Available online at www.sciencedirect.com

scrence @omeor- PHYSICA )

ELSEVIE Physica D 210 (2005) 203-226

www.elsevier.com/locate/physd

Boundary layers and emitted excitations in nonlinear
Schiodinger superflow past a disk

Chi-Tuong Pharf*, Caroline Nor&°¢, Marc-Etienne Brachét

a Laboratoire de Physique Statistique de I'Ecole NormaleeSigpire, asso&au CNRS et aux Universit'Paris VI et
VIl, 24 Rue Lhomond, 75231 Paris, France
b LIMSI-CNRS, BP 133, 91403 Orsagdsx, France
¢ Universi€ Paris XI, DEpartement de Physique, 91405 Orsay Cedex, France

Received 25 June 2004, received in revised form 8 July 2005; accepted 18 July 2005
Available online 10 August 2005
Communicated by C.K.R.T. Jones

Abstract

The stability and dynamics of nonlinear Sétinger superflows past a two-dimensional disk are investigated using a specially
adapted pseudo-spectral method based on mapped Chebychev polynomials. This efficient numerical method allows the imposition
of both Dirichlet and Neumann boundary conditions at the disk border. Small coherence length boundary-layer approximations
to stationary solutions are obtained analytically. Newton branch-following is used to compute the complete bifurcation diagram
of stationary solutions. The dependence of the critical Mach number on the coherence length is characterized. Above the critical
Mach number, at coherence length larger than fifteen times the diameter of the disk, rarefaction pulses are dynamically nucleated,
replacing the vortices that are nucleated at small coherence length.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that, above a critical speed, superfluidity breaks down and dissipation défs Much
work has been devoted to the understanding of this phenomenon within the mathematical description of su-
perfluidity provided by the nonlinear Sdtinger equation (NLSE) also called the Gross—Pitaevskii equation
[2-4].
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The NLSE can be used to describe two quite different physical systems: supéHkiend Bose—Einstein
condensates of ultra-cold atomic vapor.

In the case of superfluitHe, the NLSE can be considered as a qualitatively valid mathematical model provided
that the temperature is low enough for the normal fluid to be negligible. This is clearly the case in recent experiments
[5] that are performed at temperatures below 130 mK. Note that the excitations of suptHiduide accurately
described by the famous Landau spectrum which includes phonons in the low wavenumber range, and maxon:
and rotons in the high (atomic-scale) wavenumber range. In contrast, the standard NLSE (the equation used in the
present article) only contains phonon excitations. It therefore incompletely represents the atomic-scale excitations
in superfluid*He. However, there exist straightforward generalizations of the NI6SH that do reproduce the
correct excitation spectrum, at the cost of introducing a spatially non-local interaction potential. For reasons of
simplicity we shall not use such generalizations in the present article.

Since Bose—Einstein condensation in dilute gases in traps was experimentally ofet@& dhis field is in rapid
evolution: recent results include the production and detection of an isolated quantized1/byi&} the nucleation
of several vorticefl 3] and details of vortex dynami¢$4]. The dynamics of these compressible nonlinear quantum
fluids is accurately described by the NLSE allowing direct quantitative comparison between theory and experiment
[15].

The stability of Bose—Einstein condensates (BEC) in the presence of a moving obstacle can thus be stud-
ied in the framework of the NLSE. Raman et al. have studied dissipation in a Bose—Einstein condensed gas by
moving a blue detuned laser beam through the condensate at different velddiies their inhomogeneous
condensate, they observed a critical Mach number for the onset of dissipation that was compared with the NLSE
predictions.

In their pioneer work, Frisch et aJ17] performed direct numerical simulations of the NLSE to study the
stability of two-dimensional superflows around a disk. They observed a transition to a dissipative regime char-
acterized by vortex nucleation that they interpreted in terms of a saddle-node bifurcation of the stationary so-
lutions of the NLSE. Later, using numerical branch-following techniques, Huepe and Bf{a&8kE?] obtained
the complete bifurcation diagram in which the stable and unstable branches are connected through a saddle
node bifurcation. Asymmetric solutions were also found, generated by a secondary pitchfork bifurcation of
the stable branch. The symmetric and asymmetric unstable solutions correspond respectively to two and one
vortices. The critical speed was shown to converge, for small coherence length, to the Eulerian value com-
puted by Ricg20]. Three-dimensional effects leading to a lowering of the critical speed were also considered
[21].

In all the above numerical studies, the effect of the two-dimensional disk was represented in the NLSE by a
simple repulsive potential. Thus no boundary conditions were applied and the numerical results were (weakly)
dependent on the details of the repulsive potential.

One of the main motivations of the present paper is to obtain numerical results that are reliable (i.e. do not
depend on an ad hoc artificial repulsive potential) at finite value of the coherence length. We will thus consider the
NLSE as a partial differential equation with standard boundary conditions applied on the disk. This mathematical
problem will be studied by using an efficient pseudo-spectral method, based on angular Fourier series and radially
mapped Chebychev polynomials, that was specifically designed for the present study. The numerical solutions will
be compared with analytic boundary layer approximations, that are valid for small velocity and coherence length.
Similar expansions were performed for a spherical obstad2h

The paper is organized as follows: Sect®mrontains the governing equations; Sectibis devoted to the
derivation of the boundary layer analytical expressions for Dirichlet conditions; in SeLtioa describe the new
specially designed pseudo-spectral method; Se&ioontains validations of the numerical procedure and new
results on bifurcation diagrams and critical Mach numbers; in Se&iamur results on the dynamically emitted
excitations are reported, with emphasizing on the nucleation of rarefaction pulses; finally S&ctianconclusion.

More details on the numerical method are found inAlppendix Awhere the resolutions needed to obtain spectral
convergence are discussed.
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2. Governing equations

In this section, we present the hydrodynamic form of the NLSE that models the effect of a disk of radius unity
(diameterD = 2), moving at constant spe&d= ve, in a two-dimensional superfluid at rest. In the frame of the
disk, the system is equivalent to a superflow around a disk, with constant spesdnfinity. Let £2 be the plane
C deprived ofD the disk of radius unity ands2 the boundary of the domain, that is the circle of radius unity. We
will naturally use the polar coordinates ) such thatt = r cosd andy = r siné and the associated unit vectors
are denoted byg(, e5). The system can then be described with the following action functional

Aly, ¥l = / dr {ﬁcs /Q olzxi2 [yory — v y] — fo} (1)

wherey is a complex fieldy its conjugate. The speed of sounand the so-called healing lengtlare the physical
parameters of the systetfip is the energy of the system that reads

Foly, yl =E—v-P )
with
vy, v] = c? / d?x [52|w|2+ %(W— 1)? (3)
2
Py ] = V2t [ cbag [0 = D9 - (5 - 19 ). @
2

The presence of the constantd in Eq. (4) ensures the convergence of the inted2a]. The Euler—Lagrange
equation corresponding {@) provides the NLSE

<
V2t

defined in the domair. This equation can be mapped into two hydrodynamical equations by applying Madelung’s
transformatiori1]

Y=o exp(J;’Lg) , ©)

that defines a fluid of density and velocity

19y = —=[~E°AY — ¥ + [Y1?Y] +iv- Vi, (5)

U=V¢p-—-vVv (7
The real and imaginary parts of the NLSE vyield the following equations of motion

dp+V-(pU)=0 ®
o9 = —%(W)2 +A(1-p)+ ngzA\/\%ﬁ +V- Vo ©)

These equations correspond respectively to the continuity and the Bernoulli equations (with a supplementary quan-
tum pressure term) for a barotropic compressible and irrotational flow. Note that two non-dimensional parameters
control the system: the Mach numh&t = |v|/c (wherev is the flow velocity at infinity and the sound speed)

and the ratio of the healing lengtho the diameter of the didR. In the limité/D — 0, the quantum pressure term
vanishes and we recover the system of equations describing an Eulerian flow. We now investigate the problem of
the boundary conditions on the obstacle.
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In previous studief 9], boundary conditions were applied by adding to the NLSE a repulsive potential term strong
enough to force the density to zero inside the disk. In the present work, we consider the mathematically standard
Dirichlet and Neumann boundary conditions that will both be directly imposed at the border of the obstacle.

2.1. Dirichlet boundary conditions

The Dirichlet boundary conditions reafd,—1 = 0. They thus prescribe zero density on the obstacle and cor-
respond to the presence of an unpenetrable obstacle (a laser with a sharp profile in a BEC or a solid obstacle ir
superfluid*He). They correspond to the following conditions, in hydrodynamical variables: first, the condition on
o is obviously

p=0, atr=1 (10)

Second, the square root of the dengity- ,/p being constant on the obstacle, we ha\R{,—; = O anddsR|,—1 =
0. The continuity Eq(8) expressed in term d?then yieldsd, R - U, |,—1 = 0, so that the Dirichlet conditions also

imply
U =0d¢p—vecost=0, atr=1 (112)

2.2. Neumann boundary conditions

The Neumann boundary conditions, in hydrodynamical variables, read
o,p=0, atr=1 (12)
U =0¢—vcost=0 atr=1 (13)

They correspond to the following conditions in term of the complex field

ivrg cosf
o | vexp “oeEr

Note that the Neumann conditions are more academic than the Dirichlet conditions. Nevertheless, it can be
interesting to study the influence of those Neuman conditions on the stationary solutions of the problem, especially
their effects on the boundary layer on the obstacle. One could think that the Neumann conditions, imposing the
value of theop derivative at the obstacle, are less stringent than the Dirichlet conditions and so would perturb less the
stationary solution. The solution would be “closer” to that of the Eulerian flow than with the Dirichlet conditions.
We will see below that the situation is more complex. A more physical motivation to study the Neumann conditions
is related to the problem of capillary-gravity surface flows past a cylindrical obstacle, where the quantum pressure
term is replaced by a capillary term. In this related problem described by the dispersive Shallow Water equations,
the Neumann conditions are the physical of2&§.

=0.

r=ro=1

3. Boundary layer solutions—analytical results

We now present calculations of the stationary solutions in the it — 0. For non-zero Mach number,

m=M (14)

Cc
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we define the new phase varialfi?d]

¢ — vr cosf
= (15)
v
The Bernoulli(9) and continuity(8) equations then read
Aﬁ MZ 2
0=£=" —p+1+—-[1- (V9 (16)
N 2
0=pAp+Vp-Ve. an
The Dirichlet boundary conditions now read
plaz =0
ar(p|89 =0.
At finite but small Mach number, we expapdndy as
,0=,0(0)+M2,0<1)+"‘+M2k,0(k>+"' (18)
0= (,0<O) + MZ(p(l) + .4 Mka(k) + ... (19)

Note that if one knows at orderM#, on can formally deduce at orderM2¢+1) by solving(16). The potential
¢ can then be computed at ordet2¢+1) by solving(17). In order to compute, we will have to solve equations
of the type

d?y 1dy 1

G2+ 75 () = 5)() = RHSE) (20)
Solutions to the corresponding homogeneous equation are

y(r) = Ar+ Brt (21)

so that the general equation with nonzero right hand side RH&6 be computed using the method of variation of
parameter. Using the boundary conditions,lim -, y(r) = 0 and d/dr(r = 1) = 0 yields for the solution of the
inhomogeneous equation the explicit expression

1 [t N 1 [+
) =~ /1 RHS@)(1 + u?)du — > / RHS()du + - / u?RHS @) du (22)

provided that the function RHS decreases rapidly enough at infinity. Note that the first te{n) pields a term

of the typeC/r. Due to the expressions of RHS encountered in the following computations, the two last terms will
turn out to tend to zero exponentially (on a length scale of affieso that the behavior at infinity of the functign

will be governed by a long-range algebraic term that reads

1 +00
yr) ~ — = RHS@)(1 + u?)du (23)
r—+o0  2r Jq
We now turn to the computation of the stationary Dirichlet solution. Expressions%oand¢‘® are obviously
needed to bootstrap the iteration. They are obtained by the following considerations.
When the Mach number is zer@,= 0 is solution of the stationary equations andatisfies

Ezé;/ﬁﬁ—p+1=0 (24)
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Writing p(r, 6) = R?(r) yields the equation
1
SZAR+R—R3=§2<8W+8r)R+R—R3=O (25)
r

with boundary condition®(1) = 0. A first approximation for the solution of this equation, obtained by neglecting
the term €2/r)d, R, reads

RY = tanh (7‘251) (26)

This result, valid up to ordey, can be improved by setting = Rg)) + R<10). InsertingRin (24), collecting the terms
of orderé and solving the resulting differential equation yields, after tedious computations,

R 3—cosh3 + (4 + 3s)seclfs + sinh & + 3 tanhs} (27)

_ & [_
6v/2
wheres = (r — 1)/+/2¢. Thus the explicit expression
PO = o + ot = (RY)? + 2RE RY (28)

gives the correct approximation to the density, up to o&dén the limits/D — 0.
The velocity potentiap‘© satisfies

890 = —Vp0 . V0 + (1 - p)ag0. (29)

We write '@ = (pEuler—i— @ where<pEuler (r + 1/r) cosd is the solution at order 0 in12 of the Eulerian flow.

Using the relatlormp(EJIer = 0, Eq.(29)yields the following equation fap©

~ 0 ~ ~
Ago(0> — _Vp(o) . leggler_ V,O<O> . V(p<0) +(1- ,0<O))Agp<0> (30)

This equation cannot be solved directly. We thus proceed to a perturbative development by]x/\ﬂ}itiﬁg”oio) + g7><20>
whereé)io) is of orderg and<7)§0> of order&2. In the right hand side of E¢30), one can keep at the dominant order
of our computations the first term and drop the two others. The funéﬁ%ris then solution of the equation

~ (0 0 0
A = —Vpl - Vel (31)

The expression 07)<10> can be computed using E@@2). Eq.(23)yields[25]
_ 2
50 o 24/2& — 4A(log 2k cos

r—>—4+00 r

(32)

In order to obtain the full correction at ordéf of the 1/r-algebraic term we also need to comp%@ which
verifies

~(0 0 0 ~ 0

Euler —
Using again Eq(23), a lengthy computation yields
(70(0) ~ gzw cosf

r——+00 3r

(34)
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The velocity potentiap© thus reads

(ﬂ(0> — [r + (1+ 2«/2‘3 + ]'O%GIOQZSZ + 0(53)> % + (pl(gé(r):| cosf (35)

Where<p|<gg exponentially vanishes at infinity.
Note that the compressible Eulerian flow around a disk of radiwlmits at order zero in? the following
solution

2
0 r
QDI(Elzler,rl = (r + r1> cosf (36)

in order to satisfy the boundary conditidpy|—-, = 0. Thus, the correction ttp(EOJler is a long-range term that
can be physically interpreted as a renormalization of the diameter of the disk: at large distances the superflow is
equivalent to an Eulerian flow around a disk of radigsgiven by

2 2
<re“> —1+2V2 (f) + 10_16@92(5) +0(). (37)
0 ro

70 3

The ordert term was first computed if25]. Similar results were obtained directly, using matched expansions, for
a spherical obstacle if22]. This reference also includes the governing matched expansion equations for the case
of a 2D disk, however the authors did not solve these equations.

The same procedure with Neumann boundary conditions can be shown to lead to a renormaliz¢2i@dius

2 2
3
() -3
7o 2 7o
Note that contrary to the case of Dirichlet conditions, this effective size is dependent on the Mach number, which
was not the case for Dirichlet conditions. It is also smaller than the corresponding Dirichlet effective value.

4. Specially adapted pseudo-spectral method

We have specifically developed a code that can accurately accommodate bothdaygestotic behavior and
thin boundary layers near the obstaclerat 1. It is based on a Chebychev decomposition using an adequate
mapping. It allows us to consider a unique obstacle in contrast with periodic pseudo-spectral rficdhadisch
in fact model a network of obstacles.

4.1. Mapping for a unique obstacle

Using standard polar coordinatggs r}, together with the relation
r@) =zt (39)

the domain{0 < 6 < 27, —1 < z < 1}, can be mapped into the physical domginy}, with x2 4+ y2 > 1.
The basic mapping is

x=z"1 coss, y=2z"1sing (40)
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and the inverse transformation reads

1
1=t — 0 = arctanf/x) + T 32F T

Any generic real fieldV(x, y) (¥ stands for R¢, Imy, etc.) appearing in the encountered equations of motion
is expressed in th@, z} domain as

(41)

W (6. z) = ¥ (x(6. 2). ¥(6. 2)) (42)

with x(6, z) andy(6, z) defined in(40).
Asx(0, z) = x(6 + 7, —z) andy(0, z) = y(6 + &, —z), the{x, y} domain is mapped twice unto tf z} domain.
A mapped field must therefore satisfy

w0, z) =0+ 7 —2) (43)

This condition will be implemented as a symmetry of the spectral expansion coefficients (see below&8ction
Note that the singular mappir{d0) does not practically impact the spectral accuracy (as is normally the case): see
below the discussion at the end of Sectidrzand A.4

The equations of motion are expressed as partial differential equations {8, tt}edomain by writing the
differential operator& andA in terms of¢ andz derivatives that are polynomial inj e.g.

*y Py oy
Ap =22 Y L A%Y 3V
Y=z 502 +z 022 +z "

4.2. Spatial discretization

The fieldy is spatially discretized, in th&(z) domain, using a standard Chebychev—Fourier pseudo-spectral
method[27], based on the expansion

No/2 Ny

YO.29= Y. D YnpTp2) p expind (44)

n=1-Ny/2 \ p=0

whereT),(z) = cos (p arccog) is the orderp Chebychev polynomial andy and N, represent resolutions.
The pseudo-spectral method calls for using fast Fourier transforms to ev@dpoa the collocation points grid
(O, zi) with

2
szﬂ; 0<m < Ny (45)
Ny
wk
k= cosﬁ; 0<k <N, (46)

r

The relationT, (cosx) = cosnx reduces the Chebychev transform appearingdi) to a (fast) Fourier cosine
transform. Thus, the evaluation ¢44) (and its inverse) only requires a time proportionalNgN, log(NgN,).
Computations of nonlinear terms are carried out on the grid representationspwalnitez derivatives are carried
out on the Chebychev—Fourier representations.

The main virtue of mappin@40) together with expansiofd4) is its ability to accurately accommodate both
large+ asymptotic behavior and thin boundary layers nearl. Indeed, on the one han@4)is an expansion in
product of polynomials im—1 with functions co6 and sim6, precisely the type of functions needed to capture
large+ behavior (see Sectidh2 and[20]). On the other hand, the accumulation of collocation paiptsee Eq.
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(46)) and the regularity of40) nearz = +1 allows expansioif44) to simultaneously resolve boundary layers at
r = 1 with thickness of order/IN? [27].

4.3. Spectral symmetries of the fields

As v is real, the coefficientg, , in (44) are complex conjugate

1//711,]) = 1;n,p (47)

They obey an additional relation, stemming fr¢48). Settingz = cos(#’), the fields must be invariant under the
transformatiory — 6 + , ¢ — 6’ + 7. In spectral space, this transformation reggs, — (—1)"(—1)" ¥, »,

implying
1pn,p = (_1)n+an,p (48)

Thus they, , coefficients are non-zero only whem, (p) are jointly even or jointly odd. This relation, similar to
that found in the Taylor—-Green vort§x8], is used to speed-up the evaluation(44) by a factor 2, using specially
designed even-odd Fast Fourier transforms.

Integral of mapped fields are performed on the collocation points using the discrete formula

o g NeZlNi/27d dr

— 2

/Q rdr oy (r, 6) = NV ST YlOm )y /1- Zk&(zk)r(zk) (49)
m=0 k=0

This formula yields accurate results, provided that the integral converges well enoughdn, because of the

good convergence properties of the spectral expansion (see the discussion at the end offs2eti@hA. 4.

4.4. Generalization of the mapping

In the special case whe&gD is large, we found useful to generalize th{e) = 1/z mapping to
A
r(z) = ey + (1= M)z (50)

This mapping has the same overall characteristics tharadd reduces to it fok = 1. Fori > 1 it stretches the
coordinate, thereby increasing the resolution at large distance by moving the collocation points away fresrithe
disk. Generalizations to expressidd®) and (41)are easily derived.

5. Stationary solutions—numerical results

This section is devoted to the numerical determination of stationary solutions using the branch-following method
detailed inAppendix A We first focus on the particular case of the Eulerian flow (that is vi@lién= 0). This case
has been previously investigated using methods based on series in Mach number[BQ]Ricwl the critical Mach
number is known with great precision. We next compare analytical results of S&atiith numerically obtained
profiles of boundary layers with Dirichlet conditions. It is thus a good test of the numerical precision and efficiency
of our new method, presented above in Secion

The rest of the section contains the numerical results on the bifurcation diagrams and the stationary solutions of
the NLSE at small and large coherence lengths, for the two types of boundary conditions: Dirichlet and Neumann.
We discuss the dependence&i of the critical Mach number.
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5.1. Eulerian limit

In the limit&/D — 0, the NLSE turns into the equations of an Eulerian compressible flow
09 = —3(V$)* + X1~ p) +V- Vo (51)
dp=—pAp—Vp-Vo+V-Vp (52)

that are respectively the Bernoulli and continuity equations. We now search for their stationary solutions. Note that,
knowing the stationary fielg, the Bernoulli equation yields explicitly an expressiornpdhat reads

p=1 55 (V6P + v Vo (53)
Thereforeg is solution to the following equation

0= —pAp—Vp-Vo+V-Vp (54)
with densityp given by Eq.(53) and a unique boundary condition on the disk (instead of two in the NLSE case)

U =0¢—vcost=0, atr=1 (55)

Using the branch following method presenteddopendix Ayields the numerical stationary solutions of the two-
dimensional Eulerian flow with respect to the Mach number. The critical Mach number is then the one at which the
local Mach number
Mloc — % — |V¢j/: V|.
c P

reaches 1, atv(= 0, y = £1) [20].

The value of the computed critical Mach number determined in this way depends on the resolution. It is found
to decrease when the resolution®giandr increase. In order to obtain 11 significant digits, the (minimum) needed
resolution isNy x N, = 512 x 32. The critical Mach number then foundAgl; = 0.36969705259(9). With this
result we have greatly refined the value of the critical Mach number compared with the ones found in previous
works: Frisch et al[17] found a critical Mach number equal 1g2/11 ~ 0.42, whereas Berloff and Robeff22]
found the value 0.367. In order to obtain the same precision as that of series mebiodstX'°@ = 0.36969(7),
the most accurate value found so far), it is sufficient to use the resoldion N, = 128 x 16, that is only 8 radial
grid points in physical space.

(56)

5.2. Comparison with analytical boundary layer results for Dirichlet conditions

We now compare the analytical results of Sec@omith numerically obtained profiles of boundary layers with
Dirichlet conditions Fig. 1(a) displays boundary layer profiles of the density square-®et (,/p) computed at
&/D = 1/200 andM = 0.

To stress the agreement between analytical and numerical results, it is more convenient to substract the tern
(26) Ré,o) = tanh(¢ — 1)/+/2¢) in the numerical profiles and compare the higher order terms thus obtained with the
analytical expression.

Inthe same wayig. 1(b) presents the ordéf variation of the effective radius as the following combinatign =
((reft/r0)? — 1)/(€/r0). The line 2/2 + [(10 — 16 log 2)/3](£/ro) is shown on the same graph since expres@an
predicts that

10— 16 log 2
3eﬁ=2\/§+g<é

3 ) + O(?). (57)

ro
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Fig. 1. (a) Plot ofR<1°) (s(r) with s(r) = (r — 1)/+/2¢ (see Eq(27) and below) together with the functickM™™(r) — tanh(¢ — 1)/+/2¢) where
R"™M(r) is the numerical result obtained with our numerical methodf@ = 1/200 andM = 0. The agreement is excellent. (b) Calculation
of 8ef as a function of together with the curve?2 + (10 — 16 log 2)&/ro)/3 (see text). The difference between the two curves is due to the
term indeg Of higher order irg. Note that the agreement is very good for sngalb.

The value of et/ r0)% was extracted from the numerical results by calculating the coefficient ié/easf the
velocity potential of the stationary state substracted by the corresponding Eulerian flow coefficient (869) Eq.

The agreement between analytical and numerical results is very good forsgiadimphasizing the ability of
our method to compute thin boundary layers.

5.3. Bifurcation diagrams and stationary states at small coherence length

We present the bifurcation diagrams and the stationary solutions of the NLSE at small coherence length, for the
two types of boundary conditions: Dirichlet and Neumann.

The numerical methods presented in Secti@ndAppendix Aalso converge very well in the NLSE case. For
instance for Dirichlet conditions, the resolution needed to compute a whole bifurcation diagram is lower than in
previous studies by Huepe and Bracl€X]. With the present method, the resolution needed in thegdse= 1/20
is Ny x N, = 64 x 64 whereas Huepe et al. needed a spatial (rectangular) resalitienV, = 256 x 128 for the
same ratigs/ D. The gain in resolution is then of a factor 8. This factor increases for sn§gilerThese excellent
convergence properties are detailed\ppendix A SectionA.4.2.

5.3.1. Bifurcation diagrams
In order to study bifurcation diagrams, we define a new free energy by:

P T = Foli V] =V -2k fdeny— ), (59

withn = —e,. the unitvector normal to the boundary. The rightmost ter(B&) does not affect the equation of motion
and is always zero for thg|s; = 0 Dirichlet boundary. For Neumann conditions, this term ensures that a stationary
solutiong is an actual extremum of the functiond] i.e., F satisfiesF [y + 8, Yo + 8¥] — F o, ¥o] = 0 at
first order indy. This property implies the existence of a generic cusp at the bifurcation point (sefig. 2).
For simplicity, we will use the notatiof(M) = F[yo(M), Yo(M)]. The values ofF(M) — F(0) (the change
of energyF, relative to zero Mach number) is displayedHig. 2 as a function of the Mach numbgat for various
values ofé/D and the two types of boundary conditions. As can be seen by inspection of the figure, for each
&/ D, the stable branch (solid line) disappears with the unstable solution (dashed line) at a saddle-node bifurcation
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Fig. 2. Bifurcation diagrams for small coherence lengths. Energy functiBf&l) — F(0) vs. Mach number: (a) Dirichlet conditions and (b)
Neumann conditions. Fgy D = 1/20, the asymmetric unstable solution branch is represented (it stands for a one-vortex branch stemming from
a pitchfork bifurcation). At a fixed Mach number, the energy difference between a stable and an asymmetric unstable solution is roughly half
the energy difference between a stable and a symmetric unstable solution.

whenM = M.. There are no stationary solutions beyond this point. This qualitative behavior is the signature of a
Hamiltonian saddle node bifurcation.

By inspection offig. 2(b), we can see that the stable stationary branches for Neumann conditions are almost
superimposed on the Euler branch which is not the case for Dirichlet conditions. This is due to the fact that Dirichlet
conditions impose a zero of the density at the border of the disk, contrary to Neumann conditions and Eulerian flow.

In Fig. 2(a), at a Mach number smaller than, the unstable symmetric branch (dashed line, cigglb, = 1/20)
bifurcates at a pitchfork to a pair of asymmetric branches (dotteddiiz = 1/20)[18]. It can be directly checked
on our results (sefeig. 3, middle) that the secondary pitchfork bifurcation breaksithe —y symmetry of the flow
for both boundary conditions.

At a fixed Mach number, the energy difference between a stable and an unstable solution corresponds to the
energy barrier necessary to dynamically nucleate an excitation. Note that this barrier for a symmetric unstable
solution is about twice that of an asymmetric unstable solution.

5.3.2. Stationary solutions

By visualizing the stationary solutions of the NLSE, the branchesSigf 2 can be related to the presence of
vortices.Fig. 3shows the density = |2 of typical stationary solutions fokt = 0.3 ands/ D = 1/20 for the two
types of boundary conditions. It is apparent by inspection of the figure that the stable branch is irrotaigpraal (
top) while the asymmetric unstable branch corresponds to a one-vortex sokitjo (middle) and the symmetric
unstable branch, to a two-vortex solutidfid. 3, bottom).

For Dirichlet boundary conditions, similar results were found with periodic pseudo-spectra[t8tétowever,
our method directly imposes the correct boundary conditions without resorting to an artificial repulsive potential.
Also note that the critical Mach number is here determined for a single obstacle, whereas a periodic array of ob-
stacles was used in previous study. Huepe el find for ratio &/ D = 1/40, ME"®*®~ 0.3817 whereas we
obtain M >~ 0.3941. A single obstacle perturbs less the flow than an infinite array of obstacles (even with large
separation), it is therefore natural to find a higher critical Mach number in our simulation$4 Asincreased,
the distance between the vortices and the obstacle for the unstable brdrighés hiddle, bottom, Dirichlet)
decreases. At a certaiM,,,, < Mc, the vortices disappear on the surface on the cylinder, generating an irrota-
tional flow (see[18] for a detailed study of the Mach number at which one or two vortices emerge from the
disk).
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Fig. 3. Densityp = |2 of stationary solutions fag/ D = 1/20 andM = 0.3 far from the bifurcation threshold: (top) stable solution, (middle)
asymmetric unstable solution and (bottom) symmetric unstable solution. Left: Dirichlet conditions and right: Neumann conditions.

Note that the branch following procedure used to compute the unstable branches bifurcating from the stable
branch conserves the velocity circulation. The total velocity circulation around the disk is null. The two-vortex
solution conserves the total circulation since the two vortices are counter-rotating. For the one-vortex solution, an
image vortex located at the middle of the obstacle has to be invoked. This point will be reconsidered inS&ction

5.3.3. Variation of critical Mach number witfy D

We now study the dependence &D of the critical Mach numbeM_.

Our numerical method needs a slight modification to allow us to explore thetlabgyegime. The transformation
r(z) is modified such that mesh-points situated near the obstacle are stretched (seel3egt{60)). This procedure
avoids wasting resolution close to the cylinder.

Results are displayed iRig. 4. For a given type of boundary conditions, the Mach number decreases with
decreasing/ D and, for both boundary conditions, it converges towards the Euler limit for gphall

First note that the value of the critical Mach number is lower than 1. As we are interested in stationary solutions
with density approaching 1 at infinity like polynomials irirl(see Section8 and 4, the speed of the obstacle
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Fig. 4. Critical Mach numbeM. vs. £/ D. Note that Dirichlet boundary condition solutions admit a smaliég than Neumann boundary
condition solutions. They both tend to the Euler critical Mach numbéy Bsdecreases.

has to remain below the speed of soundtherwise radiation of sound waves would occur in the same way as
discussed ifi29,30]

We now discuss the case of Dirichlet boundary conditions and will extend the argument to Neumann conditions
at the end of this section.

For Dirichlet conditions, we have seen in Secti@eand 5.2hat, in the case of smaj) D, the boundary layer
has a thickness of ordér The situation at large/ D is quite different.

We now show that the effect of the cylinder on the flow-at 1 is vanishingly small whe§ — oco. At zero
Mach number, the densify:(r) = Rg(r) satisfies

1
£2 (a,,Rs + ra,RE> —R}+R:=0 (59)

with R¢(1) = 0 andRz(+o00) = 1. For large/¢, INQE = Rg — 1 satisfies after linearization ¢59)

.1 . .
£2 (a,,Rs + ang> —2R:=0 (60)
r
Asymptotically for larger/¢, we haveRe(r) ~ 1+ Rg™ with
ROy, Ko(v'2r/8) (61)
Ko(v/2/8)

for a given constant.

Using a shooting method, we have numerically solved (k) starting fromr = B¢ (B is a sufficiently large
constant) with initial condition®™"™(Bg) = 1+ Rg™" (B&) andd, R™™M(Bg) = 9, Re™"  (B£) and adjusting the
constaniu; so thatR"™(1) = 0.

Our shooting method indicates that

lim pe =1 (62)

§—>+o0

Fig. 5displays the function % RZ"™ “together with the numerical solution of §9) calculated by the shooting

method, expressed in term of the rescaled variable(r — 1)/&. Thus, at largé/D and fors > 0, 1+ Re™™ is
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Fig. 5. Plot of the functionks ~ 1+ R¢"™*together withR}"™ both expressed in the variable= (- — 1)/ for &/ D = 2500 (in this case,
ue ~ 1.057). The function & RE*"*"is a very good approximation of the solution of E§9) except close to the cylindes & 0).

a very good approximation of the solution of E§9). Points close to the cylinder differ, which is obvious since
1+ RE™"does not vanish at the cylinder. Therefore, we have for fixed)

Ko((v2/§) +V25)  Ko(v2s)
Ko(v/2/§)  &>+oo  log g

In this sense, the square-root of the dengityapproaches logarithmically the uniform state. Then the effects of the
obstacle on the flow at largg/ D for Dirichlet conditions are very small. Thus the critical velocity is expected to
increase witte/ D and the large&/ D, the closer to 1 the critical Mach number.

As the Neumann conditions perturb even less the fluid than the Dirichlet conditions, one can easily understand
why the critical Mach number for Neumann conditions increases faster atdafgthan for Dirichlet conditions.

Turning now to the smalf/ D regime, the critical Mach number for Neumann conditions is also found to be
larger than that of Dirichlet conditions. This point is quite surprising since, at small Mach number, stationary solu-
tions for Neumann conditions approach the Euler stationary states better than the stationary solutions for Dirichlet
conditions (see the bifurcation diagramsfeg. 2). However, we can offer the following semi-quantitative argu-
ment. The critical Mach number decreases with decreasing We have shown in SectioBthat the effective
radiusref(&¢) of stationary NLS flows at small Mach numbers was bigger for Dirichlet conditions than for Neu-
mann conditions. Assuming that this result holds for bigger Mach numbers (of m@él‘f'), one can consider
that the Neumann conditions stationary solutions have the same critical Mach number as the Dirichlet stationary
solutions when they reach the same rdti®es(£), imposing therefore smaller values &fD in the Neumann
case.

Finally, note that we have found no numerical indication showingAga(Dirichlet) could become bigger that
Mc(Neumann), for very small values &f D.

Re(1+&s) — 1> g (63)

5.4. Bifurcation diagrams and stationary states at large coherence length

The larget/ D regime could be reached experimentally by considering BEC with large coherence lengths per-
turbed by a sharply focused detuned laser. As seen in the previous section, the critical Mach number tends very
quickly towards 1 for Neumann boundary conditions. Furthermore, these conditions are academic and have no
experimental equivalent in BEC. Thus, we will study the limit of lagyé® only for Dirichlet conditions, the
experimentally realistic ones.
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Fig. 6. (a) Bifurcation diagram for largg D for Dirichlet conditions. Density of stationary solutions D = 20 andM = 0.25 far from the
bifurcation threshold {1 >~ 0.86): (b) stable solution, (c) symmetric unstable solution and (d) asymmetric unstable solution.

The bifurcation diagram, computed for Dirichlet boundary conditions and difféydntis displayed irFig. 6(a).

Just like in the smalf/ D case, a branch of stable solutions is connected to a branch of unstable solutions through
a saddle-node bifurcation at a critical Mach numBdg. The values ofM. are seen to approach 1 whgnD
increases. The corresponding stationary solutions are also displayégl 6nThe stable solution (b) is irrotational

while the two unstable solutions contain respectively one (d) or two vortices (c) far from the critical Mach number.
However, close enough to the bifurcation tip, the unstable stationary solution showghage jump and therefore

no vortices are present. We will come back to this point in the next section.

As already pointed in Sectidn3.2 the one-vortex solution that breaks the symmetry —y associates a vortex
located outside the obstacle to an image vortex situated inside the obstacle. The image vortex is clearly visible on
Fig. 6(d) because its core is larger than the obstacle itself (comparerigitia(b) or (c)). Note that the largg/ D
energy difference between the stable and the asymmetric solution branches is not half the energy difference betwee
the stable and the symmetric solution branches, contrary to the §hialtase. This stems from the fact that, for
large&/ D, the energy of the asymmetric branch also includes the additional contribution of the now visible image
vortex.

6. Dynamical results

Solutions of the NLSEif the absence of an obstaglm dimension 2, moving at constant speed while pre-
serving their shape, have been exhibited by Jones §22[31] These solutions are pairs of counterrotating
vortices but also what they called rarefaction pulse (depletion pulse with non zero density and therefore no
vorticity).

A natural question is then to know which kind of excitations can be nucleated past a disk.
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Fig. 7. Typical vortex nucleation in the case of Neumann boundary conditions, foe= 1/20. (a—c) Plot of the density at different times (in
arbitrary unitr = 0, t = 230, r = 260 respectively). (d) At = 260, phase of the system. Note the-ghase jumps around the two points where
the density vanishes: iso-phase lines emerge from these two points.

6.1. Nucleation of vortices

The stationary solutions obtained numerically provide us with adequate initial data for the study of dy-
namical solutions. Indeed, after a small perturbation, their integration in time will generate a dynamical
evolution with very small acoustic emission. This procedure also provides an efficient way to start vortical
dynamics in a controlled manner. The dynamical computations reported below were performed with a resolu-
tion high enough for the overall error on energy conservation to be lessAtRF < 1.6% at the end of the
run.

It is already known from studies performed using a repulsive potential (see Figl18pthat, at small val-
ues ofé/ D, vortex pairs are dynamically nucleated. The same behavior is obtained using the present numerical
method with Dirichlet boundary conditions (data not shown). This behavior persists when using Neumann bound-
ary conditions, as shown dfig. 7 that displays the nucleation ofsa and— vortex pair (which will be followed
by a periodic emission of other pairs). The phase of the complex field exhibitsjan® for each vortex (see

Fig. 7(d)).

6.2. Nucleation of rarefaction pulse

For large&/ D, using Dirichlet boundary conditions, we have proceeded in the same way as in the previous
subsection by perturbing an unstable symmetric solution at Mach number M. to observe the nature of
the nucleated excitations. The behavior is somewhat more complicated. We shablenlthe nature of the
emitted excitations as a function D and M/ M.. For&/D > 15, and obstacle speed abowé;, a rarefaction
pulse (RP) is dynamically obtained; fof D < 15, there exists a threshold it under which vortex pair rather
than a rarefaction pulse emerges. In some cases (BL for border line), it is unclear whether we have an emitted
rarefaction pulse or a vortex pair (the density minimum in such limit cases approaches zero and there is a strong
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Table 1
Phase diagram of the nature of emitted excitations as a function of thé f&tiand the Mach number normalized by the critical Mach number

M/ M §/D

7.5 10 12.5 15 175
1.2 BL RP RP RP RP
1.15 VP RP RP RP RP
11 VP BL RP RP RP
1.05 VP VP VP RP RP
1.01 VP VP VP BL RP

VP and RP, respectively, stand for vortex pair and rarefaction pulse. BL stands for limit cases where it is hard to distinguish the exact nature of
the excitation (the density minimum is very close to zero and the phase has a strong variation).

Table 2
Speed of translation/c of the nucleated excitations At{/ M. = 1.1 as a function o/ D
§/D v/c
75 0.56
10 0.59
125 0.67
15 0.70
175 0.80

For the limit casé&/D = 10, we findv ~ 0.59; the change in the nature of excitation in a 2D superflow without obstacle appears at speed equal
tovy/c >~ 0.61[31].

variation of the phase). By measuring the borderline speed of translatjonthe frame at rest) of the emitted
excitation (sedable 2, we found that it is very close to the known limit speed of translatiprat which occurs
the change in the nature of excitations in 2D superflow in the absence of an obstgale= 0.43v/2 ~ 0.61
[31].

400 400

(b)

Fig. 8. Nucleation of a rarefaction pulse with Dirichlet boundary conditiong fér = 17.5 and M /M. = 1.1: density at different times (in
arbitrary unit) (a)r = 0, (b)¢ = 150, (c)r = 220. (d) Plot of the phase at= 220. There is no phase jump, hence no vorticity. The speed of
translation of this rarefaction pulse in frame at rest is 0.80 and its minimum of density is approximately 0.081.
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A desexcitation of an unstable stationary solutiog/dd = 17.5 creates a rarefaction pulse as showRim 8.
The minimum of density of such a pulse is non zero (here the minimum equals approximately 0.081), and no phase
jump is present (sefeig. §d)).

Close to the critical Mach number, no vortex is detached from the disk. When nucleated, these vortices follow
the boundary of the obstacle and then leave it separated by a distance dDoFd®mrlarges, the vortices are so
close that they give rise to a rarefaction pulse.

We did not study the periodic emission of rarefaction pulses at supercritical regime as done in previous studies
[19]. Our numerical method is not adapted for such problems: the mesh is more and more stretched far from the
obstacle so that one lacks resolution at long distance to resolve the nucleated excitations.

7. Conclusion

The main virtue of the pseudo-spectral method that we have used in the present study is its ability to accurately
accommodate both largeasymptotic behavior and thin boundary layers near the cylindrical obstaale; at
Indeed, using modest resolutions, we were able to obtain the Eulerian critical Mach number with 11 significant
digits: MEYe" = 0.36969705259(9). In the NLSE case, spectral convergence was obtained on the whole bifurcation
diagram for values of/ D as low as 1/120.

Small coherence length boundary-layer approximations to the stationary solutions were calculated. These ana-
lytical results were found to be in very good agreement with the numerical results. The long-range contribution was
physically interpreted as a renormalization of the diameter of the disk.

As a by product of our new method, we were able to investigate not only the physically realistic case of Dirichlet
boundary conditions but also the more academic case of Neumann conditions. The influence of the boundary
conditions on the stationary solutions of the problem, especially their effects on the boundary layer and on the
critical Mach number, were investigated. At given ra§jd, the critical Mach number is found to be lower for
Dirichlet boundary conditions than for the Neumann ones. Moreover, asgadfiancreases, the critical Mach
number tends towards one in the Neumann case much faster than in the Dirichlet case.

For Dirichlet boundary conditions the qualitative results previously obtained, using periodic pseudo-spectral
codeq[19], were recovered. However, our new method directly imposes the correct boundary conditions, without
resorting to an artificial repulsive potential. Also, the newly obtained critical Mach number is here determined for a
single obstacle, whereas a periodic array of obstacles was considered in previous studies. Thus, the present article
presents the first precise quantitative determination of the critical Mach number as a fungfiprirothis reference
problem.

Finally we were able to show that a transition occurs in the nature of the emitted excitation at large coherence
length. Foré/D > 15, the nucleated excitations are rarefaction pulses whereasDat 15, both vortices and
rarefaction pulses can be obtained.
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Appendix A. Numerical methods

We detail here the numerical procedures used in the simulations together with the numerical convergences with
spatial resolutions for the critical Mach number and the stationary solutions.
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A.l. Spectra

Inthis article, we define thespectrum and-spectrum of a fielgr spectrally represented by, , as the respective
sequence of numbers
Ng/2

Sp(p) = Z w/n,p|27 O<p=N: (A.1)

n=—(Ng/2)+1

Ny

Ny
SH) =) 1n,l®, 0<ns<— (A.2)
p=0

Only half thef-spectrum is considered for tiderepresentation is complex-conjugated.

A.2. Implementation of the boundary conditions

Contrary to the analytical computations, we work with the complex varighile order to take account of the
possible presence of vortices. In order to impose the boundary conditions, we set

r2 cost
Do(6,r) =v 0 A.3
o(6. 7) Jocer (A.3)
Y = €90 (A.4)
Note that this change of variables does not affect the Dirichlet conditions that still read
YUmlagz = 0 (A.5)
With these new variables, Neumann conditions read
O Ymlag =0 (A.6)
and the NLSE turns into
B¥m = —=— [~ Avm + (Wl ~ Dym| +1V - Vim + = [E(VP0)Yim + £221(V 2) Vi
V2 V2t
=V - (V®0)¥m (A.7)

with ¥m|,—1 = O (Dirichlet) ord,¥ml|,—1 = 0 (Neumann).
A.3. Time steppings

A.3.1. Stationary states
We search for stationary solutions of the dynamics&jor Egs.(51) and (52) Note that stationary solutions
are those of the equivalent diffusive equations that read in the abbreviated form

‘%’f = LU+ W) (A.8)

In the general casé & 0), we have

v =ym, L=A (A.9)
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W(m) = {—jég(wfn = —v- Vi = o [HT00% 0 + E2(VVY | v (V@o)m}
(A.10)
In the Eulerian casé: (= 0), as discussed in Sectiéril, these definitions reduce to
V=g, L=A, W =V(Ve$)—V- Ve (A.11)
with
=—3(V¢)? +v Vo (A.12)
To integratgA.8) a mixed implicit-explicit first-order time stepping scheme is used:
Ut +1)= 1 —tL)"X + W)e() (A.13)

wherel is the identity operator andthe time step.

The Helmholtz operatoid (— L), block-diagonal with respect to Fourier modes, is easily inverted in the Fourier—
Chebychev representation using the LU algorifi32j.

As called for ther method[27] the boundary condition®5), (A.5) or (A.6)are substituted to the E@A.8) for
the highest Chebychev mod&s, _1 andTy,. The operator{ — tL) is thus modified before inversion.

This relaxation method can only reach stable stationary solutiofi8.8j. In order to also capture unstable
stationary solutionf33] we use the Newton branch-following method detaile{Bi,18,19]

A.3.2. Branch following procedure
We search for fixed points qf.13), a condition strictly equivalent to the stationarity (#.8). Each Newton
step requires solving a linear system for the decrengetatbe subtracted fron#:

(I — L) Y1 + tDW) — 1} v = [(1 — L)y M+ W) —I| W (A.14)
whereDW (V) is the Fechet derivative, or Jacobian matrix, Wfevaluated a®. Eq.(A.14) is equivalent to:
(I —tL) Y2 (L + DW)y = (I — tL) " e(L + W)w (A.15)

The role oft is formally that of the time step ifA.13), butin(A.14) or (A.15) its value can be taken to be arbitrarily
large. Forr — oo, (A.15) becomes:

L~ YL+ DW)y = L7YL + w)w (A.16)

In order to solve the linearized systems stemming from the Newton method, we use BiCG3H]AB/e varyt
empirically to optimize the preconditioning and convergence of BICGSTAB. A few hundred BiCGSTAB iterations
are usually required to solve the linear system.

A.3.3. Dynamics
We write Eq.(5) in the abbreviated form:

83%/ =LV 4+ WWw) (A.17)
where
¥=ym L =-iL, W' = —iW(ym) (A.18)

with W defined in Eq(A.10)
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Table A.1
Relative error vs. resolution on the critical Mach number calculated by taking as a refdenee0.36969705259(9) calculated at (5%232)

N, Ny

16 32 64 128 256 512
16 445x 1073 3.72x 10°* 1.02x 10°° 2.59x% 1077 2.27%x 1077 2.27x 1077
24 445x 1073 372x10°* 9.97 x 10°© 3.34x10°8 5.87x 10710 2.22x 10710
32 445x% 1073 3.72x 104 9.97 x 10°% 3.32x 108 2.70x 10712 0

Eq.(A.17)is time stepped using the implicit Euler scheme
Yyt = (1 - TL)_l[lI/n + 7:an] (A-lg)

The boundary condition&5), (A.5) or (A.6)are imposed by modifying the operatdr tL)~1, as done for the
relaxation time stepping algorith(A.8) [27].

For the present limited scope goal of finding out the nature (vortex or rarefaction pulse) of the emitted excitations
(see Sectio®), this straightforward first order method is adequate. Higher order in time methods, such as a third
order explicit-implicit scheme (based on Backward Euler), will be implemented in the future to allow more robust
and precise integrations of temporal dynamics.

A.4. Numerical convergence

A.4.1. Euler

Table A.1shows the error on our reference Mach number veigand N,. Note that the errors are mainly
due to a lack of Fourier modes ¢h Thus, when a sufficient number of Fourier modes is reached, increasing the
resolution inr yields a better precision.

Due to the use of Chebychev polynomials, the boundary layers of the NLS flow computed at low Mach number
are well resolved thanks to the large number of collocation points at the vicinity of the obstacle, as we will see in
next section.

A.4.2. Small coherence length solutions
Our numerical method based on Chebychev polynomial expansions allows to solve the boundary layer of order
& by refining the collocation points near the boundary conditions. The snjatlee larger the radial resolutiow,
must be. The azimuthal resolutiovy depends also on the value &through the multiplication of complex fields
with a phase term such th@y (9, r) = v cosd/~/2cEr andym = € ®0. The phase terrb is inversely proportional
to & and needs sufficient, points in order to be resolvedfable A.2lists the resolutions used for computing the
bifurcation diagram for eack/D. Spectral convergence is achieved for all stationary solutions as shokig.in
Al

Table A.2

Azimuthal and radial resolutions used for computing the bifurcation diagram for diffgf&ntor the two types of boundary conditions
g/D Ny x Ny

1/2 64x 64

1/20 64x 64

1/40 128x 128

1/80 128x 128

1/120 256x 128
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Fig. A.1. Stationary solution spectra W§jiD = 1/20, Ny x N, = 64 x 64, and Neumann boundary conditions:fa&pectra and (k) spectra
for a stable solution far from the bifurcation, for the solution at the bifurcation, and for a one vortex and a two vortex unstable solutions. Spectral
convergence is achieved for all stationary solutions.
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Fig. A.2. Symmetric unstable stationary solution spectra With = 20, for two resolutions ¥y x N, = 128 x 128 and 128« 512) and
Dirichlet boundary conditions: (&) spectra and (b spectra. Spectral convergence is achieved for all stationary solutions.

A.4.3. Large coherence length solutions

For large ratic:/ D, we have modified the mapping in order to stretch in the radial direction the collocation points
next to the obstacle (see E&0Q)). The choice of the value of depends on the value §f D and the resolution
Ny x N, of the system.

Fig. A.2 shows azimuthal and radial spectra for a symmetric unstable stationary solugpp at 20 with
a dilatation parametex = 80 for two different resolutions. Spectral convergence is achieved for all stationary
solutions.
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