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Abstract

The stability and dynamics of nonlinear Schrödinger superflows past a two-dimensional disk are investigated using a specially
adapted pseudo-spectral method based on mapped Chebychev polynomials. This efficient numerical method allows the imposition
of both Dirichlet and Neumann boundary conditions at the disk border. Small coherence length boundary-layer approximations
to stationary solutions are obtained analytically. Newton branch-following is used to compute the complete bifurcation diagram
of stationary solutions. The dependence of the critical Mach number on the coherence length is characterized. Above the critical
Mach number, at coherence length larger than fifteen times the diameter of the disk, rarefaction pulses are dynamically nucleated,
replacing the vortices that are nucleated at small coherence length.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that, above a critical speed, superfluidity breaks down and dissipation sets in[1]. Much
work has been devoted to the understanding of this phenomenon within the mathematical description of su-
perfluidity provided by the nonlinear Schrödinger equation (NLSE) also called the Gross–Pitaevskii equation
[2–4].
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The NLSE can be used to describe two quite different physical systems: superfluid4He and Bose–Einstein
condensates of ultra-cold atomic vapor.

In the case of superfluid4He, the NLSE can be considered as a qualitatively valid mathematical model provided
that the temperature is low enough for the normal fluid to be negligible. This is clearly the case in recent experiments
[5] that are performed at temperatures below 130 mK. Note that the excitations of superfluid4He are accurately
described by the famous Landau spectrum which includes phonons in the low wavenumber range, and maxons
and rotons in the high (atomic-scale) wavenumber range. In contrast, the standard NLSE (the equation used in the
present article) only contains phonon excitations. It therefore incompletely represents the atomic-scale excitations
in superfluid4He. However, there exist straightforward generalizations of the NLSE[6,7] that do reproduce the
correct excitation spectrum, at the cost of introducing a spatially non-local interaction potential. For reasons of
simplicity we shall not use such generalizations in the present article.

Since Bose–Einstein condensation in dilute gases in traps was experimentally observed[8–10], this field is in rapid
evolution: recent results include the production and detection of an isolated quantized vortex[11,12], the nucleation
of several vortices[13] and details of vortex dynamics[14]. The dynamics of these compressible nonlinear quantum
fluids is accurately described by the NLSE allowing direct quantitative comparison between theory and experiment
[15].

The stability of Bose–Einstein condensates (BEC) in the presence of a moving obstacle can thus be stud-
ied in the framework of the NLSE. Raman et al. have studied dissipation in a Bose–Einstein condensed gas by
moving a blue detuned laser beam through the condensate at different velocities[16]. In their inhomogeneous
condensate, they observed a critical Mach number for the onset of dissipation that was compared with the NLSE
predictions.

In their pioneer work, Frisch et al.[17] performed direct numerical simulations of the NLSE to study the
stability of two-dimensional superflows around a disk. They observed a transition to a dissipative regime char-
acterized by vortex nucleation that they interpreted in terms of a saddle-node bifurcation of the stationary so-
lutions of the NLSE. Later, using numerical branch-following techniques, Huepe and Brachet[18,19] obtained
the complete bifurcation diagram in which the stable and unstable branches are connected through a saddle-
node bifurcation. Asymmetric solutions were also found, generated by a secondary pitchfork bifurcation of
the stable branch. The symmetric and asymmetric unstable solutions correspond respectively to two and one
vortices. The critical speed was shown to converge, for small coherence length, to the Eulerian value com-
puted by Rica[20]. Three-dimensional effects leading to a lowering of the critical speed were also considered
[21].

In all the above numerical studies, the effect of the two-dimensional disk was represented in the NLSE by a
simple repulsive potential. Thus no boundary conditions were applied and the numerical results were (weakly)
dependent on the details of the repulsive potential.

One of the main motivations of the present paper is to obtain numerical results that are reliable (i.e. do not
depend on an ad hoc artificial repulsive potential) at finite value of the coherence length. We will thus consider the
NLSE as a partial differential equation with standard boundary conditions applied on the disk. This mathematical
problem will be studied by using an efficient pseudo-spectral method, based on angular Fourier series and radially
mapped Chebychev polynomials, that was specifically designed for the present study. The numerical solutions will
be compared with analytic boundary layer approximations, that are valid for small velocity and coherence length.
Similar expansions were performed for a spherical obstacle in[22].

The paper is organized as follows: Section2 contains the governing equations; Section3 is devoted to the
derivation of the boundary layer analytical expressions for Dirichlet conditions; in Section4, we describe the new
specially designed pseudo-spectral method; Section5 contains validations of the numerical procedure and new
results on bifurcation diagrams and critical Mach numbers; in Section6, our results on the dynamically emitted
excitations are reported, with emphasizing on the nucleation of rarefaction pulses; finally Section7is our conclusion.
More details on the numerical method are found in theAppendix Awhere the resolutions needed to obtain spectral
convergence are discussed.
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2. Governing equations

In this section, we present the hydrodynamic form of the NLSE that models the effect of a disk of radius unity
(diameterD = 2), moving at constant speedv = vex in a two-dimensional superfluid at rest. In the frame of the
disk, the system is equivalent to a superflow around a disk, with constant speed−v at infinity. LetΩ be the plane
C deprived ofD the disk of radius unity and∂Ω the boundary of the domain, that is the circle of radius unity. We
will naturally use the polar coordinates (r, θ) such thatx = r cosθ andy = r sinθ and the associated unit vectors
are denoted by (er,eθ). The system can then be described with the following action functional

A[ψ, ψ̄] =
∫

dt

{√
2cξ
∫
Ω

d2x
i

2

[
ψ̄∂tψ − ψ∂tψ̄

]− F0

}
(1)

whereψ is a complex field,̄ψ its conjugate. The speed of soundcand the so-called healing lengthξ are the physical
parameters of the system.F0 is the energy of the system that reads

F0[ψ, ψ̄] = E− v · P (2)

with

E[ψ, ψ̄] = c2
∫
Ω

d2x

[
ξ2|∇ψ|2 + 1

2
(|ψ|2 − 1)2

]
(3)

P[ψ, ψ̄] =
√

2cξ
∫
Ω

d2x
i

2

[
(ψ − 1)∇ψ̄ − (ψ̄ − 1)∇ψ] . (4)

The presence of the constants−1 in Eq. (4) ensures the convergence of the integral[23]. The Euler–Lagrange
equation corresponding to(1) provides the NLSE

i∂tψ = c√
2ξ

[−ξ2�ψ − ψ + |ψ|2ψ] + iv · ∇ψ, (5)

defined in the domainΩ. This equation can be mapped into two hydrodynamical equations by applying Madelung’s
transformation[1]

ψ = √
ρ exp

(
iφ√
2cξ

)
, (6)

that defines a fluid of densityρ and velocity

U = ∇φ − v (7)

The real and imaginary parts of the NLSE yield the following equations of motion

∂tρ + ∇ · (ρU) = 0 (8)

∂tφ = −1

2
(∇φ)2 + c2(1 − ρ) + c2ξ2�

√
ρ√
ρ

+ v · ∇φ. (9)

These equations correspond respectively to the continuity and the Bernoulli equations (with a supplementary quan-
tum pressure term) for a barotropic compressible and irrotational flow. Note that two non-dimensional parameters
control the system: the Mach numberM = |v|/c (wherev is the flow velocity at infinity andc the sound speed)
and the ratio of the healing lengthξ to the diameter of the diskD. In the limit ξ/D → 0, the quantum pressure term
vanishes and we recover the system of equations describing an Eulerian flow. We now investigate the problem of
the boundary conditions on the obstacle.



206 C.-T. Pham et al. / Physica D 210 (2005) 203–226

In previous studies[19], boundary conditions were applied by adding to the NLSE a repulsive potential term strong
enough to force the density to zero inside the disk. In the present work, we consider the mathematically standard
Dirichlet and Neumann boundary conditions that will both be directly imposed at the border of the obstacle.

2.1. Dirichlet boundary conditions

The Dirichlet boundary conditions readψ|r=1 = 0. They thus prescribe zero density on the obstacle and cor-
respond to the presence of an unpenetrable obstacle (a laser with a sharp profile in a BEC or a solid obstacle in
superfluid4He). They correspond to the following conditions, in hydrodynamical variables: first, the condition on
ρ is obviously

ρ = 0, at r = 1 (10)

Second, the square root of the densityR = √
ρbeing constant on the obstacle, we have∂tR|r=1 = 0 and∂θR|r=1 =

0. The continuity Eq.(8) expressed in term ofR then yields∂rR · U⊥|r=1 = 0, so that the Dirichlet conditions also
imply

U⊥ = ∂rφ − v cosθ = 0, at r = 1 (11)

2.2. Neumann boundary conditions

The Neumann boundary conditions, in hydrodynamical variables, read

∂rρ = 0, at r = 1 (12)

U⊥ = ∂rφ − v cosθ = 0, at r = 1 (13)

They correspond to the following conditions in term of the complex fieldψ:

∂r

(
ψ exp

(
ivr20 cosθ√

2cξr

))∣∣∣∣∣
r=r0=1

= 0.

Note that the Neumann conditions are more academic than the Dirichlet conditions. Nevertheless, it can be
interesting to study the influence of those Neuman conditions on the stationary solutions of the problem, especially
their effects on the boundary layer on the obstacle. One could think that the Neumann conditions, imposing the
value of theρ derivative at the obstacle, are less stringent than the Dirichlet conditions and so would perturb less the
stationary solution. The solution would be “closer” to that of the Eulerian flow than with the Dirichlet conditions.
We will see below that the situation is more complex. A more physical motivation to study the Neumann conditions
is related to the problem of capillary-gravity surface flows past a cylindrical obstacle, where the quantum pressure
term is replaced by a capillary term. In this related problem described by the dispersive Shallow Water equations,
the Neumann conditions are the physical ones[24].

3. Boundary layer solutions—analytical results

We now present calculations of the stationary solutions in the limitξ/D → 0. For non-zero Mach number,

M = |v|
c

(14)
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we define the new phase variable[20]

ϕ = −φ − vr cosθ

v
. (15)

The Bernoulli(9) and continuity(8) equations then read

0 = ξ2�
√
ρ√
ρ

− ρ + 1 + M
2

2
[1 − (∇ϕ)2] (16)

0 = ρ�ϕ + ∇ρ · ∇ϕ. (17)

The Dirichlet boundary conditions now read

ρ|∂Ω = 0

∂rϕ|∂Ω = 0.

At finite but small Mach number, we expandρ andϕ as

ρ = ρ〈0〉 +M2ρ〈1〉 + · · · +M2kρ〈k〉 + · · · (18)

ϕ = ϕ〈0〉 +M2ϕ〈1〉 + · · · +M2kϕ〈k〉 + · · · . (19)

Note that if one knowsϕ at orderM2k, on can formally deduceρ at orderM2(k+1) by solving(16). The potential
ϕ can then be computed at orderM2(k+1) by solving(17). In order to computeϕ, we will have to solve equations
of the type

d2y

dr2
(r) + 1

r

dy

dr
(r) − 1

r2
y(r) = RHS(r) (20)

Solutions to the corresponding homogeneous equation are

y(r) = Ar + Br−1 (21)

so that the general equation with nonzero right hand side RHS(r) can be computed using the method of variation of
parameter. Using the boundary conditions limr→+∞ y(r) = 0 and dy/dr(r = 1) = 0 yields for the solution of the
inhomogeneous equation the explicit expression

y(r) = − 1

2r

∫ +∞

1
RHS(u)(1 + u2)du− r

2

∫ +∞

r

RHS(u)du+ 1

2r

∫ +∞

r

u2RHS(u)du (22)

provided that the function RHS decreases rapidly enough at infinity. Note that the first term ofy(r) yields a term
of the typeC/r. Due to the expressions of RHS encountered in the following computations, the two last terms will
turn out to tend to zero exponentially (on a length scale of orderξ), so that the behavior at infinity of the functiony
will be governed by a long-range algebraic term that reads

y(r) ∼
r→+∞ − 1

2r

∫ +∞

1
RHS(u)(1 + u2)du (23)

We now turn to the computation of the stationary Dirichlet solution. Expressions forρ〈0〉 andϕ〈0〉 are obviously
needed to bootstrap the iteration. They are obtained by the following considerations.

When the Mach number is zero,ϕ = 0 is solution of the stationary equations andρ satisfies

ξ2�
√
ρ√
ρ

− ρ + 1 = 0 (24)
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Writing ρ(r, θ) = R2(r) yields the equation

ξ2�R+ R− R3 = ξ2
(
∂rr + 1

r
∂r

)
R+ R− R3 = 0 (25)

with boundary conditionsR(1) = 0. A first approximation for the solution of this equation, obtained by neglecting
the term (ξ2/r)∂rR, reads

R
〈0〉
0 = tanh

(
r − 1√

2ξ

)
(26)

This result, valid up to orderξ, can be improved by settingR = R
〈0〉
0 + R〈0〉

1 . InsertingR in (24), collecting the terms
of orderξ and solving the resulting differential equation yields, after tedious computations,

R
〈0〉
1 = ξ

6
√

2

[
−3 − cosh 2s+ (4 + 3s) sech2s+ sinh 2s+ 3 tanhs

]
(27)

wheres = (r − 1)/
√

2ξ. Thus the explicit expression

ρ〈0〉 = ρ
〈0〉
0 + ρ〈0〉

1 = (R〈0〉
0 )2 + 2R〈0〉

0 R
〈0〉
1 (28)

gives the correct approximation to the density, up to orderξ2 in the limit ξ/D → 0.
The velocity potentialϕ〈0〉 satisfies

�ϕ〈0〉 = −∇ρ〈0〉 · ∇ϕ〈0〉 + (1 − ρ〈0〉)�ϕ〈0〉. (29)

We writeϕ〈0〉 = ϕ
〈0〉
Euler + ϕ̃〈0〉 whereϕ〈0〉

Euler = (r + 1/r) cosθ is the solution at order 0 inM2 of the Eulerian flow.

Using the relation�ϕ〈0〉
Euler = 0, Eq.(29)yields the following equation for̃ϕ〈0〉

�ϕ̃〈0〉 = −∇ρ〈0〉 · ∇ϕ〈0〉
Euler − ∇ρ〈0〉 · ∇ϕ̃〈0〉 + (1 − ρ〈0〉)�ϕ̃〈0〉 (30)

This equation cannot be solved directly. We thus proceed to a perturbative development by writingϕ̃〈0〉 = ϕ̃
〈0〉
1 + ϕ̃〈0〉

2

whereϕ̃〈0〉
1 is of orderξ andϕ̃〈0〉

2 of orderξ2. In the right hand side of Eq.(30), one can keep at the dominant order

of our computations the first term and drop the two others. The functionϕ̃
〈0〉
1 is then solution of the equation

�ϕ̃
〈0〉
1 = −∇ρ〈0〉

0 · ∇ϕ〈0〉
Euler (31)

The expression of̃ϕ〈0〉
1 can be computed using Eq.(22). Eq.(23)yields[25]

ϕ̃
〈0〉
1 ∼
r→+∞

2
√

2ξ − 4(log 2)ξ2

r
cosθ (32)

In order to obtain the full correction at orderξ2 of the 1/r-algebraic term we also need to computeϕ̃〈0〉
2 which

verifies

�ϕ̃
〈0〉
2 = −∇ρ〈0〉

1 · ∇ϕ〈0〉
Euler − ∇ρ〈0〉

0 · ∇ϕ̃〈0〉
1 + (1 − ρ〈0〉

0 )�ϕ̃〈0〉
1 (33)

Using again Eq.(23), a lengthy computation yields

ϕ̃
〈0〉
2 ∼
r→+∞ξ

2 10− 4 log 2

3r
cosθ (34)
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The velocity potentialϕ〈0〉 thus reads

ϕ〈0〉 =
[
r +

(
1 + 2

√
2ξ + 10− 16 log 2

3
ξ2 + O(ξ3)

)
1

r
+ ϕ〈0〉

loc(r)

]
cosθ (35)

whereϕ〈0〉
loc exponentially vanishes at infinity.

Note that the compressible Eulerian flow around a disk of radiusr1 admits at order zero inM2 the following
solution

ϕ
〈0〉
Euler,r1

=
(
r + r21

r

)
cosθ (36)

in order to satisfy the boundary condition∂rϕ|r=r1 = 0. Thus, the correction toϕ〈0〉
Euler is a long-range term that

can be physically interpreted as a renormalization of the diameter of the disk: at large distances the superflow is
equivalent to an Eulerian flow around a disk of radiusreff given by

(
reff

r0

)2

= 1 + 2
√

2

(
ξ

r0

)
+ 10− 16 log 2

3

(
ξ

r0

)2

+ O(ξ3). (37)

The orderξ term was first computed in[25]. Similar results were obtained directly, using matched expansions, for
a spherical obstacle in[22]. This reference also includes the governing matched expansion equations for the case
of a 2D disk, however the authors did not solve these equations.

The same procedure with Neumann boundary conditions can be shown to lead to a renormalized radius[26]

(
reff

r0

)2

= 1 − 3

2
M2

(
ξ

r0

)2

(38)

Note that contrary to the case of Dirichlet conditions, this effective size is dependent on the Mach number, which
was not the case for Dirichlet conditions. It is also smaller than the corresponding Dirichlet effective value.

4. Specially adapted pseudo-spectral method

We have specifically developed a code that can accurately accommodate both large-r asymptotic behavior and
thin boundary layers near the obstacle atr = 1. It is based on a Chebychev decomposition using an adequate
mapping. It allows us to consider a unique obstacle in contrast with periodic pseudo-spectral methods[19] which
in fact model a network of obstacles.

4.1. Mapping for a unique obstacle

Using standard polar coordinates{θ, r}, together with the relation

r(z) = z−1 (39)

the domain{0 ≤ θ < 2π,−1 ≤ z ≤ 1}, can be mapped into the physical domain{x, y}, with x2 + y2 ≥ 1.
The basic mapping is

x = z−1 cosθ, y = z−1 sinθ (40)
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and the inverse transformation reads

z = ± 1√
x2 + y2

, θ = arctan(y/x) + π ∓ π
2

(41)

Any generic real fieldΨ (x, y) (Ψ stands for Reψ, Imψ, etc.) appearing in the encountered equations of motion
is expressed in the{θ, z} domain as

Ψ (θ, z) = Ψ (x(θ, z), y(θ, z)) (42)

with x(θ, z) andy(θ, z) defined in(40).
As x(θ, z) = x(θ + π,−z) andy(θ, z) = y(θ + π,−z), the{x, y} domain is mapped twice unto the{θ, z} domain.

A mapped field must therefore satisfy

Ψ (θ, z) = Ψ (θ + π,−z) (43)

This condition will be implemented as a symmetry of the spectral expansion coefficients (see below Section4.3).
Note that the singular mapping(40)does not practically impact the spectral accuracy (as is normally the case): see
below the discussion at the end of Sections4.2 and A.4.

The equations of motion are expressed as partial differential equations in the{θ, z} domain by writing the
differential operators∇ and� in terms ofθ andzderivatives that are polynomial inz, e.g.

�ψ = z2
∂2ψ

∂θ2 + z4∂
2ψ

∂z2
+ z3∂ψ

∂z
.

4.2. Spatial discretization

The fieldψ is spatially discretized, in the (θ, z) domain, using a standard Chebychev–Fourier pseudo-spectral
method[27], based on the expansion

ψ(θ, z) =
Nθ/2∑

n=1−Nθ/2




Nr∑
p=0

ψn,p Tp(z)


 exp inθ (44)

whereTp(z) = cos (parccosz) is the order-pChebychev polynomial andNθ andNr represent resolutions.
The pseudo-spectral method calls for using fast Fourier transforms to evaluate(44)on the collocation points grid

(θm, zk) with

θm = 2πm

Nθ
; 0 ≤ m < Nθ (45)

zk = cos
πk

Nr
; 0 ≤ k ≤ Nr (46)

The relationTn(cosx) = cosnx reduces the Chebychev transform appearing in(44) to a (fast) Fourier cosine
transform. Thus, the evaluation of(44) (and its inverse) only requires a time proportional toNθNr log(NθNr).
Computations of nonlinear terms are carried out on the grid representations, whileθ andz derivatives are carried
out on the Chebychev–Fourier representations.

The main virtue of mapping(40) together with expansion(44) is its ability to accurately accommodate both
large-r asymptotic behavior and thin boundary layers nearr = 1. Indeed, on the one hand,(44) is an expansion in
product of polynomials inr−1 with functions cosnθ and sinnθ, precisely the type of functions needed to capture
large-r behavior (see Section5.2and[20]). On the other hand, the accumulation of collocation pointszk (see Eq.
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(46)) and the regularity of(40) nearz = ±1 allows expansion(44) to simultaneously resolve boundary layers at
r = 1 with thickness of order 1/N2

r [27].

4.3. Spectral symmetries of the fields

Asψ is real, the coefficientsψn,p in (44)are complex conjugate

ψ−n,p = ψ̄n,p (47)

They obey an additional relation, stemming from(43). Settingz = cos(θ′), the fields must be invariant under the
transformationθ �→ θ + π, θ′ �→ θ′ + π. In spectral space, this transformation readsψn,p �→ (−1)n(−1)pψn,p,
implying

ψn,p = (−1)n+pψn,p (48)

Thus theψn,p coefficients are non-zero only when (n, p) are jointly even or jointly odd. This relation, similar to
that found in the Taylor–Green vortex[28], is used to speed-up the evaluation of(44)by a factor 2, using specially
designed even-odd Fast Fourier transforms.

Integral of mapped fields are performed on the collocation points using the discrete formula

∫
Ω

r dr dθψ(r, θ) = −2π

Nθ

π

Nr

Nθ−1∑
m=0

Nr/2−1∑
k=0

ψ(θm, zk)
√

1 − z2k
dr

dz
(zk)r(zk) (49)

This formula yields accurate results, provided that the integral converges well enough inr = ∞, because of the
good convergence properties of the spectral expansion (see the discussion at the end of Sections4.2 and A.4).

4.4. Generalization of the mapping

In the special case whereξ/D is large, we found useful to generalize ther(z) = 1/z mapping to

rλ(zλ) = λ

zλ
+ (1 − λ)zλ (50)

This mapping has the same overall characteristics than 1/z and reduces to it forλ = 1. Forλ > 1 it stretches the
coordinate, thereby increasing the resolution at large distance by moving the collocation points away from ther = 1
disk. Generalizations to expressions(40) and (41)are easily derived.

5. Stationary solutions—numerical results

This section is devoted to the numerical determination of stationary solutions using the branch-following method
detailed inAppendix A. We first focus on the particular case of the Eulerian flow (that is whenξ/D = 0). This case
has been previously investigated using methods based on series in Mach number by Rica[20], and the critical Mach
number is known with great precision. We next compare analytical results of Section3 with numerically obtained
profiles of boundary layers with Dirichlet conditions. It is thus a good test of the numerical precision and efficiency
of our new method, presented above in Section4.

The rest of the section contains the numerical results on the bifurcation diagrams and the stationary solutions of
the NLSE at small and large coherence lengths, for the two types of boundary conditions: Dirichlet and Neumann.
We discuss the dependence onξ/D of the critical Mach number.
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5.1. Eulerian limit

In the limit ξ/D → 0, the NLSE turns into the equations of an Eulerian compressible flow

∂tφ = −1
2(∇φ)2 + c2(1 − ρ) + v · ∇φ (51)

∂tρ = −ρ�φ − ∇ρ · ∇φ + v · ∇ρ (52)

that are respectively the Bernoulli and continuity equations. We now search for their stationary solutions. Note that,
knowing the stationary fieldφ, the Bernoulli equation yields explicitly an expression ofρ that reads

ρ = 1 − 1

2c2 (∇φ)2 + 1

c2v · ∇φ (53)

Therefore,φ is solution to the following equation

0 = −ρ�φ − ∇ρ · ∇φ + v · ∇ρ (54)

with densityρ given by Eq.(53)and a unique boundary condition on the disk (instead of two in the NLSE case)

U⊥ = ∂rφ − v cosθ = 0, at r = 1 (55)

Using the branch following method presented inAppendix Ayields the numerical stationary solutions of the two-
dimensional Eulerian flow with respect to the Mach number. The critical Mach number is then the one at which the
local Mach number

Mloc = |U|
cloc = |∇φ − v|√

ρ
. (56)

reaches 1, at (x = 0, y = ±1) [20].
The value of the computed critical Mach number determined in this way depends on the resolution. It is found

to decrease when the resolutions inθ andr increase. In order to obtain 11 significant digits, the (minimum) needed
resolution isNθ ×Nr = 512× 32. The critical Mach number then found isMc = 0.36969705259(9). With this
result we have greatly refined the value of the critical Mach number compared with the ones found in previous
works: Frisch et al.[17] found a critical Mach number equal to

√
2/11 � 0.42, whereas Berloff and Roberts[22]

found the value 0.367. In order to obtain the same precision as that of series methods[20] (MRica
c = 0.36969(7),

the most accurate value found so far), it is sufficient to use the resolutionNθ ×Nr = 128× 16, that is only 8 radial
grid points in physical space.

5.2. Comparison with analytical boundary layer results for Dirichlet conditions

We now compare the analytical results of Section3 with numerically obtained profiles of boundary layers with
Dirichlet conditions.Fig. 1(a) displays boundary layer profiles of the density square-root (R = √

ρ) computed at
ξ/D = 1/200 andM = 0.

To stress the agreement between analytical and numerical results, it is more convenient to substract the term
(26)R〈0〉

0 = tanh((r − 1)/
√

2ξ) in the numerical profiles and compare the higher order terms thus obtained with the
analytical expression.

In the same way,Fig. 1(b) presents the orderξ2 variation of the effective radius as the following combinationδeff =
((reff/r0)2 − 1)/(ξ/r0). The line 2

√
2 + [(10 − 16 log 2)/3](ξ/r0) is shown on the same graph since expression(37)

predicts that

δeff = 2
√

2 + 10− 16 log 2

3

(
ξ

r0

)
+ O(ξ2). (57)
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Fig. 1. (a) Plot ofR〈0〉
1 (s(r)) with s(r) = (r − 1)/

√
2ξ (see Eq.(27) and below) together with the functionRnum(r) − tanh((r − 1)/

√
2ξ) where

Rnum(r) is the numerical result obtained with our numerical method forξ/D = 1/200 andM = 0. The agreement is excellent. (b) Calculation
of δeff as a function ofξ together with the curve 2

√
2 + (10− 16 log 2)(ξ/r0)/3 (see text). The difference between the two curves is due to the

term inδeff of higher order inξ. Note that the agreement is very good for smallξ/r0.

The value of (reff/r0)2 was extracted from the numerical results by calculating the coefficient in cosθ/r of the
velocity potential of the stationary state substracted by the corresponding Eulerian flow coefficient (see Eq.(36)).

The agreement between analytical and numerical results is very good for smallξ/D emphasizing the ability of
our method to compute thin boundary layers.

5.3. Bifurcation diagrams and stationary states at small coherence length

We present the bifurcation diagrams and the stationary solutions of the NLSE at small coherence length, for the
two types of boundary conditions: Dirichlet and Neumann.

The numerical methods presented in Section4 andAppendix Aalso converge very well in the NLSE case. For
instance for Dirichlet conditions, the resolution needed to compute a whole bifurcation diagram is lower than in
previous studies by Huepe and Brachet[19]. With the present method, the resolution needed in the caseξ/D = 1/20
isNθ ×Nr = 64× 64 whereas Huepe et al. needed a spatial (rectangular) resolutionNx ×Ny = 256× 128 for the
same ratioξ/D. The gain in resolution is then of a factor 8. This factor increases for smallerξ/D. These excellent
convergence properties are detailed inAppendix A, SectionA.4.2.

5.3.1. Bifurcation diagrams
In order to study bifurcation diagrams, we define a new free energy by:

F[ψ, ψ̄] = F0[ψ, ψ̄] − v ·
√

2cξ
∮
∂Ω

d)n
1

2i
(ψ − ψ̄), (58)

withn = −er the unit vector normal to the boundary. The rightmost term in(58)does not affect the equation of motion
and is always zero for theψ|∂Ω = 0 Dirichlet boundary. For Neumann conditions, this term ensures that a stationary
solutionψ0 is an actual extremum of the functionalF, i.e.,F satisfiesF [ψ0 + δψ, ψ̄0 + ¯δψ] − F [ψ0, ψ̄0] = 0 at
first order inδψ. This property implies the existence of a generic cusp inF at the bifurcation point (seeFig. 2).

For simplicity, we will use the notationF(M) = F [ψ0(M), ψ̄0(M)]. The values ofF(M) − F(0) (the change
of energyF, relative to zero Mach number) is displayed inFig. 2as a function of the Mach numberM for various
values ofξ/D and the two types of boundary conditions. As can be seen by inspection of the figure, for each
ξ/D, the stable branch (solid line) disappears with the unstable solution (dashed line) at a saddle-node bifurcation
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Fig. 2. Bifurcation diagrams for small coherence lengths. Energy functionalF(M) − F(0) vs. Mach number: (a) Dirichlet conditions and (b)
Neumann conditions. Forξ/D = 1/20, the asymmetric unstable solution branch is represented (it stands for a one-vortex branch stemming from
a pitchfork bifurcation). At a fixed Mach number, the energy difference between a stable and an asymmetric unstable solution is roughly half
the energy difference between a stable and a symmetric unstable solution.

whenM =Mc. There are no stationary solutions beyond this point. This qualitative behavior is the signature of a
Hamiltonian saddle node bifurcation.

By inspection ofFig. 2(b), we can see that the stable stationary branches for Neumann conditions are almost
superimposed on the Euler branch which is not the case for Dirichlet conditions. This is due to the fact that Dirichlet
conditions impose a zero of the density at the border of the disk, contrary to Neumann conditions and Eulerian flow.

In Fig. 2(a), at a Mach number smaller thanMc, the unstable symmetric branch (dashed line, circle,ξ/D = 1/20)
bifurcates at a pitchfork to a pair of asymmetric branches (dotted line,ξ/D = 1/20)[18]. It can be directly checked
on our results (seeFig. 3, middle) that the secondary pitchfork bifurcation breaks they �→ −y symmetry of the flow
for both boundary conditions.

At a fixed Mach number, the energy difference between a stable and an unstable solution corresponds to the
energy barrier necessary to dynamically nucleate an excitation. Note that this barrier for a symmetric unstable
solution is about twice that of an asymmetric unstable solution.

5.3.2. Stationary solutions
By visualizing the stationary solutions of the NLSE, the branches ofFig. 2 can be related to the presence of

vortices.Fig. 3shows the densityρ = |ψ|2 of typical stationary solutions forM = 0.3 andξ/D = 1/20 for the two
types of boundary conditions. It is apparent by inspection of the figure that the stable branch is irrotational (Fig. 3,
top) while the asymmetric unstable branch corresponds to a one-vortex solution (Fig. 3, middle) and the symmetric
unstable branch, to a two-vortex solution (Fig. 3, bottom).

For Dirichlet boundary conditions, similar results were found with periodic pseudo-spectral codes[19]. However,
our method directly imposes the correct boundary conditions without resorting to an artificial repulsive potential.
Also note that the critical Mach number is here determined for a single obstacle, whereas a periodic array of ob-
stacles was used in previous study. Huepe et al.[19] find for ratio ξ/D = 1/40,MHuepe

c � 0.3817 whereas we
obtainMc � 0.3941. A single obstacle perturbs less the flow than an infinite array of obstacles (even with large
separation), it is therefore natural to find a higher critical Mach number in our simulations. AsM is increased,
the distance between the vortices and the obstacle for the unstable branches (Fig. 3, middle, bottom, Dirichlet)
decreases. At a certainMnv <Mc, the vortices disappear on the surface on the cylinder, generating an irrota-
tional flow (see[18] for a detailed study of the Mach number at which one or two vortices emerge from the
disk).
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Fig. 3. Densityρ = |ψ|2 of stationary solutions forξ/D = 1/20 andM = 0.3 far from the bifurcation threshold: (top) stable solution, (middle)
asymmetric unstable solution and (bottom) symmetric unstable solution. Left: Dirichlet conditions and right: Neumann conditions.

Note that the branch following procedure used to compute the unstable branches bifurcating from the stable
branch conserves the velocity circulation. The total velocity circulation around the disk is null. The two-vortex
solution conserves the total circulation since the two vortices are counter-rotating. For the one-vortex solution, an
image vortex located at the middle of the obstacle has to be invoked. This point will be reconsidered in Section5.4.

5.3.3. Variation of critical Mach number withξ/D
We now study the dependence onξ/D of the critical Mach numberMc.
Our numerical method needs a slight modification to allow us to explore the largeξ/D regime. The transformation

r(z) is modified such that mesh-points situated near the obstacle are stretched (see Section4, Eq.(50)). This procedure
avoids wasting resolution close to the cylinder.

Results are displayed inFig. 4. For a given type of boundary conditions, the Mach number decreases with
decreasingξ/D and, for both boundary conditions, it converges towards the Euler limit for smallξ/D.

First note that the value of the critical Mach number is lower than 1. As we are interested in stationary solutions
with density approaching 1 at infinity like polynomials in 1/r (see Sections3 and 4), the speed of the obstaclev
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Fig. 4. Critical Mach numberMc vs. ξ/D. Note that Dirichlet boundary condition solutions admit a smallerMc than Neumann boundary
condition solutions. They both tend to the Euler critical Mach number asξ/D decreases.

has to remain below the speed of soundc. Otherwise radiation of sound waves would occur in the same way as
discussed in[29,30].

We now discuss the case of Dirichlet boundary conditions and will extend the argument to Neumann conditions
at the end of this section.

For Dirichlet conditions, we have seen in Sections3 and 5.2that, in the case of smallξ/D, the boundary layer
has a thickness of orderξ. The situation at largeξ/D is quite different.

We now show that the effect of the cylinder on the flow atr > 1 is vanishingly small whenξ → ∞. At zero
Mach number, the densityρξ(r) = R2

ξ (r) satisfies

ξ2
(
∂rrRξ + 1

r
∂rRξ

)
− R3

ξ + Rξ = 0 (59)

with Rξ(1) = 0 andRξ(+∞) = 1. For larger/ξ, R̃ξ = Rξ − 1 satisfies after linearization of(59)

ξ2
(
∂rrR̃ξ + 1

r
∂rR̃ξ

)
− 2R̃ξ = 0 (60)

Asymptotically for larger/ξ, we haveRξ(r) � 1 + R̃approx
ξ with

R̃
approx
ξ = −µξ K0(

√
2r/ξ)

K0(
√

2/ξ)
(61)

for a given constantµξ.
Using a shooting method, we have numerically solved Eq.(59) starting fromr = Bξ (B is a sufficiently large

constant) with initial conditionsRnum(Bξ) = 1 + R̃approx
ξ (Bξ) and∂rRnum(Bξ) = ∂rR̃

approx
ξ (Bξ) and adjusting the

constantµξ so thatRnum(1) = 0.
Our shooting method indicates that

lim
ξ→+∞

µξ = 1+ (62)

Fig. 5displays the function 1+ R̃approx
ξ together with the numerical solution of Eq.(59)calculated by the shooting

method, expressed in term of the rescaled variables = (r − 1)/ξ. Thus, at largeξ/D and fors > 0, 1+ R̃approx
ξ is
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Fig. 5. Plot of the functionRξ � 1 + R̃approx
ξ

together withRnum
ξ

both expressed in the variables = (r − 1)/ξ for ξ/D = 2500 (in this case,

µξ � 1.057). The function 1+ R̃approx
ξ

is a very good approximation of the solution of Eq.(59)except close to the cylinder (s = 0).

a very good approximation of the solution of Eq.(59). Points close to the cylinder differ, which is obvious since
1 + R̃approx

ξ does not vanish at the cylinder. Therefore, we have for fixeds > 0

Rξ(1 + ξs) − 1 � µξ
K0((

√
2/ξ) + √

2s)

K0(
√

2/ξ)
∼

ξ→+∞
− K0(

√
2s)

log ξ
(63)

In this sense, the square-root of the densityRξ approaches logarithmically the uniform state. Then the effects of the
obstacle on the flow at largeξ/D for Dirichlet conditions are very small. Thus the critical velocity is expected to
increase withξ/D and the largerξ/D, the closer to 1 the critical Mach number.

As the Neumann conditions perturb even less the fluid than the Dirichlet conditions, one can easily understand
why the critical Mach number for Neumann conditions increases faster at largeξ/D than for Dirichlet conditions.

Turning now to the smallξ/D regime, the critical Mach number for Neumann conditions is also found to be
larger than that of Dirichlet conditions. This point is quite surprising since, at small Mach number, stationary solu-
tions for Neumann conditions approach the Euler stationary states better than the stationary solutions for Dirichlet
conditions (see the bifurcation diagrams onFig. 2). However, we can offer the following semi-quantitative argu-
ment. The critical Mach number decreases with decreasingξ/D. We have shown in Section3 that the effective
radiusreff(ξ) of stationary NLS flows at small Mach numbers was bigger for Dirichlet conditions than for Neu-
mann conditions. Assuming that this result holds for bigger Mach numbers (of orderMEuler

c ), one can consider
that the Neumann conditions stationary solutions have the same critical Mach number as the Dirichlet stationary
solutions when they reach the same ratioξ/Deff(ξ), imposing therefore smaller values ofξ/D in the Neumann
case.

Finally, note that we have found no numerical indication showing thatMc(Dirichlet) could become bigger that
Mc(Neumann), for very small values ofξ/D.

5.4. Bifurcation diagrams and stationary states at large coherence length

The largeξ/D regime could be reached experimentally by considering BEC with large coherence lengths per-
turbed by a sharply focused detuned laser. As seen in the previous section, the critical Mach number tends very
quickly towards 1 for Neumann boundary conditions. Furthermore, these conditions are academic and have no
experimental equivalent in BEC. Thus, we will study the limit of largeξ/D only for Dirichlet conditions, the
experimentally realistic ones.
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Fig. 6. (a) Bifurcation diagram for largeξ/D for Dirichlet conditions. Density of stationary solutions forξ/D = 20 andM = 0.25 far from the
bifurcation threshold (Mc � 0.86): (b) stable solution, (c) symmetric unstable solution and (d) asymmetric unstable solution.

The bifurcation diagram, computed for Dirichlet boundary conditions and differentξ/D, is displayed inFig. 6(a).
Just like in the smallξ/D case, a branch of stable solutions is connected to a branch of unstable solutions through
a saddle-node bifurcation at a critical Mach numberMc. The values ofMc are seen to approach 1 whenξ/D
increases. The corresponding stationary solutions are also displayed onFig. 6. The stable solution (b) is irrotational
while the two unstable solutions contain respectively one (d) or two vortices (c) far from the critical Mach number.
However, close enough to the bifurcation tip, the unstable stationary solution shows no 2π phase jump and therefore
no vortices are present. We will come back to this point in the next section.

As already pointed in Section5.3.2, the one-vortex solution that breaks the symmetryy �→ −y associates a vortex
located outside the obstacle to an image vortex situated inside the obstacle. The image vortex is clearly visible on
Fig. 6(d) because its core is larger than the obstacle itself (compare withFig. 6(b) or (c)). Note that the largeξ/D
energy difference between the stable and the asymmetric solution branches is not half the energy difference between
the stable and the symmetric solution branches, contrary to the smallξ/D case. This stems from the fact that, for
largeξ/D, the energy of the asymmetric branch also includes the additional contribution of the now visible image
vortex.

6. Dynamical results

Solutions of the NLSE (in the absence of an obstacle) in dimension 2, moving at constant speed while pre-
serving their shape, have been exhibited by Jones et al.[23,31]. These solutions are pairs of counterrotating
vortices but also what they called rarefaction pulse (depletion pulse with non zero density and therefore no
vorticity).

A natural question is then to know which kind of excitations can be nucleated past a disk.
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Fig. 7. Typical vortex nucleation in the case of Neumann boundary conditions, forξ/D = 1/20. (a–c) Plot of the density at different times (in
arbitrary unitt = 0, t = 230, t = 260 respectively). (d) Att = 260, phase of the system. Note the 2π-phase jumps around the two points where
the density vanishes: iso-phase lines emerge from these two points.

6.1. Nucleation of vortices

The stationary solutions obtained numerically provide us with adequate initial data for the study of dy-
namical solutions. Indeed, after a small perturbation, their integration in time will generate a dynamical
evolution with very small acoustic emission. This procedure also provides an efficient way to start vortical
dynamics in a controlled manner. The dynamical computations reported below were performed with a resolu-
tion high enough for the overall error on energy conservation to be less than�F/F < 1.6% at the end of the
run.

It is already known from studies performed using a repulsive potential (see Fig. 6 of[19]) that, at small val-
ues ofξ/D, vortex pairs are dynamically nucleated. The same behavior is obtained using the present numerical
method with Dirichlet boundary conditions (data not shown). This behavior persists when using Neumann bound-
ary conditions, as shown onFig. 7 that displays the nucleation of a+ and− vortex pair (which will be followed
by a periodic emission of other pairs). The phase of the complex field exhibits a 2π jump for each vortex (see
Fig. 7(d)).

6.2. Nucleation of rarefaction pulse

For largeξ/D, using Dirichlet boundary conditions, we have proceeded in the same way as in the previous
subsection by perturbing an unstable symmetric solution at Mach numberM >Mc to observe the nature of
the nucleated excitations. The behavior is somewhat more complicated. We show onTable 1the nature of the
emitted excitations as a function ofξ/D andM/Mc. For ξ/D > 15, and obstacle speed aboveMc, a rarefaction
pulse (RP) is dynamically obtained; forξ/D < 15, there exists a threshold inM under which vortex pair rather
than a rarefaction pulse emerges. In some cases (BL for border line), it is unclear whether we have an emitted
rarefaction pulse or a vortex pair (the density minimum in such limit cases approaches zero and there is a strong
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Table 1
Phase diagram of the nature of emitted excitations as a function of the ratioξ/D and the Mach number normalized by the critical Mach number

M/Mc ξ/D

7.5 10 12.5 15 17.5

1.2 BL RP RP RP RP
1.15 VP RP RP RP RP
1.1 VP BL RP RP RP
1.05 VP VP VP RP RP
1.01 VP VP VP BL RP

VP and RP, respectively, stand for vortex pair and rarefaction pulse. BL stands for limit cases where it is hard to distinguish the exact nature of
the excitation (the density minimum is very close to zero and the phase has a strong variation).

Table 2
Speed of translationυ/c of the nucleated excitations atM/Mc = 1.1 as a function ofξ/D

ξ/D υ/c

7.5 0.56
10 0.59
12.5 0.67
15 0.70
17.5 0.80

For the limit caseξ/D = 10, we findυ � 0.59; the change in the nature of excitation in a 2D superflow without obstacle appears at speed equal
to υV/c � 0.61 [31].

variation of the phase). By measuring the borderline speed of translationυ (in the frame at rest) of the emitted
excitation (seeTable 2), we found that it is very close to the known limit speed of translationυV at which occurs
the change in the nature of excitations in 2D superflow in the absence of an obstacle:υV/c = 0.43

√
2 � 0.61

[31].

Fig. 8. Nucleation of a rarefaction pulse with Dirichlet boundary conditions forξ/D = 17.5 andM/Mc = 1.1: density at different times (in
arbitrary unit) (a)t = 0, (b) t = 150, (c)t = 220. (d) Plot of the phase att = 220. There is no phase jump, hence no vorticity. The speed of
translation of this rarefaction pulse in frame at rest is 0.80 and its minimum of density is approximately 0.081.
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A desexcitation of an unstable stationary solution atξ/D = 17.5 creates a rarefaction pulse as shown inFig. 8.
The minimum of density of such a pulse is non zero (here the minimum equals approximately 0.081), and no phase
jump is present (seeFig. 8(d)).

Close to the critical Mach number, no vortex is detached from the disk. When nucleated, these vortices follow
the boundary of the obstacle and then leave it separated by a distance of orderD. For largeξ, the vortices are so
close that they give rise to a rarefaction pulse.

We did not study the periodic emission of rarefaction pulses at supercritical regime as done in previous studies
[19]. Our numerical method is not adapted for such problems: the mesh is more and more stretched far from the
obstacle so that one lacks resolution at long distance to resolve the nucleated excitations.

7. Conclusion

The main virtue of the pseudo-spectral method that we have used in the present study is its ability to accurately
accommodate both large-r asymptotic behavior and thin boundary layers near the cylindrical obstacle, atr = 1.
Indeed, using modest resolutions, we were able to obtain the Eulerian critical Mach number with 11 significant
digits:MEuler

c = 0.36969705259(9). In the NLSE case, spectral convergence was obtained on the whole bifurcation
diagram for values ofξ/D as low as 1/120.

Small coherence length boundary-layer approximations to the stationary solutions were calculated. These ana-
lytical results were found to be in very good agreement with the numerical results. The long-range contribution was
physically interpreted as a renormalization of the diameter of the disk.

As a by product of our new method, we were able to investigate not only the physically realistic case of Dirichlet
boundary conditions but also the more academic case of Neumann conditions. The influence of the boundary
conditions on the stationary solutions of the problem, especially their effects on the boundary layer and on the
critical Mach number, were investigated. At given ratioξ/D, the critical Mach number is found to be lower for
Dirichlet boundary conditions than for the Neumann ones. Moreover, as ratioξ/D increases, the critical Mach
number tends towards one in the Neumann case much faster than in the Dirichlet case.

For Dirichlet boundary conditions the qualitative results previously obtained, using periodic pseudo-spectral
codes[19], were recovered. However, our new method directly imposes the correct boundary conditions, without
resorting to an artificial repulsive potential. Also, the newly obtained critical Mach number is here determined for a
single obstacle, whereas a periodic array of obstacles was considered in previous studies. Thus, the present article
presents the first precise quantitative determination of the critical Mach number as a function ofξ/D in this reference
problem.

Finally we were able to show that a transition occurs in the nature of the emitted excitation at large coherence
length. Forξ/D > 15, the nucleated excitations are rarefaction pulses whereas, atξ/D < 15, both vortices and
rarefaction pulses can be obtained.
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Appendix A. Numerical methods

We detail here the numerical procedures used in the simulations together with the numerical convergences with
spatial resolutions for the critical Mach number and the stationary solutions.
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A.1. Spectra

In this article, we define ther-spectrum andθ-spectrum of a fieldψ spectrally represented byψn,p as the respective
sequence of numbers

Spr(p) =
Nθ/2∑

n=−(Nθ/2)+1

|ψn,p|2, 0 ≤ p ≤ Nr (A.1)

Spθ(n) =
Nr∑
p=0

|ψn,p|2, 0 ≤ n ≤ Nθ

2
(A.2)

Only half theθ-spectrum is considered for theθ-representation is complex-conjugated.

A.2. Implementation of the boundary conditions

Contrary to the analytical computations, we work with the complex variableψ in order to take account of the
possible presence of vortices. In order to impose the boundary conditions, we set

Φ0(θ, r) = v
r20 cosθ√

2cξr
(A.3)

ψm = ψ eiΦ0 (A.4)

Note that this change of variables does not affect the Dirichlet conditions that still read

ψm|∂Ω = 0 (A.5)

With these new variables, Neumann conditions read

∂rψm|∂Ω = 0 (A.6)

and the NLSE turns into

i∂tψm = c√
2ξ

[
−ξ2�ψm + (|ψm|2 − 1)ψm

]
+ iv · ∇ψm + c√

2ξ

[
ξ2(∇Φ0)2ψm + ξ22i(∇Φ0)∇ψm

]
−v · (∇Φ0)ψm (A.7)

with ψm|r=1 = 0 (Dirichlet) or∂rψm|r=1 = 0 (Neumann).

A.3. Time steppings

A.3.1. Stationary states
We search for stationary solutions of the dynamics Eq.(5) or Eqs.(51) and (52). Note that stationary solutions

are those of the equivalent diffusive equations that read in the abbreviated form

∂Ψ

∂t
= LΨ +W(Ψ ) (A.8)

In the general case (ξ �= 0), we have

Ψ ≡ ψm, L ≡ � (A.9)
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W(ψm) ≡
{

− c√
2ξ

(|ψn|2 − 1)ψn − iv · ∇ψn − c√
2ξ

[
ξ2(∇Φ0)2ψn + ξ22i(∇Φ0)∇ψn

]
+ v · (∇Φ0)ψn

}

(A.10)

In the Eulerian case (ξ = 0), as discussed in Section5.1, these definitions reduce to

Ψ ≡ φ, L ≡ �, W ≡ ∇(0∇φ) − v · ∇φ (A.11)

with

0 = −1
2(∇φ)2 + v · ∇φ (A.12)

To integrate(A.8) a mixed implicit-explicit first-order time stepping scheme is used:

Ψ (t + τ) = (I − τL)−1(I + τW)Ψ (t) (A.13)

whereI is the identity operator andτ the time step.
The Helmholtz operator (I − τL), block-diagonal with respect to Fourier modes, is easily inverted in the Fourier–

Chebychev representation using the LU algorithm[32].
As called for theτ method[27] the boundary conditions(55), (A.5) or (A.6)are substituted to the Eq.(A.8) for

the highest Chebychev modesTNr−1 andTNr . The operator (I − τL) is thus modified before inversion.
This relaxation method can only reach stable stationary solutions of(A.8). In order to also capture unstable

stationary solutions[33] we use the Newton branch-following method detailed in[34,18,19].

A.3.2. Branch following procedure
We search for fixed points of(A.13), a condition strictly equivalent to the stationarity of(A.8). Each Newton

step requires solving a linear system for the decrementψ to be subtracted fromΨ :[
(I − τL)−1(I + τDW) − I

]
ψ =

[
(I − τL)−1(I + τW) − I

]
Ψ (A.14)

whereDW(Ψ ) is the Fŕechet derivative, or Jacobian matrix, ofW evaluated atΨ . Eq.(A.14) is equivalent to:

(I − τL)−1τ(L+DW)ψ = (I − τL)−1τ(L+W)Ψ (A.15)

The role ofτ is formally that of the time step in(A.13), but in(A.14) or (A.15), its value can be taken to be arbitrarily
large. Forτ → ∞, (A.15) becomes:

L−1(L+DW)ψ = L−1(L+W)Ψ (A.16)

In order to solve the linearized systems stemming from the Newton method, we use BiCGSTAB[35]. We varyτ
empirically to optimize the preconditioning and convergence of BiCGSTAB. A few hundred BiCGSTAB iterations
are usually required to solve the linear system.

A.3.3. Dynamics
We write Eq.(5) in the abbreviated form:

∂Ψ

∂t
= L′Ψ +W ′(Ψ ) (A.17)

where

Ψ ≡ ψm, L′ ≡ −iL, W ′ ≡ −iW(ψm) (A.18)

withW defined in Eq.(A.10)
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Table A.1
Relative error vs. resolution on the critical Mach number calculated by taking as a referenceMc = 0.36969705259(9) calculated at (512× 32)

Nr Nθ

16 32 64 128 256 512

16 4.45× 10−3 3.72× 10−4 1.02× 10−5 2.59× 10−7 2.27× 10−7 2.27× 10−7

24 4.45× 10−3 3.72× 10−4 9.97× 10−6 3.34× 10−8 5.87× 10−10 2.22× 10−10

32 4.45× 10−3 3.72× 10−4 9.97× 10−6 3.32× 10−8 2.70× 10−12 0

Eq.(A.17) is time stepped using the implicit Euler scheme

Ψn+1 = (1 − τL)−1[Ψn + τWn] (A.19)

The boundary conditions(55), (A.5) or (A.6)are imposed by modifying the operator (I − τL)−1, as done for the
relaxation time stepping algorithm(A.8) [27].

For the present limited scope goal of finding out the nature (vortex or rarefaction pulse) of the emitted excitations
(see Section6), this straightforward first order method is adequate. Higher order in time methods, such as a third
order explicit-implicit scheme (based on Backward Euler), will be implemented in the future to allow more robust
and precise integrations of temporal dynamics.

A.4. Numerical convergence

A.4.1. Euler
Table A.1shows the error on our reference Mach number versusNθ andNr. Note that the errors are mainly

due to a lack of Fourier modes inθ. Thus, when a sufficient number of Fourier modes is reached, increasing the
resolution inr yields a better precision.

Due to the use of Chebychev polynomials, the boundary layers of the NLS flow computed at low Mach number
are well resolved thanks to the large number of collocation points at the vicinity of the obstacle, as we will see in
next section.

A.4.2. Small coherence length solutions
Our numerical method based on Chebychev polynomial expansions allows to solve the boundary layer of order

ξ by refining the collocation points near the boundary conditions. The smallerξ, the larger the radial resolutionNr
must be. The azimuthal resolutionNθ depends also on the value ofξ through the multiplication of complex fields
with a phase term such thatΦ0(θ, r) = v cosθ/

√
2cξr andψm = ψeiΦ0. The phase termΦ0 is inversely proportional

to ξ and needs sufficientNθ points in order to be resolved.Table A.2lists the resolutions used for computing the
bifurcation diagram for eachξ/D. Spectral convergence is achieved for all stationary solutions as shown inFig.
A.1.

Table A.2
Azimuthal and radial resolutions used for computing the bifurcation diagram for differentξ/D for the two types of boundary conditions

ξ/D Nθ ×Nr
1/2 64× 64
1/20 64× 64
1/40 128× 128
1/80 128× 128
1/120 256× 128
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Fig. A.1. Stationary solution spectra withξ/D = 1/20,Nθ ×Nr = 64× 64, and Neumann boundary conditions: (a)θ spectra and (b)r spectra
for a stable solution far from the bifurcation, for the solution at the bifurcation, and for a one vortex and a two vortex unstable solutions. Spectral
convergence is achieved for all stationary solutions.

Fig. A.2. Symmetric unstable stationary solution spectra withξ/D = 20, for two resolutions (Nθ ×Nr = 128× 128 and 128× 512) and
Dirichlet boundary conditions: (a)θ spectra and (b)r spectra. Spectral convergence is achieved for all stationary solutions.

A.4.3. Large coherence length solutions
For large ratioξ/D, we have modified the mapping in order to stretch in the radial direction the collocation points

next to the obstacle (see Eq.(50)). The choice of the value ofλ depends on the value ofξ/D and the resolution
Nθ ×Nr of the system.

Fig. A.2 shows azimuthal and radial spectra for a symmetric unstable stationary solution atξ/D = 20 with
a dilatation parameterλ = 80 for two different resolutions. Spectral convergence is achieved for all stationary
solutions.
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