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Stable localized wave packets in two-dimensional incompressible Poiseuille flow are 
characterized by direct simulation of the Navier-Stokes equations. These asymmetric wave 
packets depend only on the Reynolds number when the channel periodicity length is 
sufficiently large. They are created through a saddle-node bifurcation at Re -2330, well below 
the critical Reynolds number for finite-amplitude Tolhnien-Schlichting waves. Pairs of 
wave packets are found to interact repulsively, and no evidence for locking has been observed. 
Finally, an amplitude-equation model is suggested which incorporates the spatial 
asymmetry of the localized solutions. 

Wall-bounded flows such as pipe flows or Blasius 
boundary-layer flows are known to undergo discontinuous 
transitions from the basic laminar state.’ Such behavior 
cannot be accounted for in terms of a supercritical bifur- 
cation since the system instead jumps abruptly to another 
solution branch. The relevant feature seems to be the co- 
existence of a stable laminar branch and at least one non- 
trivial branch corresponding to a more complex stable 
flow, and a subcritical model is appropriate.2 Wall- 
bounded flows also display other characteristics; (i) small- 
scale three-dimensional turbulence and (ii) spatial local- 
ization of the nontrivial regions (e.g., spots in the Blasius 
layer and slugs in pipe flows). 

Our purpose here is to investigate the possibility of 
obtaining localized regions of nontrivial flow in a purely 
two-dimensional context. Plane Poiseuille flow is perhaps 
the archetypal example of a flow with two stable coexisting 
branches over a range of Reynolds numbers, the nontrivial 
branch corresponding to a periodic train of finite- 
amplitude Tollmien-Schlichting waves.s This flow is gov- 
erned by the Navier-Stokes equations 
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In order to solve these equations numerically, we have 
with the no-slip boundary conditions u(x, A 1) =O. 

chosen to use pseudospectral methods because of their pre- 
cision and ease of implementation. We use a standard 
FourierKhebyshev spectral decomposition4 and our flow 
is thus x periodic such that u(x+Lg) =u(x,y). The 
boundary conditions are imposed directly on the vorticity 
as an integral condition (thus obviating the need for 
Green’s functions) and the total flux through the channel 

is held constant at 4/3. Our code has been checked against 
the predictions of linear Orr-Sommerfeld theory’ and 
against the results from previous studies of Tollmien- 
Schlichting solutions.” One simulation time unit requires 
1.0 set of CPU time, running on a Cray 2 at a resolution of 
(200~33) with a time step of 0.025. 

The rest of this Brief Communication is organized as 
follows; first, we check that the localized solutions are sta- 
ble in the limit of large L and thus depend only on the 
Reynolds number. We then consider the disappearance of 
these solutions as the Reynolds number is decreased, es- 
tablishing a new threshold for the stability of plane Poi- 
seuille flow, lower than those previously known. Next, we 
study the interaction between two adjacent localized solu- 
tions, and we conclude by suggesting an amplitude- 
equation model that exhibits the asymmetry characteristic 
of these wave packets. 

The localized wave packets were observed by Jimenez’ 
at Reynolds numbers of 3000 and 4000 with a periodicity 
L= 16~~. It may be argued that, in the limit of large L 
when most of the channel flow is essentially laminar, the 
form of the localized solution should be governed only by 
the Reynolds number, independent of L. We have run sim- 
ulations with values of L up to 80~ at various numerical 
resolutions, and our results indicate that the behavior of 

In a previous paper,’ Jimenez has studied in detail the 
transition to turbulence in two-dimensional Poiseuille flow 
for small to moderate values of the periodicity length L( L 
= 8~ and L= 16rr, about 4 and 8 Tollmien-Schlichting 
wavelengths, respectively). He was able to identify solu- 
tions consisting of spatially localized wave packets and in- 
vestigated their stability for increasing Reynolds numbers. 
He observed a splitting process at Re - 5000 and proposed 
this as a mechanism for the transition to chaos, and verified 
this by measuring the Lyapunov exponents of the flow. 

762 Phys. Fluids A 5 (3), March 1993 0899-8213/93’/030762-03$06.00 
. . 

@ 1993.American Institute of Physics 762 



Max amp= 0.24 
(4 -.-..- 

Min amp= -0.24 

Max amp= 0.24 
04 

Min amp= 0.00 

Max k= 1.0542 

(cl r-L-.--- 
Min k= 0.9022 

FIG. 1. (a) Midchannel vorticity plotted as a function of space for a 
stable wave packet at Re=2400 with a channel periodicity length L=20n 
(200~33). (b) Modulus of the complexified vorticity. (c) Wave number 
of the complexifled vorticity. The ripples at the left-hand end are spurious, 
arising from the vanishingly small amplitude of the vorticity. 

the wave packet stabilizes above L = 20~. A resolution of 
(200~33) was found to be sufficient for spectral conver- 
gence in the range 2000 < Re < 3000 for L= 20~. 

A typical example of a localized wave packet is shown 
in Fig. 1 (a) where we have plotted the midchannel vortic- 
ity 0(x,0) for Re=2400, L=20r. We can model this 
instantaneous vorticity distribution by @L&O) 
=Real[A exp (ikx)], where A and k are functions of x. The 
amplitude envelope A(x) is plotted in Fig. 1 (b); much of 
the channel remains laminar while the wave packet is seen 
to be strongly asymmetric with a sharp leading edge and a 
gentler trailing edge. The wave packet propagates down- 
stream (from left to right) at a constant velocity ~0.7 
times the laminar midchanel velocity. The constituent 
waves seen in Fig. 1 (a) progress with about half the wave 
packet velocity, and thus move backward in the frame of 
reference moving with the packet. Furthermore, the wave 
number k(x) z 1 decreases slightly from the front to the 
back of the wave group, as shown in Fig. 1 (c). 

Our calculations are performed at constant flux rather 
than constant pressure gradient, so a different pressure 
drop would be expected for a localized solution and a 
purely laminar flow. We find that the presence of a wave 
packet increases the pressure drop between any two points 
bracketing the packet by Ap=2.05 X lop3 at Re=2400 
(for laminar flow at this Reynolds number, 
dp/dx=O.833 x 10L3). 

Given the uniqueness of bounded flow at sufficiently 
small Reynolds numbers and the presence of the trivial 
laminar solution down to Re=O, the localized solution 
branch must disappear as the Reynolds number is de- 
creased past a critical threshold. We show in Fig. 2 the 
variation of amplitude and velocity of the wave-packet en- 
velope with Reynolds number; the data were obtained by 
reducing the Reynolds number in discrete steps and using 
the previous converged solution as the new initial flow. 
Our results indicate that the nontrivial solution branch 
disappears at a saddle-node bifurcation, and at 
ReCtii,=2330 we find only the laminar solution. 

Apart from the single-wave-packet solution, Jimenez7 
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FIG. 2. Amplitude and velocity dependence of wave packets close to the 
critical Reynolds number, in the limit of large channel length (L = 20~). 
Our data indicate a saddle-node bifurcation at Re=2330. 

found an alternative stable solution at Re=4000, L= 167~, 
consisting of two back-to-back wave packets of different 
amplitudes. However, in this instance the channel period- 
icity was too short for there to be any region of purely 
laminar flow, and in our studies at larger values of L we 
have observed no such locked solutions. Indeed, the inter- 
action between two wave packets is always found to be 
repulsive, as illustrated in Fig. 3 (L =4On-, Re=2400) 
where the amplitude envelope is plotted at intervals of 20 
time units (time increases along the vertical axis). The 
equilibrium solution consists of wave packets spaced apart 
by the maximum possible distance (within the constraint 
of channel periodicity). 

Stable localized wave-packet solutions have been found 
in the vicinity of a subcritical bifurcation in an amplitude- 
equation model proposed by Thual and Fauve.8 These so- 
lutions are spatially symmetric, but an asymmetry may be 
introduced by adding to the model equation a term in the 
first derivative of the complex amplitude W with respect to 
x. The modified equation is as follows: 

FIG. 3. Repulsive interaction of a pair of wave packets. The modulus of 
the complexified midchannel vorticity is plotted at intervals of 20 time 
units, for Re=2400 with channel periodicity length L=40~ (400X33). 
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aw 2 
at=-- w+(u+iu,~~~~l+ia)~+h.o.t. 

The imaginary “group velocity” term is sufficient to break 
the symmetry in the wave number at f rx, and nonlinear 
terms will couple this to a corresponding asymmetry of 
amplitude. 

In conclusion, we have shown that there is a stable 
branch of localized wave-packet solutions existing in an 
otherwise laminar plane Poiseuille flow. These solutions 
disappear in a saddle-node bifurcation at Re-2330, in 
contrast to the minimum Reynolds number of 2900 for the 
existence of periodic trains of finite-amplitude Tollmien- 
Schlichting waves. However, although previous studies’ 
suggest a rapid growth of perturbations in the third dimen- 
sion in the case of unmodulated wave trains, the question 
of the three-dimensional stability of localized solutions re- 
mains open. 
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