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We construct functional integral and operator formalisms for the stochastic process generated by a modified Langevin
equation which contains a white noise and an independent markovian process taking discrete values.

Functional integral [1—4] and operator formalisms [5—7] have been developed for the markovian processes
described by Langevin equations. We study here the stochastic process generated by a modified Langevin equation
and we treat the case of one slow variable to simplify the discussion (the generalization to several slow variables is
straightforward). We consider the stochastic process g(¢) defined by the Langevin equation §(¢) + A(g(¢), m(¥)) =
f(t), where f(¢) is a gaussian white noise with {f(¢)} = 0 and correlation {f(£)f(t)} =c8(t — ") and m(¢) is an in-
dependently defined markovian process taking values v = 1, 2, ..., N and characterized by the N X N matrix M,
in the sense that if m(r) = u the probability that m(t +s) =v is [exp(—sM)] .- The process (q(¢), m(¥)) is markovian
and the conditional probability P(q, v, t; q¢, vy, tg) = W¥(q, t) satisfies (we keep the initial conditions at #; fixed)
a Fokker—Planck equation that we can determine discretizing the original Langevin equation putting ¢, = ¢, +ne,
n€N=(0,1,2,..)and taking at the end e > 0. We divide the real axis in cells [/n, (j + 1)n) and we say q(¢) = jn
if /n < q(¢) <(j + 1)7n. Putting ¢® = q(t,), re =f(t,), m® = m(t,,), the Langevin equation is

g™ = q0-D + e(f0-D — A(g#-D, m0-D)y) (1)

and {f(¢)f(t)} becomes {f®Wf®)} = (c/€)85,,,. and we can then replace ) by a random variable taking values
+(c/e)!/2 with probability 1/2. In the discretization we note (k, », n10) = W*(q, £) which means that at # = £, + ne
one has q(¢) = kn, m(t) = v. Then

(k,v',n+110)= 2py, 5, G v,n10), ()
iv

where Pjy k. is the probability of going in the interval of time e from (j, ») to (k, »'). One has Djy kv = p},’?(&w
—€eM,,.), where p](,'? is the probability that q(¢ + €) = kn if g(¢) = jn, m(t) = v. Observing that the term ef - in
eq. (1) just causes a jump from cell jtoj— 1 or j + 1, in both cases with probability 1/2 (this is the motivation to
choose cells of length 1) one can write p](,'? = %(;3‘]-("2_1 + i;']-(,”)cﬂ), where ﬁjg’) is defined as p&) but when f(¢) does
not act. We note now that

leA(n, »)/n| = 1A(fn, p)fc/2 V2 <1, e>0,
and then if A(jn, ») > 0 (if A(jn, v) <0 the argument is similar) the term —eA(jn, ») in eq. (1) causes a change
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to cell j — 1 if g(¢) is in the subinterval of length e A(jn, v) at the left of [jn, (j + 1)1) and no change of cell if ¢(¢)
is in the complement, consequently

B = (1~ eA(jn, V)In) 85 + (€A1, ¥)n)8; gy -

We can now compute p;, and replace it in eq. (2). In the limit € = O one has
n2[(k+1,v',nl0) — 2(k, V', n|0) + (k — 1,7, n|0)] > (3%/3¢2)W"'(q, 1),
e [k, v, n+110) — (k, ¥, n|0)] > W¥(q, 1),

etc., and one obtains

W¥(q, 1) = (3/99)(A(q, v) + 3c(3/0g))W"(q, D) — 2 My, W (@, ). 3)

An operator formalism can now be introduced which is the analogue of quantum mechanics with spin and for
which we use the usual notation. Let 9 be a Hilbert space in which the operators g}, p; act with commutation
relations [¢, p1] =i, and E a vector space of dimension NV with the orthonormal basis |v), 1 <p<N.In K, we
have the basis |g), ¢;1g) = q|q) and the basis | p), p;|pd=p Ip) both normahzed to a 8-function. Consider the
tensor product K = X, ® E and define in ¥ the operators q= ql elg, p= p1 ® I (Ig = identity in £). The
vectors

lg, =gy vy, dlg, vy =qlq,v), {q',v'ig,v»=8,,8(a-4q),

form a basis in 9, as well as [p, v) = |p) ®|v), and (g, v|p, V)= 5,,1,,(211)—1/2 exp(ipq). We define in % the
“hamiltonian” operator H with matrix elements

',V \Hig, v)=8,,(~}ic(q' |15} - Alg, Q' | p11@) — M, ,

and the evolution operator U(¢', £) by

U@, plor = HU( 1), UEH=1.

Then one easily checks that

P(Q, v, 1;Qy, vy, tg) =XQ, »IU(t, 15)1Qg, ¥y -

We can write a functional integral representation for P. Using Z,, f dqlq, u){q, u| =1 one has (¢; = £y + /e, 1,41 = 1)

qnn1=Q
Bp+1=V N nt+l
@)= T [ Tla H @ UG, _Dlgy_y 1) - @)
B1--bn g6=Q0
Ho=Vo
But from U(t — 1)=1 — ieH (only terms up O(e) are needed in the limit # - oo, € > 0) and using the known
matrix elements of H we obtain for eq. (4)
n+1  n+l
E,, / lnl ag; [1 A ”’ ,-1;11 exp i€ [p;(a; — a;_le — hy,. (B4 D] )
n

where i, ,(p,q) =6 V(——lcp —pAQ,v)) — .- If we define the N X N matrix E(p q) of elements h,,,(p, q)
then the product of exponentlals in (5) (each term is needed only up to O(e)) is the element (u,, 41 1q) of a prod-
uct of matrices and in the limit # - o0 one can formally write the functional integral

Hp+ =V t
P(Q, v, 109,79, ty) = f DqDp Texp i f dr [pg - (p(r), q(r)] - 8(a() — @) 8(q(ty) — Qo) , (6)
MrO=Vo to Mnt+1M0
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where T means that when discretizing eq. (6) the product of matrices is to be done chronologically, i.e. as in (5)
which is the definition of eq. (6). We note that in eq. (6) the discretization of functions of g is in the prepoint as
indicated in (5), this means that we are using the (0) discretization [3,8] and we should write (0) as a subscript
in eq. (6), but as we shall only use this discretization here we omit the v¥(0). We define now the operators ()
=U-YqU(®, p(t) = U-1(©)pU(t), where U(f) = U(z, 0) and the vectors

1Qg, vg, tR =U-L(1)1Qg, vp>, (LI EE qu {q,v].

The conservation of probability implies (LIU(t) <L| for all ¢, where one has used =, M,,, = 0. One shows in the
same way as we did for eq. (6) that (¢ > t ;> 1ty, L# )

(LITP(Y) ... B(6)4(ty) - 4(1,)1 Qg v, tIR = f DqDp Tp(ty) - alt) expi [dr (pd — k) - 8(altg) ~ Qo).

Ho=vo (7)
where T in the left-hand side is the usual chronological product. Note that the right-hand side of eq. (7) (which
we denote by (p(t}) ... q(2,,)) is, before the limit 7 - o, a matrix element (i, 1) Where g = v is fixed, and
we must sum over ., due to the definition of (L|. The functional integrals in egs. (6) and (7) are found in quan-
tum mechanics in the treatment of problems with spin [9] and have been studied in that context in ref. [10];
they are known in mathematics as product integrals. When only g(z;) is present the left-hand side of eq. (7) is
(putting 2,1 = 2, @p41 = Qo> Vp41 =V and supposing t; = ¢, ... =1, = 1)

Z} f dg (g, v\U(t)U-1(2)GU(t,) ... U=X(t,)dU( ) U~ 1(t)1 Qg » v
-z f ﬂ dg; _IJ @ 1GUGE, ) G, Dyer) - ®)

Using (q]-, Vi Ig = 9;4a;, le one obtains from eq. (8) that
n n

(Q(tl) q(tn))= fll:ll dqi ql qn Z; ]'I:Il P(q]’ 7 ],q/+1’ j+1» ]+1) (9)
= Vi by I

But Z I1 P(g;, Vi» 15 Gja15 Via1> Lj41) I8 just the joint probability W, (q;, #y; ..; 4y, t,,) (for fixed initial conditions
Qg vy at tlme tg) of the non-markovian process g(¢) and then {g(z,) ... (t,,)) are correlatlon functions. In order
to interpret eq. (7) when p(¢) is also present we modify in our original Langevin equation the drift A(q(t), m(z))
to A(q(t), m(2)) + K(z), this modifies H to H' = H — K(£) p and then h”j”i_l(p]-, q]-_l) in (5) is replaced by

hﬂjﬂj—l = hn,-uj_1 - 6#jﬂj—1K(tj—1) :
Let {q(z,) ... q(t,,)>x be the new correlation functions, then from eq. (7) with h replaced by R’ we obtain

(1/D)(8/8K (")) q(t Vg =<LITH(")a(t)Qq. vy, 1R = (o (tMq(t))) , (10)

which shows that {p(t")q(¢")) is the linear response function corresponding to a modification of the drift (the
same applies for several p(¢)). Obviously eq. (7) vanishes when one has only p(t,'-) or when a time f; is greater than
all ¢; (causality). We remark that in eq. (10) the T-product is not defined at £ = ¢ while {p(#")q(¢)), being de-
fined by the functional integral in eq. (7), is defined and due to the ¥(0) discretization [3] we are using has the
value (p(t Va(t'), t" > ¢' +0, that is, it vanishes. In general, when in (p(1) --- q(t,)) a time t;= 1, the value is the
limit ¢; - t; + 0. One can now use operator or functional integral techniques to study the process q(t) In particular,
a systematlc perturbation expansion can be obtained in the operator formalism using the Wick theorem [7,11], or
more easily with functional integral techniques [4] starting from the generating functional Z [}, /*] for correlation
and response functions which is
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Zlii*V = [ D4Dp Texpi [ dr[pg -k +j(a) +*(Dp()] - 8(altg) — Qo) » (11)

Ho=Vo to

where the source terms correspond to changing HtoH - j(®)q — j*(©)p. The averaging over the initial conditions
at ¢ is easily done: if one is given the probability b(», q), Z, f dq b(v, q) = 1, at time ¢4, this just changes the vec-
tor |Qg, vy, tO)R to X, [ dg b(v,q)lq, v, tO)R. Applications of the present formalism will be presented elsewhere.

Previous works on particular processes of the type we consider here can be found in refs. [12,13]. The process
generated by the Langevin equation without white noise (f(¢) = 0) is treated in detail in ref. [14].
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