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The hydrodynamical behavior of the nonlinear Schrodinger equation is investigated by Fourier pseudo-spectral direct 

numerical simulations. Its dispersive and nonlinear acoustics are characterized quantitatively and an equation that 

describes this regime at leading order is derived. A technique that allows the preparation of periodic initial data containing 

an arbitrary system of point vortices with minimal acoustic excitations is given. The Eulerian dynamics of a jet made of an 

array of counter rotating vortices is obtained. Sinuous and varicose instabilities are shown to take place. Finally the 

numerical methods best suited to study vortex-sound interactions are discussed. 

1. Introduction 

The nonlinear Schrodinger equation (NLSE) 

governs the complex amplitude A(r, t) of quasi 

monochromatic wave trains in dispersive and 

nonlinear media [l]. It is also used to describe 

superfluid liquid helium II at zero temperature, 

as a semi-classical approximation for an assembly 

of bosons with local interactions [3]. The NLSE 

reads 

g = i f2A + ia AA - i/3]A12A . (1) 

In the case of nonlinear media, a represents 

dispersion and p traces back to the frequency 

variation of the nonlinear wave with amplitude. 

We only consider here the “defocusing” case 

a$? > 0, in which monochromatic waves of con- 

stant amplitude are stable. In the case of super- 

fluid helium, A(r, t) is the wave function of the 

Bose condensate and 5 = a is known as the 

“healing” length. 

By scaling appropriately time, space and am- 

plitude, we can set without loss of generality 

0 = 1, (Y = 112 and /3 = 1. 

The NLSE can be cast into a fluid dynamic 

form through the Madelung transformation [3,4] 

A(r, t) = R(r, t) exp[icp(r, t)] . 

This change of variable in (1) gives 

(2) 

5 +v.(R’Vcp)=O, 

2 + j (V,p)’ = 1 - R’ + g . 

(3) 

(4) 

Eqs. (3) and (4) can be considered as the equa- 

tions of conservation for mass and momentum of 

a compressible inviscid fluid of density p(r, t) = 

R2 and velocity U(T, t) =Vcp. Note that the 

Madelung transformation is singular when R = 0, 
i.e. when both the real and the imaginary parts 

of A(r, t) vanish. As two conditions are re- 

quired, the singularities generically happen on 
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points in two dimensions and lines in three di- 
mensions. The circulation of u around such a 
generic singularity is 27r. These topological de- 
fects are known in the context of superfluidity as 
quantum vortices [3]. Away from the vortices, 
the vorticity 0 =V x v is zero and eqs. (3) and 
(4) give 

(5) 

$+(,av)v=-;v($)+V(z). (6) 

The first term in the r.h.s. of eq. (6) corresponds 
to an equation of state with pressure p = p2/2. 
The second term, called the “quantum me- 
chanical pressure”, has no analog in standard 
fluid mechanics. 

Our purpose is to show that NLSE can directly 
be used to study non trivial flows in inviscid fluid 
dynamics. This article is organized as follows: in 
section 2, we derive a nonlinear equation in the 
approximation of acoustics from NLSE and pres- 
ent some related numerical results. In section 3, 
we use NLSE to perform a numerical study of 
the instability of a double array of counter rotat- 
ing vortices. We conclude by summarizing our 
results and discussing the different possible nu- 
merical methods for future studies of the delicate 
problem of sound-vortex interaction and sound 
emission by vortices. 

2. The approximation of acoustics 

We first consider small variations around a 
mean density pO = 1, and write 

p = p0 + EpI + . . . ) (7) 

u = EU1 + *. . . (8) 

We get to leading order from eqs. (5) and (6) 

a’p, 
2 =Api - :A*p, , 
at (9) 

showing that long wavelength perturbations 
propagate with a wave velocity 1. At wave- 
lengths smaller than the healing length 5 = l! 
fi, dispersive effects become important and 
thus modify the dynamics compared to usual gas 
dynamics. Note that they correspond to the 
quantum pressure term Afi/fi. 

To take into account nonlinear effects, it is 
simpler to work with the velocity potential cp. 
Using eq. (2) with R = j/m, we get from 
NLSE: 

acp 
- -2s - $(v,p)2 + 

AS 
dt- 

(Vs)’ 
2(1 + 2s) - 2(1 + 2s)* ’ 

(10) 

a.7 
-=-VsV~-;(1+2s)Aq. 
at (11) 

The appropriate scaling for long-wavelength 
propagative disturbances, 

cp = O(1) ) s = O(E), 

IVI = Q(E), i = D(E) > 

gives up to order l 4, 

acp ---2~;(Vq)*+;As, 
at 

as 
---;Aq-V~SVp-~A~. 
at 

The change of variable 

(14 

(13) 

s=u+aAu 

leads to 

acp - = -2u - t (vqo)2 ) 
at 

au 
---;Aq-V(u++Az+Vq 
at 

(14) 

-@++Au)Aq-aA$. 

which can be put under the form 

(15) 
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- iv. ((Vcp)‘Vcp) (16) 

Note that the form of eq. (16) traces back to 

invariances of NLSE, space reflection symmetry, 

V-+ -V, and time reversal symmetry which im- 

plies the invariance of (16) under the trans- 

formation, t-+ -t, cp + - cp. So, the quadratic 

nonlinearities of (16) should involve an even 

number of space derivatives and an odd number 

of time derivatives. The Galilean invariance of 

NLSE, 

A(r, t) + A(r - ct. t) exp[i(c * r - ic’t)] , (17) 

is also preserved in (16). 

Consequently, eq. (16) describes the nonlinear 

and dispersive dynamics of the phase to leading 

order, keeping the relevant invariances of 

NLSE. Note that for a one-dimensional field, 

and restricting to one direction of propagation, 

eq. ( 16) reduces to the Boussinesq equation for 

the phase-gradient. It is well known that for 

small amplitude perturbations, the phase- 

gradient of A in NLSE obeys the Boussinesq [l] 

or the Korteweg-de Vries [2] equations. How- 

ever one has to select a direction of propagation 

and a particular Galilean reference frame to 

perform such a reduction. Therefore we consider 

that (16) is less restrictive to study the weakly 

nonlinear acoustics of NLSE. 

In order to quantify the dispersive and non- 

linear acoustic behavior of NLSE, we have per- 

formed numerical simulations in one space di- 

mension using a standard Fourier pseudo-spec- 

tral method (51. We chose a simple leap-frog 

time stepping for the nonlinear term and an 

exponential propagation for the linear term of 

the form 

71. Alrl 
A(t + At) = e ‘“%(t-At)+ e L - L f(t) 3 

where f stands for the nonlinear term and L is 

the linear operator in Fourier space. In order to 

suppress a possible odd-even instability, we do 

periodically a “mixing” step of the form 

A”(t) = +[A@ - At) + 2A(t) + A(t + At)] 

This scheme is symmetrical under time reversal 

and globally second order in time. The code was 

validated by comparison with analytical soliton 

solutions of NLSE. We have found that 256 

Fourier modes are enough to properly resolve 

these solutions. 

We have studied the acoustic behavior by 

using initial data of the form 

A(x) = I + a em”“’ . 

The results are shown in figs. 1, 2 and 3 for 

various values of a and 1. Fig. 1 displays the 

linear dispersionless regime, where the initial 

disturbance gives rise to two counter-propagating 

pulses at velocity 1. Dispersive effects due to the 

“quantum mechanical pressure” are clearly 

noticeable in fig. 2. The Fourier components of 

the initial disturbance propagate at different ve- 

locities and this generates the wave-packet that 

travels ahead of the pulses, roughly at the group 

velocity, lIuRJI = f3(GYZ5i)l~k. We measure 

jIu,jI = 2.32, that agrees within 3% with the pre- 

dicted value for k = T/V?. The nonlinear effect 

present in fig. 3 can be distinguished from the 

linear dispersive effect of fig. 2 by the scale of 

the generated wavetrains. In the nonlinear case, 

the scale of the wavetrain is much smaller than 

the scale of the initial perturbation. The pulses 

travel faster than in the linear regime, which 

traces back to the linear velocity renormalization 

by the nonlinear terms. We have to leading order 

from (16) for a pulse of amplitude u propagating 

to the right 

a$ 1 at’ = A(p(l + 624) - j 2 A cp +. . . . 

Estimating u = 0.25, gives a translational velocity 
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Fig. 1. Numerical integration of NLSE with an initial perturbation of small amplitude (a = 0.01) and large width (I = 105): (a) 

amplitude of the initial data, (b) amplitude of the solution at t = 20, (c) amplitude of the solution at t = 30. 

IIuII = 1.58 that is in agreement with the mea- 
sured one within 5%. We found that dispersion 
is noticeable for 15 55 and that nonlinearity sets 
in for a > 0.3. 

described by NLSE are similar to the ones of 
inviscid incompressible fluid dynamics [6-81. 
This similarity can be understood by scaling 
space and time as IV] = E and a/at== l 2 and 
expanding the variables in the form: 

3. Numerical study of a system of vortices in 
the NLSE 

It has been known for some time that the 
equations of motion for a dilute gas of vortices 

p=po+Ep,+E2p2+-, 

u = EU, + E2U* +. . . . 

We get from equations (3) and (4) 

(18) 

(19) 
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Fig. 2. Same as fig. 1 but 1= 25. Note that dispersive effects are now visible on the solution. 

v-v, =o, 

$ + (v, .V)v, = -vp, ) 

(20) 

(21) 

of the far-away vortices [6]. However this type of 

argument neglects compressible effects. Indeed it 

was recently claimed that acoustics modifies the 

dynamics of two counter 

In order to investigate 

with p0 = 1 and p, = 0. The velocity field far from 

the vortices thus obeys the incompressible Euler 

cate problems, we chose 

pseudo-spectral method 

equation. It can then be argued that the domi- 

nant effect of far-away vortices on one vortex 

results in a Galilean boost with a global velocity 

that is the sum of the velocities induced by each 

rotating vortices 191. 

numerically these deli- 

to work with a Fourier 

both for its precision 

and its ease of implementation. We used the 

same scheme as the one described in section 2 

extended to two space dimensions. To study the 

motion of vortices in NLSE with periodic bound- 
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Fig. 3. Same as fig. 1 but a = 0.5. Note that scales significantly smaller than the length scale on the initial data have been 
generated through nonlinear effects. 

ary conditions, we need to start from an initial 
field that minimizes the acoustic emission. We 
have found convenient to prepare it using the 
real Ginzburg-Landau equation (RGLE): 

aA 
- = A + 1 AA - IA~A. 
at (22j 

Indeed the solution of this equation can be 
shown to converge rapidly toward a time in- 
dependent solution of NLSE both in the case of 

a vortex free condensate and in the case of one 
isolated vortex. It is well known that following 
RGLE dynamics, vortices of opposite sign move 
toward each other and eventually collapse [lo]. 

Our procedure to prepare the initial data is as 
follows: we first initialize a periodic complex 
field with a system of zeros at given spatial 
localizations. We then let the field evolve 
through RGLE dynamics on a time scale suffi- 
cient for amplitude relaxation. Eventually 
RGLE dynamics will lead to vortex-antivortex 
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Fig. 4. Initial data corresponding to a periodic array of ten counter rotating vortices. The amplitude of the field is displayed in 

this raster visualization, small amplitude regions (i.e. the core of the vortices) appear in dark. 

annihilation but we terminate it before this hap- 

pens. The field obtained with this procedure is 

then used as initial data for NLSE dynamics. 

After a short transient when the system adapts to 

NLSE dynamics by generating some small acous- 

tic perturbations, we observe an Eulerian be- 

havior for the system of vortices. Our two nu- 

merical codes for the integration of 2D RGLE 

and 2D NLSE have been tested respectively 

against previously published results for defect- 

antidefect interaction [lo] and against our 1D 

results for NLSE, by using x-constant or y- 

constant initial data. The results presented below 
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Fig. 5. A plot of the mass flux pux as a function of y, mid 

way between pairs of counter rotating vortices. Note that 

with our choice of initial data, the jet is flowing to the left. 

needed 400 x 100 Fourier modes to achieve spec- 

tral convergence. 

To check the possibility of reproducing nu- 

merically the Eulerian dynamics of point vortices 

in NLSE, we chose as a test problem to study the 

destabilization of an array of counter rotating 

vortices. This system is a classical discrete model 

of a 2D jet and has been thoroughly studied [ll]. 

It is known to lose stability for two families of 

perturbations, the so-called sinuous and varicose 

modes. We prepared with our “RGLE method” 

a jet formed by ten periodically disposed counter 

rotating vortices. The distance between two suc- 

cessive pairs is a = 42.75, each pair is separated 

by b = 18.25. The computational box has period- 

icity lengths L, = 10a and L, = 5.96. These ini- 

tial data are visualized in fig. 4 and the corre- 

sponding mass flux is shown in fig. 5. Using this 

field as initial data for NLSE resulted in a uni- 

form motion of the vortex array up to t = 800 

without noticeable destabilizations. We have 

measured the velocity of the vortex array (u = 

0.12), it agrees with that of Eulerian point vor- 

tices within 2%. In order to minimize computer 

time, we imposed initial perturbations by slightly 

translating the vortices with a variable periodic 

field corresponding to the modes of the linear 

theory [ll]. Fig. 6 displays the evolution for a 

sinuous initial perturbation and fig. 7 for a vari- 

cose initial perturbation. The vortex system is 

seen to evolve as predicted and the acoustic 

background remains weak. 
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Fig. 6. Sinuous destabilization of the jet: (a) raster visualization of the slightly perturbed initial data; (b) result of NLSE evolution 
at t = 550. 

(b) 

Fig. 7. Same as fig. 6 but for a varicose destabilization (t = 400). 
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4. Conclusion 

summary, our results obtained through 

asymptotic expansions and direct numerical 

simulations point to the feasibility of obtaining 

genuine hydrodynamical behavior in NLSE. We 

were able to get separately from NLSE nonlinear 

and dispersive acoustics and Eulerian dynamics 

of point vortices. In order to get a definite 

answer for the delicate and non trivial problem 

of vortex-sound interactions and emission of 

sound by vortices, the choice of numerical meth- 

od is crucial. We have checked that the simple 

Fourier pseudo-spectral method we have used 

was spectrally converging in the cases studied in 

this paper, it therefore ensured a degree of 

precision unmatched by finite difference meth- 

ods. However our method requires to work with 

periodic data. This is clearly a disadvantage 

when studying sound emission: this necessitates a 

periodicity length greater than the distance 

travelled by the emitted sound. In this context, 

finite difference methods allow for absorbing 

boundaries and may then be the right choice [9]. 

Another possibility worth noticing is to use spa- 

tially unbounded spectral expansions, such as 

mapped Chebyshev polynomials. 
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