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Using a velocity field obtained in a direct numerical simulation of isotropic turbulence at 
moderate Reynolds number the subgrid-scale energy transfer in the spectral and the physical 
space representation is analyzed. The subgrid-scale transfer is found to be composed of a 
forward and an inverse transfer component, both being significant in dynamics of resolved 
scales. Energy exchanges between the resolved and unresolved scales from the vicinity of the 
cutoff wave number dominate the subgrid-scale processes and the energetics of the resolved 
scales are unaffected by the modes with wave numbers greater than twice the cutoff wave 
number. Correlations between the subgrid-scale transfer and the large-scale properties of the 
velocity field are investigated. 

I. INTRODUCTION 

Three approaches used in numerical predictions of tur- 
bulent flows are direct numerical simulations (DNS ) , large 
eddy simulations (LES) , and Reynolds-averaged Navier- 
Stokes (RANS) simulations. With currently available 
computer capabilities the applicability of the DNS meth- 
ods is limited to low Reynolds number turbulence. In prac- 
tical applications for high Reynolds number flows the 
RANS techniques are used most frequently. The main 
drawback of this method is the need for introduction of a 
number of phenomenological closure assumptions and em- 
pirical, flow-dependent constants. 

The LES techniques, reviewed by Rogallo and Main’ 
and more recently by Lesieur,2 are a compromise approach 
between DNS and RANS. In the LES large, resolved scales 
of a turbulent flow are simulated directly, akin to the DNS 
approach, and their interactions with the small, unresolved 
scales are modeled like in the RANS approach. However, 
contrary to the RANS, only a part of the nonlinear inter- 
actions is modeled in the LES, and since the modeled in- 
teractions involve small scales (usually in the inertial range 
of turbulence) which have more universal character than 
flow-dependent large scales, the hope is that such modeling 
can be accomplished with less empiricism and with greater 
help from the theories of homogeneous turbulence than is 
the case for the RANS approach. At the present time the 
most widely used subgrid-scale models are the Smagorin- 
sky model3 for the LES performed in the physical space 
representation and the Kraichnan4 and the Cholet and Le- 
sieur models5 if the spectral representation is used. These, 
as well as other subgrid-scale models, despite exhibiting a 
number of desirable properties like accounting properly for 
the global energy flux from the large to the small scales, are 
known to be deficient in some respects. For instance, the 
models are usually purely dissipative. However, the pro- 
cess of the subgrid-scale energy transfer is dissipative only 
in the mean and locally in the spectral or the physical space 

the effect of the subgrid-scale interactions may be to either 
decrease or increase the energy of the large, resolved scales. 
Various attempts were proposed in the past to account for 
the inverse energy transfer in the subgrid-scale modeling 
for homogeneous turbulence&’ and for inhomogeneous 
flows’ but no generally accepted method exists. 

The practical importance of the LES techniques and 
the deficiencies of the existing subgrid-scale models suggest 
that better understanding of subgrid-scale interactions is 
needed if improvements in the LES methods are to be 
made. To compute the effects of the subgrid-scale nonlin- 
ear interactions a full velocity field in three-space dimen- 
sions must be known; such detailed information cannot be 
obtained using current experimental techniques. Required 
information, however, is available in the direct numerical 
simulations of turbulent flows and has been used in the 
past to investigate the subgrid-scale interactions and to 
assess directly the validity of the models. Such an approach 
was pioneered by Clark et al. lo for the physical space mod- 
eling and by Domaradzki et al. l1 for the spectral space 
modeling. A major limitation of this approach is that only 
low Reynolds number flows can be simulated numerically 
and thus it is unclear to what extent conclusions from such 
analyses are applicable to the more important case of high 
Reynolds number turbulence. 

In this work we investigate the properties of the 
subgrid-scale nonlinear interactions using both the physi- 
cal and the spectral space representation for numerically 
simulated, decaying homogeneous turbulence. The simu- 
lated flow is the Taylor-Green vortex and using its 
symmetries” it is possible to increase Reynolds number by 
a factor of 2 as compared with the general nonsymmetric 
flows simulated with the same number of computational 
modes. It is hoped that the higher Reynolds number and 
the existence of a short inertial subrange for this flow can 
make results of such an investigation applicable to high 
Reynolds number turbulence. 
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II. NUMERICAL SIMULATIONS 

The Taylor-Green vortex flow13 develops from the fol- 
lowing initial condition: 

u=sin(x>cos(y>cos(z), 

u= -cos(x)sin(y)cos(z), (1) 
w=o. 

At time t=O the flow is two dimensional but becomes three 
dimensional for all times t > 0 when it develops into ini- 
tially well-organized, laminar structures in the form of vor- 
tex sheets which subsequently become unstable resulting 
eventually in a fully turbulent flow. It was noted by 
Orszag12 that the initial condition (1) has a number of 
symmetries which are consistent with symmetries of the 
Navier-Stokes equations and are thus preserved in time as 
flow evolves. In the context of spectral simulations the 
symmetries of the tlow may then be used to reduce the 
number of computational modes needed to describe the 
flow for a prescribed range of resolved scales. This idea was 
implemented by Brachet et al. l4 who were able to simulate 
the Taylor-Green vortex flow with an effective spatial res- 
olution of 2563 modes at a computer cost equivalent to 
simulating a general, nonsymmetric flow with the resolu- 
tion of 643 modes. More recently, Brachet” reported re- 
sults of simulations of the Taylor-Green flow performed 
with an effective resolution of up to 8643 modes and Rey- 
nolds number R L~ 140. A similar approach to increase 
range of scales and Reynolds numbers in numerical simu- 
lations of turbulence by employing symmetries of Navier- 
Stokes equations was pursued by Kida and his collabora- 
tors in a number of papers,i6-18 employing a flow with an 
even greater number of symmetries than the Taylor-Green 
vortex. ,4t the present time these highly symmetric flows 
are the most computationally efficient means of numeri- 
cally simulating isotropic turbulence with Reynolds num- 
ber RA on the order 100. * 

Using the numerical code developed by Brachet15 we 
have performed direct numerical simulations of the 
Taylor-Green vortex flow in order to generate a turbulent 
velocity field for the purpose of an analysis of the subgrid- 
scale nonlinear interactions. Since the details of such sim- 
ulations were extensively described by Brachet et al. I4 and 
Brachet” we report here only a few main features of the 
time evolution of the flow and its properties at the end of 
the run. The velocity field at the end of the run is used in 
the subsequent sections for the analysis of the subgrid-scale 
interactions. 

The flow is contained in a cube with a side length 2~ 
resulting in wave numbers k=(k1,k2,kZ) in the spectral 
space with integer components kj. In the physical space the 
flow is periodic with the period 2a in each coordinate di- 
rection x, y, and z. Because of the symmetries the flow 
never crosses the boundaries x, y, and z=s- and in the 
subsequent discussion it will be visualized in the so-called 
impermeable boxI O<x,y,z<;rr. The effective spatial reso- 
lution in the simulations was 5123 modes, which, after 
dealiasing by the 2/3 rule, provides the maximum wave 

number km= 170 in each coordinate direction. Since the 
velocity and the length scale of the initial flow are order 
unity the large eddy turnover time is also order unity and 
the Reynolds number is equal to the inverse of molecular 
viscosity l/y (3000 in the simulations). The simulations 
were run until maximum time t,,, = 18, i.e., for several large 
eddy turnover times, with the time step At=0.0025. 

In Figs. 1 (a)-1 (d) we plot the time evolution of the 
total turbulent energy, the total dissipation rate e, skewness 
S, and microscale Reynolds number Rn , respectively. Until 
time tz5 the evolution of the flow is essentially inviscid 
with the total energy nearly constant. During this period 
small scales are generated from the initial condition ( 1) 
resulting in a subsequent rapid rise of the dissipation rate 
which peaks at t=: 10 and later decays because of the de- 
crease in the intensity of turbulence caused by the viscous 
damping. The skewness, after fairly chaotic behavior until 
tz 10, at the end of the run approaches -0.5, which is the 
generally accepted value for this quantity in fully devel- 
oped isotropic turbulence. The initial value of Rn exceeds 
1000, decays rapidly becoming an order of magnitude less 
at the time of the peak in the dissipation rate tz 10, and 
slowly approaches the final value Rnz7’0 at the end of the 
run. 

It may be noted that previous simulations of this 
flowt4*” were usually terminated shortly after the maxi- 
mum in the dissipation rate had been reached, i.e., at 
ts 10. At that time turbulence is already well developed 
but values of some physical quantities like skewness may 
differ from values found in other direct numerical simula- 
tions of turbulence. These differences are often attributed 
to the symmetries of the Taylor-Green flow. However, 
simulations considered in this work, which were performed 
for longer times (t,,,= 18), show that the skewness 
reaches its correct asymptotic value well after the peaking 
of the dissipation rate. Therefore some disagreements be- 
tween the Taylor-Green flow results and other numerical 
simulations of nonsymmetric flows may be attributed to 
differences in the simulation times rather than to the effects 
of symmetries of the Taylor-Green flow. 

The unnormalized energy and dissipation spectra at 
the end of the run are plotted in Fig. 2 (a). A small number 
of modes in the low-wave-number shells causes relatively 
large fluctuations in these quantities at low wave numbers. 
In the range of wave numbers k < 20 the energy spectrum 
conforms to the inertial k- 5’3 law with the Kolmogorov 
constant in the range 2.2-2.7. The dissipation spectrum 
peaks at k-20 which, for the calculated Kolmogorov 
length scale q=O.Ol 1 in the units used, corresponds to 
vkz0.2. This value agrees with experimental findings” 
locating the dissipation peak in high Reynolds number tur- 
bulence at a wave-number order of magnitude less than 
l/n. Because of a significant overlap of the energy contain- 
ing range and the dissipation range it is unclear if the 
observed inertial range spectrum for k < 20 is the result of 
the same dynamical processes that operate at very high 
Reynolds numbers where there exists a wide separation 
between the energy and the dissipation range. Also, an 
unusually high value of the Kolmogorov constant in the 
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LlG. 1. Time evolution of flow quantities: (a) total kinetic energy; (b) total dissipation; (c) skewness; (d) microscale Reynolds number. 

simulations casts doubt on the significance of the observed 
inertial subrange as being indicative of high Reynolds 
number turbulence dynamics. We may claim at best that 
the Reynolds number in the simulations is high enough to 
capture the beginnings of the inertial range dynamics but 
too low to separate it from the effects of the dissipation 
range dynamics. In the far dissipation range for k> 20 the 
dissipation and the nonlinear transfer spectra balance each 
other and have the functional form proportional to 
k-’ exp( --ak) as seen in Fig. 2(b). This form was derived 
by Domaradzkim using scaling properties of the detailed 
energy transfer observed in low Reynolds number turbu- 
lence. 

III. BASIC QUANTlTiES 

For homogeneous turbulence incompressible Navier- 
Stokes equations in spectral (Fourier) representation are 
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5 u,W = -vk%,(k) +N,(k). (2) 

Here, u,(k) is the velocity field in spectral space, with the 
explicit dependence on time omitted, v is the kinematic 
viscosity, and N,(k) is the nonlinear term 

N,(k) =-;P,&k) 
s 

d3p q(p)u,(k-p), (3) 

where tensor Pnrm(k) accounts for the pressure and incom- 
pressibility effects. The summation convention is assumed 
throughout. 

Let us assume that the wave-number space is divided 
into two nonoverlapping regions, 9 ( 1 k 1 <kc) signifying 
large scales, and Y ( 1 k 1 > kc) signifying small scales. In 
the LES terminology these scales are also referred to as the 
resolved and unresolved scales, respectively. In the LES an 
evolution equation for the velocity field u,(k) truncated to 
the region .Y 
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FIG. 2. Spectral quantities at the end of the run (t=18): (a) unnormal- 
ized spectra of the energy (solid line) and the dissipation (broken line); 
(b) the dissipation spectrum (solid line) and the transfer spectrum (bro- 
ken line) outside the energy containing range. Both quantities plotted 
using a log-linear scale to accentuate their exponential behavior. 

u:(k) = I 
u,W, if ko9’, 
0, otherwise, (4) 

is sought. The truncation operation is trivially applied to 
the linear terms in Eq. (2). The nonlinear term (3) is 
decomposed as follows. Fist, it is computed with one of 
the contributing velocity fields truncated to 9 and the 
other to Y, where Q and .Y may be any of the two 
previously prescribed regions. Details of such calculations 
are provided by Domaradzki and Rogallo.21922 The result- 
ing quantity, denoted by NF ‘(k), describes the modifica- 
tion of the mode k caused by all triad interactions involv- 
ing k and two other scales, one belonging to 9 and the 
other to V. Second, to retain the effect of such nonlinear 
interactions on the large scales only, the quantity 
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NUbY“(k) is truncated to the region 2, with the result 
dennoted by NfQP (k). The evolution equation for the 
large scales 9 becomes 

&u:(k)= -vk2u:(k) +N,(kl kc) +N:(kl kc), 

where the resolved nonlinear term is 

(5) 

N,(kl kc) =N;‘“(k), (6) 

and the subgrid-scale nonlinear term NS, (k I kc) is 

Ns,(kl kc) =N;I;F---(k) +Nf”“(k). (7) 

In practice, the most straightforward way to compute 
(6) and. (7) is to first use (3) with the full velocity fields 
q(p) and u,(k-p) and truncate the result to the region 
9 to obtain the total nonlinear term 

Nt~t(kIk,)=N,(kIk,)+Ns,(kIk,). (8) 

Next, Eq. (3 ) is used again with the truncated velocity 
fields u<(p) and uz(k - p) and the result is truncated to 
the region hip giving the resolved nonlinear term N, (k I k,) 
[Eq. (6)]. The subgrid-scale nonlinear term (7) is obtained 
as the difference between the total nonlinear term (8) and 
the resolved nonlinear term (6). 

The above-described procedure has its exact counter- 
part in the physical space representation. An inverse Fou- 
rier transform, signified by a tilde, of N,(k) [Eq. (3)] is 
the sum of the convective and pressure terms in the 
Navier-Stokes equation in the physical space coordinates 

~%Ax) dp(x) -_ Nn(x)=-ui(x) dxi dx, . (9) 

Similarly, using NFy(k) we can define its physical 
space counterpart g”(x) as well as gF*Y’( x) which is 
the inverse Fourier transform of NT’(k) truncated to the 
region X (which is either 9 or 9’). Here &zY(x) can 
be interpreted as the contribution to the rate of change of 
the velocity field u,(x) at a point x made by the nonlinear 
interactions involving modes from the spectral regions 9 
and Y”. Note that these interactions influence all modes k 
which can form a triangle with two other modes such that 
one is in 5% and the other in Y. Also, ir”y(x) repre- 
sents a contribution to the rate of change of&(x) which is 
made by all modes from 5’? interacting nonlinearly with 
modes in “2 and Y. Finally, the inverse Fourier transform 
of (5) is 

where the resolved- nonlinear term 5,(x I kc) and the 
subgrid-scale term Mn,( x 1 kc) in the physical space are ob- 
tained Fourier transforming (6) and (7) 9 respectively, 

In the LES the most fundamental requirement is that 
the models employed properly approximate effects of 
subgrid-scale interactions on the energetics of the resolved 
scales. Thus, in assessing the models, energy equations 
rather than momentum equations are usually considered. 
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In the spectral space the equation for the energy amplitude 
$1 u(k) 1” = $,(k)uz(k) of mode k obtained from (2) is 

&$ lu(k)j2=-2vk+ Iu(k)12+T(k), (11) 

where T(k) is the nonlinear energy transfer 

T(k) =Re[u~(k)N,&) 1. (12) 

For homogeneous turbulence the above equations are 
usually considered after summing up contributions from 
all modes with a prescribed wavelength I k I =I<, giving 

&E(k)=-2vk%(k)+T(k), (13) 

where E(k) and T(k) are the classical energy and transfer 
spectra, respectively, for homogeneous turbulence. 

Similarly, the detailed energy transfer to/from mode k 
caused by its interactions with wave numbers p in a pre- 
scribed region 9 of the wave-number space and q=k-p 
in another region .%’ is 

T”g(k)=Re[u,*(k)Nf’(k)]. ( 14) 

Truncating TPg (k) to another region X results in 
the quantity T*se’ (k) which is interpreted as the energy 
transfer to the region X resulting from nonlinear interao 
tions of scales in Z with scales in P and 2. For homo- 
geneous turbulence the regions P and &!Z? are usually cho- 
sen as spherical wave-number bands centered at wave 
numbers p and q, respectively. In this case quantity 
TPg (k) will be denoted by T(klp,q). Summing quantity 
T(k(p,q) over spherical shells with thickness Ak= 1 cen- 
tered at wave number k gives a function denoted by either 
T*9g(k) or T(klp,q) 

T=%)=T(kIp,q) 

ZZ c T(klp,q). 
k-(1/2)Ak<lkl <k+(l/2)Ak 

(15) 

Total nonlinear energy transfer T(k) to the wave- 
number band k is obtained by summing contributions 
T( k Ip,q) from all possible bands p and q: 

T(k)= c c T(klp,q)= xp(klp). (16) 
P 4 P 

Here, the function P( klp) is a result of summation of 
T(kIp,q) over all q bands and is interpreted as the energy 
transfer between wave-number bands k and p. 

With this notation, the energy equation for the energy 
spectrum fl (k) of resolved scales, obtained from Eq. (5), 
is 

&Er(k)=-2v#Eg(k)+T(k I kc), 
(17) 

:IkJ+TYk 
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where 

T(k(k,)=T’“‘(k) (18) 

and 

TS(kIkc)=T”“Y(k)+TyyY(k). (19) 

Equivalent expressions in the physical space are ob- 
tained by considering an equation for the rate of change of 
the turbulent energy of the resolved scales e”(x) 
==gqx,i$qx,: 

de"(x) 
------=v~~(X)v2~~(X)+~(xIk,)+~(xIk,), at 

(20) 
where 

T(xlk,)=~~(x)N,(xlk,), 

is the resolved energy transfer and 

(21) 

?(xI kc) =$(x)&xl k,) (22) 

is the subgrid-scale energy transfer in the physical space 
representation. This last expression (22) accounts for all 
physical processes involving nonlinear interactions be- 
tween the resolved scales and the unresolved subgrid 
scales. In a traditional approach to deriving LES equations 
through spatial filtering of Navier-Stokes equations this 
term is often represented by a sum of a redistribution term 
with the vanishing global mean and a subgrid-scale dissi- 
pation term with a nonzero mean. In assessing LES models 
using direct numerical simulations’databases usually only 
SGS dissipation is considered.Z In those investigations the 
SGS dissipation is often averaged either over an entire . 
computatronal domain or over subdomains, e.g., over hor- 
izontal planes in a channel flow, in order to evaluate global 
energy flux to the subgrid scales. However, in LES the 
redistribution subgrid-scale term is also unknown and in 
principle both terms are needed to fully account for the 
effect of the subgrid-scale interactions in the physical space 
representation if no averaging is performed. For this reason 
in this work we consider quantity (22) rather than more 
traditional SGS dissipation. 

IV. RESULTS 

Using the methodology described in the previous sec- 
tion and employing the numerically simulated velocity 
fields it is possible to compute directly the subgrid-scale 
energy transfer for any prescribed cutoff wave number 
kc < km. It is customary to represent spectral subgrid-scale 
energy transfer in terms of the subgrid-scale eddy viscosity 

TYklk,) 
GW’d=-2k2Eytkj, k<k,, (23) 

which, following Kraichnan,4 is usually normalized by the 
factor equal to the product of the velocity scale 
[E(k,)k,11’2 and the length scale l/k, at’the cutoff k,, 

(24) 

This procedure to compute the spectral eddy viscosity was 
previously employed by Domaradzki et al. ‘I who used data 
from a direct numerical simulation of isotropic turbulence 
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and by Lesieur and Rogallo24 and Chasnov* who used data 
from a large eddy simulation of isotropic turbulence. 

In order to compute the function Ts(kj k,), which de- 
pends on the length of the wave number k, according to 
Rq. (15) summation over all wave vectors k in a thin 
spherical shell centered at k must be performed. The cdm- 
ponents of such a sum are in general of both signs implying 
that a particular mode k may be either losing energy (for- 
ward transfer) or gaining energy (inverse transfer) be- 
cause of the subgrid-scale nonlinear interactions. To assess 
the relative importance of these two processes we have 
performed partial summations over components of the 
same sign, effectively splitting the subgrjd-scale energy 
transfer to/from scales k into the forward and the inverse 
transfer contributions. This’procedure is equivalent .to de- 
composing the total eddy viscosity into two parts, a posi- 
tive one associated with the foyard energy transfer, and a 
negative one associated with the inverse- energy transfer. 
Such a decomposition is a straightforward extension of the 
original procedure” used in the above-mentioned works 
but provides more detailed information about the subgrid- 
scale energy transfer process not available in those papers. 

In Fig. 3 we plot the total eddy viscosity and its posi- 

tive and negative components computed for three different 
cutoff wave numbers: one, k,=20, at the end of the (nom- 
inal) inertial subrange; the next, k,=40, at the beginning 
of the dissipation range; and the last one, k,=80, deep in 
the dissipation range. For kc=20 the total eddy viscosity is 
predominantly positive, with the absolute values of the 
negative component about 30%-500/o of the values of the 
positive component for k/k, < 0.6. For k/k, > 0.6 the ratio 
of the negative to the positive component decreases to 
about 20%. For kc=40 in the range k/k, < 0.6 the positive 
and negative components nearly balance each other with 
the resulting total eddy viscosity close to zero. For 
k/k, > 0.6 both components exhibit cusplike behavior with 
the cusp for the positive component much stronger than 
for the negative one. Nevertheless, even close to the cutoff 
the ratio of the negative to the positive component is about 
15%. For the case kc=80 in the range k/k,<O.6 the pos- 
itive component is practically zero and the negative one is 
slightly less than zero, resulting in small negative values of 
the total eddy viscosity. Beyond that range, for k ap- 
proaching the cutoff, the positive component increases very 
rapidly, reaching at the cutoff kc values a factor 20 greater 
than the values of the negative component. In Fig. 3 (c) we 
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FIG. 4. The subgrid-scale energy transfer in the physical space represen- 
tation: (a) k,=20; (b) k,=40. Plane y=?r/4 in the impermeable box is 
shown. Here and in all subsequent contour plots the solid lines represent 
positive values and the broken lines represent negative values. 

also plot the subgrid-scale eddy viscosity calculated by 
Kraichnan4 and Cholet and Lesieur’ from the analytical 
theories of turbulence under the assumption of the infinite 
inertial range. This function is essentially constant (equal 
to 0.267) for k/k, < 0.6, and exhibits the cusplike behavior 
for k/k,> 0.6. We conclude from this analysis that the 
spectral inverse energy transfer may be quite significant, in 
some cases comparable to the forward transfer for given 
scales k. However, in all cases the forward transfer domi- 
nates as the cutoff wave number is approached. Since the 
transfer is obtained by multiplying the eddy viscosity by k2, 
the cusp in the eddy viscosity for k/k, > 0.6 is actually even 
more significant for the subgrid-scale transfer. 

Using Eq. (22) we have computed the subgrid-scale 

energy transfer in the physical space !?(x ( kc) for several 
spectral cutoff wave numbers. In Fig. 4 we plot a cross 
section of this quantity for kc= 20 and 40 for a plane in the 
impermeable box located at y=~/4. The larger spectral 
cutoff wave number results in the presence of smaller scales 
in the physical space. Regions of the forward transfer (bro- 
ken contours) and the inverse transfer (solid contours) are 
clearly visible. For both cutoff wave numbers we have com- 
puted volume-averaged forward and inverse transfer nor- 
malized by their sum, i.e., by the total subgrid scale energy 
transfer (a negative quantity). For kc=20 the normalized 
inverse transfer is - 1.06 and the forward transfer is 2.06 
while for the cutoff kc=40 the same quantities are -2.83 
and 3.83, respectively. Thus the absolute value of the ratio 
of the inverse transfer to the total subgrid-scale transfer 
increases from about 1 to about 3 for increasing cutoff 
wave number (i.e., decreasing filter width in the spatial 
averaging procedure). This trend is consistent with the 
results of Piomelli et a1.23 obtained for compressible isotro- 
pic turbulence. For the largest filter width used in their 
work the magnitude of the inverse transfer is comparable 
to the total subgrid-scale transfer, with the ratio of these 
two quantities increasing for decreasing filter width. 

Even though the overall subgrid-scale transfer inte- 
grated over the computational box is negative, the forward 
and inverse transfer regions in these plots are roughly in 
balance, again in agreement with the results of Piomelli 
et al.23 who found that about 50% of all points in a com- 
putational domain were characterized by the inverse en- 
ergy transfer. This indicates that both effects may be 
equally important in the dynamics of the flow. This con- 
clusion agrees with the corresponding conclusion reached 
in the analysis of the spectral subgrid-scale transfer. It 
should be noted, however, that there is no direct relation 
between sets of spectral modes characterized by positive/ 
negative transfer and the physical space regions with the 
same characteristics. 

Assuming that in the large-scale momentum equation 
(5) the subgrid-scale nonlinear term iVi(k 1 kc) is repre- 
sented using the classical spectral eddy viscosity model 
Y,( k 1 k,) of Kraichnan4 and Cholet and Lesieur’ 

N;(kj k,) = -v,(kl k,)k2u;(k), (25) 

we have calculated the physical space subgrid-scale energy 
transfer for this model from (22). The results of the cal- 
culations are plotted in Fig. 5 for kc=20 and the same 
cross-plane as in Fig. 4. The modeled transfer is predomi- 
nantly of the forward type as expected from the use of the 
strictly positive eddy viscosity but the appearance of weak 
inverse transfer regions may seem surprising. However, it 
should be noted that the molecular viscosity term in the 
incompressible Navier-Stokes equations results in two dis- 
tinct effects in the energy equation: the kinetic energy dis- 
sipation, which is negative everywhere, and the change in 
the kinetic energy caused by work done by viscous stresses, 
which locally in space may be either positive or negative. 
Therefore any model which approximates the subgrid-scale 
nonlinear term NS, by a viscouslike term in the Navier- 
Stokes equations may contain regions of the increasing ki- 
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FIG. 5. The subgrid-scale energy transfer in the physical space computed 
using the spectral eddy viscosity model of Kraichnan4 and Chollet and 
Lesieur.s 

netic energy caused by work done by the modeled stresses. 
In practice, however, as seen in Fig. 5, these positive re- 
gions are quite insignificant since they occupy much less 
space than the negative regions and also have much lower 
maximum values. Obviously, such models give a poor rep- 
resentation of the actual subgrid-scale energy transfer as 
seen by comparing the actual and modeled transfers shown 
in Figs. 4(a) and 5, respectively. The conclusions from the 
physical space analysis of the subgrid-scale energy transfer 
parallel those drawn from the spectral space analysis: the 
relative importance of the inverse energy transfer process 
and an inability of the classical subgrid-scale models to 
properly account for it. 

Cusps observed in spectral eddy viscosities in the vi- 
cinity of the cutoff wave number suggest that the total 
energy transfer across this wave number is dominated by 
energy exchanges among resolved and unresolved scales 
from the vicinity of the cutoff. Indeed, it has been estab- 
lished in a number of papers’8*21P22925 that in numerically 
simulated turbulence at low Reynolds numbers the energy 
transfer beyond the energy containing range is local, oc- 
curring between scales of similar size, even though the non- 
local wave-number triads with one scale in the energy con- 
taining range are responsible for this local transfer. One 
would thus expect that the subgrid-scale nonlinear interac- 
tions between the resolved scales (k < k,) and the unre- 
solved scales characterized by wave numbers slightly 
greater than the cutoff wave number k, will dominate the 
subgrid-scale energy transfer process. To evaluate this hy- 
pothesis in more detail we have calculated, for several val- 
ues of the cutoff wave number k,, the subgrid-scale energy 
transfer for the truncated velocity fields obtained from the 
original field by setting to zero all modes with wave num- 
bers k > ck,, where c was equal to 3/2 and 2. In this way 
the effect of all modes k> ck, on  the subgrid-scale energy 
transfer is eliminated. In Fig. 6  we plot the resulting spec- 
tral subgrid-scale eddy viscosities (24) for kc=20 and 40 

k/k, 
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FIG. 6. The spectral subgrid-scale eddy viscosity: (a) k,=20; (b) k,=40. 
The velocity fields used to compute this quantity were the full field (solid 
line), the full field truncated at (3/2)k, (broken line), and the full field 
truncated at 2k, (dotted line). 

and compare them with the eddy viscosities computed us- 
ing the full velocity field, i.e., with all modes k < k, being 
nonzero. It is seen that the value of the eddy viscosity 
computed for c=3/2 provides a very good approximation 
to the total eddy viscosity while for c=2 both quantities 
are practically indistinguishable on the plots. The similarly 
calculated subgrid-scale transfer in the physical space (22) 
is shown in Fig. 7  for the cutoff wave number kc=20 and 
two values of the parameter c, 3/2 and 2. The plane shown 
is the same as in Fig. 4. The spatial structure of the 
subgrid-scale energy transfer in Figs. 7  and 4(a) is the 
same, with differences seen only in the values of the trans- 
fer at particular locations. For c= 3/2 the peak values of 
the approximated transfer [Fig. 7(a)] may depart by about 
10% from the exact values [Fig. 4(a)] with the departures 
decreasing to about 5% for c=2 [Fig. 7(b)]. Therefore, 
both in the spectral and the physical space representation 
the subgrid-scale energy transfer for the resolved modes 
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FIG. 7. The physical space subgrid-scale energy transfer computed for 
k,=20 and the full fields truncated at (a) (3/2)k, and (b) 2k,. 

k < k, can be determined with high accuracy by consider- 
ing their interactions with a limited range of unresolved 
modes k, < k<2k,. It may be instructive to note that for 
kc=20 and km= 170 the resolved modes constitute about 
0.0016 of all modes, and modes with k<2k, about 0.013 of 
all modes. Thus the dynamics of the largest 0.16% modes 
is determined almost entirely by their nonlinear interac- 
tions with about 1% of all modes, the remaining 99% of 
the modes not affecting visibly the largest scales. Moreover, 
the lack of direct influence of small scales k > 2k, on the 
energetics of the large resolved scales k< k, implies that 
the direct nonlocal energy transfer, inherent in the classical 
eddy viscosity theories,lg is not present in our simulations. 
The dynamics of the largest modes observed in the simu- 
lations is quite similar to the classical picture of the dy- 
namics of the energy containing range in high Reynolds 
number turbulence. Quoting Batchelor:2” “It seems that 

P) 

FIG. 8. The kinetic energy field in a planey= (3/4)a in the impermeable 
box: (a) computed using the full velocity field; (b) computed using the 
resolved velocity fieId with the truncation wave number kc= 20. 

the energy-containing eddies determine the rate of energy 
transfer by their mutual interactions, and the larger wave- 
numbers adjust themselves, according to the Reynolds 
number, in order to convert this energy into heat at the 
required rate.” 

For the purpose of subgrid-scale modeling it is impor- 
tant to investigate relations between observed subgrid-scale 
energy transfer and various features of the resolved veloc- 
ity field (4). In Figs. 8, 9, and 10 we plot in the physical 
space representation the kinetic energy $I( x) l u(x), the 
enstrophy &D(X) l w(x), where o(x) is the vorticity, and 
the dissipation rate f~( duJdxk+ d~k/ax~) 2, respectively. 
All these quantities are computed using both the full ve- 
locity field (all modes k < km are nonzero) and the velocity 
field (4) truncated at k,=20. One cross-sectional plane at 
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FIG. 9. The enstrophy field in a plane y= (3/4)n in the impermeable 
box: (a) computed using the full velocity field; (b) computed using the 
resolved velocity field with the truncation wave number k,=20. 

the location y= (3/4)a in the impermeable box is plotted of much smaller scales than the truncated fields. Despite 
and for comparison we also plot in Fig. 11 the subgrid- these differences between the full and the truncated fields, 
scale energy transfer in the same plane. The spatial struc- for the enstrophy the spatial structure of the large-scale 
ture of energy fields for the full and truncated fields is component [Fig. 9 (b)] is remarkably similar to the struc- 
nearly the same. This feature is expected since the modes ture of the total enstrophy [Fig. 9(a)]. In particular the 
k < k, contain most of the total energy. The peak values of regions of large values of the total enstrophy are very well 
the energy for the full field may exceed by 30% the peak correlated with the regions where the truncated field also 
values for the truncated field. The maximum values for the gives large values. This result is somewhat surprising since 
dissipation and the enstrophy fields computed using the the large-scale enstrophy field is determined using only 
full velocity fields are greater by a factor of 5 than for the 0.16% of all modes. It suggests that these largest scales 
truncated fields, indicating fairly large contributions com- contain most of phase information required to determine 
ing from higher wave numbers k> kc. The importance of spatial structure of the enstrophy field, and the role of 
these wave numbers is also reflected in the spatial structure higher wave-number modes is to merely reflect the fact 
of these quantities, with the full fields showing the presence that the velocity gradients are steeper than can be resolved 

FIG. 10. The dissipation field in a plane y= (3/4)a in the impermeable 
box: (a) computed using the full velocity field; (b) computed using the 
resolved velocity Eeld with the truncation wave number k,=20. 
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FIG. 11. The subgrid-scale energy transfer in the physical space repre- 
sentation computed for the cutoff wave number kc=20 and shown in a 
plane y= (3/4)?r in the impermeable box. 

by the low-wave-number modes. In other words, larger 
wave numbers in the spectral space are needed to resolve 
steep velocity gradients rather than small eddies thought of 
as small, individual flow structures like localized vortices. 
The level of correlation between the full and truncated 
fields for the dissipation is lower. The regions of the most 
intense dissipation for the truncated field [located along 
diagonals, halfway between the center and the corners of 
the plotted plane in Fig. 10(b)] correlate well with the full 
dissipation field in the same region [Fig. IO(a)] but some 
equally strong regions in the full field farther away from 
the center do not have clear counterparts in the truncated 
field. Finally, all three quantities computed using the trun- 
cated velocity field were compared with the subgrid-scale 
energy transfer plotted in Fig. 11. There is some level of 
spatial correlation between the subgrid-scale transfer and 
the enstrophy and the dissipation fields, with the regions of 
significant transfer in the vicinity (but not on the top of) 
regions of large enstrophy and dissipation. Also, the re- 
gions of intense large-scale dissipation are usually located 
on the peripheries of the regions of intense large-scale en- 
strophy. Interestingly, the regions of large subgrid-scale 
transfer seem to correlate best with the regions of large- 
scale energy [Fig. 9(b)]. Such correlations were observed 
previously ” for different velocity fields but no convincing 
physical explanation of this observation is known. The 
above observations are based on visual inspection of con- 
tour plots and thus have a very qualitative character. To 
evaluate in a more quantitative manner correlations be- 
tween the subgrid-scale energy transfer and these three 
quantities a standard correlation coefficient was computed 
for each case. Its values are -0.24, -0.16, and -0.20 for 
the large-scale energy, vorticity, and dissipation, respec- 
tively. Both the qualitative analysis and the low values of 
the correlation coefficients clearly illustrate a fairly com- 

plex character of interrelations among different physical 
quantities and give no indications that any simple expres- 
sion for the subgrid-scale transfer in terms of the resolved 
energy, enstrophy, or dissipation exists. Meneveau et aLz8 
recently used a projection pursuit regression algorithm in 
an attempt to identify in a more systematic manner large- 
scale physical quantities which could serve to model the 
subgrid-scale stresses. For isotropic turbulence they were 
unable. to find any large-scale quantity exhibiting signifi- 
cant statistical correlations with the subgrid-scale stresses. 
Our observations are consistent with this finding. 

We conclude from the analysis of the truncated fields 
that the the subgrid-scale energy transfer is at best margin- 
ally correlated with the large-scale energy, enstrophy, and 
dissipation. This analysis also reveals that the turbulent 
activity is spatially intermittent and’its physical locations 
are determined by the mutual interactions of the largest 
scales. The high-wave-number modes in this flow cannot be 
interpreted as individual, small-scale turbulent eddies, but 
reflect the presence of steep gradients at the spatial loca- 
tions determined by the large scales. 

The observed importance of the large scales, which 
constitute only a minute fraction of all spectral modes, in 
the dynamics of turbulence is encouraging since it suggests 
that their dynamics may be almost self-contained and thus 
the accurate subgrid-scale models based on the large-scale 
velocity information should be possible. The term “almost 
self-contained dynamics” is not very precise but can be 
illustrated by the following example. In Fig. 12(a) we plot 
one plane from the resolved nonlinear transfer field [Rq. 
(21)] and in Fig. 12(b) the corresponding result for the 
total nonlinear transfer, i.e., the sum of (2 1) and (22) ; It 
is seen that the spatial structure of the resolved nonlinear 
transfer is highly correlated with the structure of the total 
nonlinear transfer. In that sense the dynamics of the large 
resolved scales, which involves interactions with all modes 
in the system (the total transfer) is ‘almost” the same as 
the internal nonlinear dynamics of the large scales only 
(the resolved transfer). The difference between both quan- 
tities is of course the subgrid-scale nonlinear transfer (22)) 
which when viewed this way, is a small correction to the 
resolved transfer needed to obtain the total transfer and to 
account for the nonconservative character of the entire sys- 
tem. 

V. CONCLUSIONS 

We have performed a detailed analysis of the effects of 
the subgrid-scale nonlinear interactions on the energetics 
of isotropic turbulence. The analyzed turbulent velocity 
field was obtained from a direct numerical simulation of 
theTaylor-Green vortex flow. Symmetries of the flow were 
allowed to reach the spatial resolution in the simulation 
equivalent to 5123 mesh points and the Reynolds number 
RAz70. At this Reynolds number the flow exhibits a be- 
ginning of the inertial range dynamics at the lowest wave 
numbers. However, even these low as well as all higher 
wave numbers are still dominated by dissipative processes. 
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FIG. 12. The nonlinear energy transfer to/from the resolved modes 
k < 20 represented in the physical space: (a) caused by interactions with 
the resolved modes only (labels scaled by lOGO); (b) caused by interac- 
tions with the resolved and the unresolved modes (labels scaled by 
10 000). 

Therefore, while our conclusions are certainly valid for the 
disspation range dynamics it is less certain that they are 
applicable to the inertial range dynamics. 

An important feature of the computed subgrid-scale 
energy transfer, in both spectral and physical space repre- 
sentation, is the presence of significant inverse energy 
transfers, from the unresolved to the resolved scales. The 
inverse subgrid-scale transfer was predicted and observed 
before in the context of spectral dynamics of homogeneous 
turbulence4*6’“‘* and in the physical space for homoge- 
neous and wall-bounded turbulent flow~.‘~~‘~~*~ The ob- 
served significance of the inverse transfer in the energetics 
of the resolved scales implies that successful subgrid-scale 
models should properly account for such effects. At the 

present time these effects are rarely taken into account in 
the subgrid-scale modeling procedures. If accounted for 
they are modeled by either adding a random force to the 
subgrid-scale equations7’8 or extrapolating from the dy- 
namics of the resolved scales.’ Since most of the subgrid- 
scale transfer observed in this work is caused by interac- 
tions among highly correlated modes on both sides of the 
cutoff wave number, approximating effects of such interac- 
tions by random forces is debatable. An approach used.in 
the dynamic subgrid-scale model9 seems more appropriate 
but it suffers from modeling the inverse transfer by a 
diffusion-type term with a negative diffusion coefficient, 
mathematically an inherently unstable situation. It appears 
that alternate ways of the subgrid-scale modeling which 
overcome these conceptual and mathematical difficulties 
should be explored. 

Our analysis also reveals that the nonlinear dynamics 
of the resolved modes with wave numbers k< kc is gov- 
erned almost exclusively by their interactions with a lim- 
ited range of modes with wave numbers not exceeding 2k, 
and nonlocal, eddy-viscosity-type energy transfer is not ob- 
served. Thus, in agreement with the classical picture of the 
turbulence dynamics,26 the large scales of a turbulent flow 
determine the energy flux down the spectrum and the small 
scales play an entirely passive role by adjusting themselves 
in such a way as to accommodate this energy flux pre- 
scribed by the large scales. 

The physical space energy, enstrophy, and dissipation 
have been computed for the full and truncated velocity 
fields and compared with the subgrid-scale energy transfer 
for the same truncation wave number. Surprisingly, these 
physical quantities computed for both full and truncated 
fields show many similar spatial features despite the fact 
that the truncated field contains only 0.16% of all modes 
present in the system. This result reinforces our conclusion 
about the dominant role played by the very largest scales in 
the dynamics of the flow. The level of correlation between 
these quantities and the subgrid-scale transfer varies from 
weak for the enstrophy and dissipation, to moderate for the 
energy. 
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