mostly 
perpendicular to both the contraction and the expansion 
direction of the strain field resulting from the Kelvin- 
Helmholtz roll-up of the free shear layer. After a while, 
however, this vorticity aligns with the expansion direction 
of the strain. The subsequent dynamics of free shear layers, 
as modeled in Refs. 21 and 22, identifies with the stability 
problem of our vorticity pancakes. Both asymptotic 
analysis21 and numerical simulationsZ2 indicate that the 
vorticity focuses in a finite time into streamwise filaments. 
Reinterpreted in the context of our problem, this corre- 
sponds to a catastrophic collapse (in the x direction) of the 
vorticity pancake. This mechanism proceeds until the typ- 
ical width and thickness become comparable, forming a 
vortex tube. 

The external strain will continue to shrink exponen- 
tially the resulting vortex tubes.23 However, self- 
interactions and/or interactions among vortex filaments 

may possibly lead to a more singular behavior.‘42” Still, 
the conclusions of numerical simulations of interacting 
vortex tubes are controversial about the existence of a  finite 
time singularity.7’12*‘3 

In the context of Navier-Stokes flows at large Rey- 
nolds numbers, the shrinking of a  vorticity pancake is 
stopped by viscosity. The resulting vortex layer (with a 
small but finite thickness) collapses like in an ideal fluid. 
This process is interrupted when the width of the structure 
becomes comparable to its thickness. A vortex filament 
aligned with the intermediate strain eigenvector have then 
been formed, similar to those observed in numerical simu- 
lations of fully developed turbulence.15>‘6’27-30 Further- 
more, the time for filament formation has a finite limit as 
viscosity tends to zero. This is a consequence of the cata- 
strophic collapse of an infinitely thin vortex sheet.21 This 
quasisingular behavior provides an interpretation to the 
abrupt formation of vorticity filaments observed in a recent 
experiment.31 

VI. CONCLUSION 

We have simulated numerically the short-time dynam- 
ics of space-periodic three-dimensional ideal flows whose 
energy is initially concentrated in the largest scales. Both 
highly symmetric and randomly chosen initial conditions 
were considered. Since the nonlinearities lead to the devel- 
opment of arbitrarily small scales, the computation was 
limited to the time during which all the scales of motion 
were accurately resolved. After an early transient, we ob- 
served an exponential decay in time for the logarithmic 
decrement of the energy spectrum, or equivalently for the 
width of the analyticity strip of the velocity field. A simple 
model assuming a self-similar dynamics was also presented 
and satisfactorily compared with numerical observations. 

We  suggest that, like in free shear layers, the subse- 
quent dynamics consists in focusing instabilities which 
concentrate the vorticity leading to abrupt generation of 
isolated vortex filaments. The possible existence of a  finite 
time singularity for the Euler equation may strongly de- 
pend on the details of the interactions between these struc- 
tures. In this picture, the elementary processes leading to 
the formation of small-scale structures in turbulent flows 
are of a  purely inviscid origin. Viscosity prescribes minimal 
scales and permits reconnection. 
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