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Abstract

The Gross-Pitaevskii equation, also called the nonlinear Schrödinger equation (NLSE),
describes the dynamics low-temperature superflows and Bose-Einstein Condensates
(BEC). We review some recent NLSE-based numerical studies of superfluid turbu-
lence and BEC stability. The relations with experiments are discussed.
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1 Introduction

The present paper is a review of results, obtained in the last 10 years or so,
by numerically studying the nonlinear Schrödinger equation (NLSE). Direct
numerical simulations (DSN) and branch-following methods were extensively
used to investigate the dynamics and stability of NLSE solutions in 2 and 3
space dimensions.

Much work has been devoted to the determination of the critical velocity at
which superfluidity breaks into a turbulent regime [1]. A mathematical model
of superfluid 4He, valid at temperatures low enough for the normal fluid to
be negligible, is the nonlinear Schrödinger equation (NLSE), also called the
Gross-Pitaevskii equation [2–4]. In a related context, dilute Bose-Einstein con-
densates (BEC) have been recently produced experimentally [5–7]. The dy-
namics of these compressible nonlinear quantum fluids is accurately described
by the NLSE allowing direct quantitative comparison between theory and ex-
periment [8].

Several problems pertaining to superfluidity and BEC can thus be studied
in the framework of the NLSE. In this review, we concentrate on two such
problems: (i) low-temperature superfluid turbulence [9–11] and (ii) stability
of BEC in the presence of a moving obstacle [12–14] or an attractive interaction
[15]. The paper is organized as follows: in section 2 the basic definitions and
properties of the model of superflow are given. A short presentation of the
hydrodynamic form, through Madelung’s transformation, of NLSE with an
arbitrary nonlinearity is derived. Simple solutions are discussed.

Section 3 is devoted to superfluid turbulence. The basic tools that are needed
to numerically study 3D turbulence using NLSE are developed and validated in
Section 3.1. The NLSE numerical results are given in section 3.2. Experimental
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results are given in section 3.3.

The stability of BEC is studied in section 4. Exact 1D results are given in
section 4.1 and a general formulation of stability is given in section 4.2. Nu-
merical branch following methods are explained in section 4.3. The stability
of a superflow around a cylinder is studied in section 4.4. The stability of an
attractive Bose-Einstein condensate is studied in section 4.5. Finally, section
5 is our conclusion.

2 Hydrodynamics using the NLSE

The hydrodynamical form of NLSE with an arbitrary nonlinearity, correspond-
ing to a barotropic fluid with an arbitrary equation of state is introduced in
this section. Basic hydrodynamical features such that acoustic propagation
and vortex time independent solutions are also discussed.

2.1 Madelung transformation

The most direct way to understand the generality of the connexion between
the NLSE and fluid dynamics is to consider the following action [16] :

A = 2α
∫

dt

{

d3x

(

i

2

(

ψ
∂ψ

∂t
− ψ

∂ψ

∂t

))

−F
}

(1)

with

F =
∫

d3x
(

α|∇ψ|2 + f(|ψ|2)
)

(2)

where ψ(~x, t) is a complex wave field and ψ its complex conjugate, α is a
positive real constant and f is a polynomial in |ψ|2 ≡ ψψ with real coefficients
:

f(|ψ|2) = −Ω|ψ|2 +
β

2
|ψ|4 + f3|ψ|6 + . . .+ fn|ψ|2n (3)

The NLSE is the Euler-Lagrange equation of motion for ψ corresponding to
(1), it reads

∂ψ

∂t
= −iδF

δψ
,
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or

∂ψ

∂t
= i(α∇2ψ − ψf ′(|ψ|2)) (4)

Madelung’s transformation [1,16]

ψ =
√
ρ exp

(

i
ϕ

2α

)

(5)

maps the nonlinear wave dynamics of ψ into equations of motion for a fluid of
density ρ and velocity ~v = ∇ϕ. Indeed with the help of (5), (1) can be written

A = −
∫

dtd3x

(

ρ
∂ϕ

∂t
+

1

2
ρ(∇ϕ)2 + 2αf(ρ) +

1

2
(2α∇(

√
ρ))2

)

(6)

and the corresponding Euler-Lagrange equations of motion read

∂ρ

∂t
+∇ · (ρ~v)= 0 (7)

∂ϕ

∂t
+

1

2
(∇ϕ)2 + 2αf ′(ρ)− 2α2 ∆

√
ρ√
ρ

= 0 (8)

Without the last term of (8) (the so-called “quantum pressure” term), these
equations are the continuity and Bernoulli equations [4] for an isentropic,
compressible, irrotational fluid.

It is possible to use this identification to define the corresponding “thermo-
dynamical functions”. Being isentropic (S = 0), the fluid is barotropic, and
there is only one independent thermodynamical variable. First, the Bernoulli
equation readily gives the fluid’s enthalpy per unit mass as

h = 2αf ′(ρ). (9)

Second, the 1
2
ρ(∇ϕ)2 term of (6) corresponds to kinetic energy. Thus the fluid’s

internal energy per unit mass is given by

e =
2αf(ρ)

ρ
. (10)

The general thermodynamical identity

h = e + p/ρ, (11)

gives the expression

p = 2α(ρf ′(ρ)− f(ρ)) (12)
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for the fluid’s pressure.

The physical dimensions of the variables used in (2) and (3) are fixed by the
following considerations. Madelung’s transformation (5) imposes that [|ψ|2] =
[ρ] = M L−3 and [α] = L2 T−1. Using (10), one gets [f(ρ)/ρ] = T−1 and thus,
from (3), [Ω] = T−1, [β] = T−1 ρ−1 and [fi] = T−1 ρ1−i. Note that, in the case
of a Bose condensate of particles of mass m, α has the value ~/2m [17].

2.2 Sound waves

2.2.1 Dispersion relation

The nature of the extra quantum pressure term in (8) can be understood
through the dispersion relation corresponding to acoustic (density) waves
propagating around a constant density level ρ0. Setting ρ = ρ0 + δρ (with
f ′(ρ0) = 0), ∇ϕ = δu in (7) and in the gradient of (8), one gets (keeping only
the linear terms) :

∂tδρ+ ρ0∇δu = 0

∂tδu+ 2αf ′′(ρ0)∇δρ− 2α2∆
∇δρ
2ρ0

= 0

or

∂t
2δρ = 2αρ0f

′′(ρ0)∆δρ− α2∆2δρ.

The dispersion relation for an acoustic wave δρ = ε(exp(i(ωt− ~k · ~x)) + c.c.)
(with ε� 1) is thus

ω =
√

2αρ0f ′′(ρ0)~k2 + α2~k4 (13)

This relation shows that the quantum pressure has a dispersive effect that be-
comes important for large wave numbers. For small wavenumbers, one recovers
the usual propagation, with a sound velocity given by

c =

(

∂p

∂ρ

)
1

2

=
√

2αρ0f ′′(ρ0).

The length scale ξ =
√

α/(ρ0f ′′(ρ0)) at which dispersion becomes noticeable
is known as the “coherence length”.
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2.2.2 Nonlinear acoustics

The description given by linear acoustic can be somewhat improved by includ-
ing the dominant nonlinear effects. Such an equation was derived in [18].

Numerical simulations of NLSE in one space dimension using a standard
Fourier pseudo-spectral method [19] can be used to study the acoustic regime
triggered by an initial disturbance of the form :

ψ(x) = 1 + ae−
x2

l2 .

Such simulations were performed in ref. [18] where it was found that the shocks
which would have appeared under compressible Euler dynamics (i.e. following
Eq. (8) without the last term in r.h.s.) are regularized by the dispersion. There
was no evidence of finite-time singularity in our numerics: the spectrum of the
solution was well resolved, with a conspicuous exponential tail.

2.3 Vortices in 2 and 3D

Further insight on the connexion between the NLSE and fluid dynamics can
be obtained by considering stationary solutions of the equations of motion.
Indeed, by inspection of (1), time independent solutions of NLSE (4), are also
solutions of the Real Ginzburg-Landau Equation (RGLE)

∂ψ

∂t
= −δF

δψ
= (α∇2ψ − ψf ′(|ψ|2)). (14)

They are thus extrema of the free energy F .

The simplest solution of this type corresponds to a constant density fluid at
rest. In this simple case, ψ is constant in space and (14) reads

f ′(|ψ|2) = −Ω + β|ψ|2 + 3f3|ψ|4 + . . .+ nfn|ψ|2n−2 = 0. (15)

This equation, for given values of the coefficients β and fi, i = 3, . . . , n relates
the fluid density |ψ|2 to the value of Ω. Note that the Ω term of f does not
play a crucial role in the NLSE dynamics. Indeed, it could be removed from
the Bernoulli equation (8) by the change of variable ϕ → ϕ + 2αΩt that
amounts to a change of phase ψ → ψeiΩt in NLSE (4). It is however better, by
convention, not to perform these changes of variable. With this convention,
stationary solutions of (14) coincide with stationary solutions of (4). The Ω
term of f is thus be fixed by the fluid’s density through (15).

Another important type of time-independent solutions of NLSE are the vortex
solutions. Madelung’s transformation is singular when ρ = 0 (i.e. when both
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<(ψ) = 0 and =(ψ) = 0. As two conditions are required, the singularities
generically happen on points in two dimensions and lines in three dimensions.
The circulation of ~v around such a generic singularity is ±4πα. These topolog-
ical defects are known in the context of superfluidity as “quantum vortices”
[1]. Solutions of (14) with cylindrical symmetry can be obtained numerically
[20]. The density profile of a vortex admits a horizontal asymptote near the
core while the velocity diverges as the inverse of the core distance. The mo-
mentum density ρ~v is thus a regular quantity. It is important to realize that
such vortex solutions are regular solutions of the NLSE (4), the singularity
stemming only from Madelung’s transformation (5).

3 Superfluid turbulence

Superfluid flows (i.e. laboratory 4He flows) are described mathematically in
terms of Landau’s two-fluid model [4]. When both normal fluid and superfluid
vortices are present, their interaction, called “mutual friction”, must be taken
into account as pioneered by Schwarz [21]. At temperatures low enough for the
normal fluid to be negligible (in practice below T = 1◦K for helium at normal
pressure), an alternative mathematical description is given by the Nonlinear
Schrődinger Equation (NLSE), also called the Gross-Pitaevskii equation [2,3].
In this section, we will use the simplest form for f , corresponding to a cubic
nonlinearity in the NLSE (4). The NLSE, with convenient normalization, reads

∂tψ = ic/(
√

2ξ)(ψ − |ψ|2ψ + ξ2∇2ψ). (16)

Madelung’s transformation (5) takes the form

ρ= |ψ|2 (17)

ρvj = icξ/
√

2(ψ∂jψ − ψ∂jψ) (18)

where ξ is the so-called “coherence length” and c is the velocity of sound (when
the mean density ρ0 = 1 [1]). The superflow is irrotational, except near the
nodal lines of ψ which are known to follow Eulerian dynamics [22,23]. These
topological defects correspond to the superfluid vortices that appear naturally,
with the correct velocity circulation, in this model [17].

The basic goal of the present section is to qualify the degree of analogy between
turbulence in low–temperature superfluids and incompressible viscous fluids.
We will do this by comparing numerical simulations of NLSE with existing
numerical simulations of the Navier-Stokes equations, in particular the Taylor-
Green (TG) vortex [24]. The TG vortex is the solution of the Navier-Stokes
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equations with initial velocity field

vTG =
(

sin(x) cos(y) cos(z),− cos(x) sin(y) cos(z), 0
)

(19)

. This flow is well documented in the literature [25–27]. It admits symmetries
that are used to speed up computations: rotation by π about the axis (x =
z = π/2), (y = z = π/2) and (x = y = π/2) and reflection symmetry with
respect to the planes x = 0, π, y = 0, π, z = 0, π. The velocity is parallel to
these planes which form the sides of the impermeable box which confines the
flow.

3.1 Tools for vortex dynamics

Under compressible fluid dynamics, an arbitrary chosen initial condition will
generally lead to a regime dominated by acoustic radiation. In order to study
vortex dynamics using NLSE, we thus need to prepare the initial data in such
a way that the acoustic emission is as small as possible.

3.1.1 Preparation method

We now show how to construct a vortex array whose NLSE dynamics mimics
the vortex dynamics of the large scale flow vTG. The first step of our method is
based on a global Clebsch representation of vTG and the second step minimizes
the emission of acoustic waves [28].

The Clebsch potentials

λ(x, y, z)= cos(x)
√

2 | cos(z)| (20)

µ(x, y, z)= cos(y)
√

2 | cos(z)| sgn(cos(z)) (21)

(where sgn gives the sign of its argument) correspond to the TG flow in the
sense that ∇×vTG = ∇λ×∇µ and λ and µ are periodic functions of (x, y, z).
These Clebsch potentials are used to map the physical space (x, y, z) into the
(λ, µ) plane. The complex field ψc , corresponding to the large scale TG flow
circulation, is given by ψc(x, y, z) = (ψ4(λ, µ))[γd/4] with γd = 2

√
2/(πcξ) ([ ]

denotes the integer part of a real) and

ψ4(λ, µ) = ψe(λ− 1/
√

2, µ)ψe(λ, µ− 1/
√

2)×
ψe(λ+ 1/

√
2, µ)ψe(λ, µ+ 1/

√
2) (22)

where ψe(λ, µ) = (λ+ iµ)tanh(
√
λ2 + µ2/

√
2ξ)/

√
λ2 + µ2.
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Fig. 1. Three-dimensional visualization of the vector field ∇ × (ρ~v) for the Tay-
lor-Green flow at time t = 0 with coherence length ξ = 0.1/(8

√
2), sound velocity

c = 2 and N = 512 in the impermeable box [0, π] × [0, π]× [0, π].

The second step of our procedure consists of integrating to convergence the
Advective Real Ginzburg-Landau Equation (ARGLE):

∂tψ = c/(
√

2ξ)(ψ − |ψ|2ψ + ξ2∇2ψ)− ivTG · ∇ψ −
(vTG)2/(2

√
2cξ)ψ (23)

with initial data ψ = ψc. It is shown in [9] that the TG symmetries can be
used to expand ψ(x, y, z, t), solution of the ARGLE and NLSE equations as:

ψ(x, y, z, t) =
N/2
∑

m=0

N/2
∑

n=0

N/2
∑

p=0

ψ̂(m,n, p, t) cosmx cos ny cos pz (24)

whereN is the resolution and ψ̂(m,n, p, t) = 0, unless m,n, p are either all even
or all odd integers. Furthermore ψ̂(m,n, p, t) satisfies the additional conditions
ψ̂(m,n, p, t) = (−1)r+1ψ̂(n,m, p, t) where r = 1 when m,n, p are all even and
r = 2 when m,n, p are all odd. Implementing this expansion in a pseudo–
spectral code yields a saving of a factor 64 in computational time and memory
size when compared to general Fourier expansions.

The ARGLE converged periodic vortex array obtained in this manner is dis-
played on Fig. 1. with coherence length ξ = 0.1/(8

√
2), sound velocity c = 2

and resolution N = 512.
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Fig. 2. Plot of the incompressible kinetic energy spectrum, E i
kin(k). The bottom

curve (a) (circles) corresponds to time t = 0. The spectrum of a single axisymmetric
2D vortex multiplied by (l/2π) = 175 is shown as the bottom solid line. The top
curve (b) (pluses) corresponds to time t = 5.5. A least-square fit over the interval
2 ≤ k ≤ 16 with a power law Ei

kin(k) = Ak− n gives n = 1.70 (top solid line).

3.1.2 Energy spectra

The total energy of the vortex array, conserved by NLSE dynamics, can be
decomposed into three parts Etot = 1/(2π)3

∫

d3x(Ekin+Eint+Eq), with kinetic
energy Ekin = 1/2ρvjvj, internal energy Eint = (c2/2)(ρ − 1)2 and quantum
energy Eq = c2ξ2(∂j

√
ρ)2. Each of these parts can be defined as the inte-

gral of the square of a field, for example, Ekin = 1/2(
√
ρvj)

2. In order to
separate the kinetic energy corresponding to compressibility effects, Ekin can
be further decomposed into a compressible and incompressible parts using√
ρvj = (

√
ρvj)

c + (
√
ρvj)

i with ∇.(√ρvj)i = 0. Using Parseval’s theorem, the
angle-averaged kinetic energy spectrum is defined as:

Ekin(k) =
1

2

∫

k2 sin θdθdφ

∣

∣

∣

∣

∣

1

(2π)3

∫

d3reirjkj
√
ρvj

∣

∣

∣

∣

∣

2

which satisfies Ekin = 1/(2π)3
∫

d3xEkin =
∫∞
0 dkEkin(k). The incompressible

kinetic energy spectrum, Ei
kin(k), is the angle-averaged spectrum computing

over shells in Fourier space. A mode (m,n, p) belongs to the shell numbered
as k = [

√
m2 + n2 + p2 + 1/2].

The radius of curvature of the vortex lines in Fig. 1 is large compared to
their radius. Thus these 3D lines can be considered as straight, and then
compared to the 2D axisymmetric vortices which are exact solutions to the
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Fig. 3. Total incompressible kinetic energy, E i
kin, plotted versus time for

ξ = 0.1/(2
√

2), N = 128 (long–dash line); ξ = 0.1/(4
√

2), N = 256 (dash);
ξ = 0.1/(6.25

√
2), N = 400 (dot) and ξ = 0.1/(8

√
2), N = 512 (solid line). All

runs are realized with c = 2. The evolution of the total vortex filament length di-
vided by 2π (crosses) for the N = 512 run is also shown (scale given on the right
y-axis).

Fig. 4. Same visualization as in Fig. 1 but at time t = 4.

11



Fig. 5. Same visualization as in Fig. 1 but at time t = 8.

2D NLSE. A 2D vortex at the origin is given by ψvort(r) =
√

ρ(r) exp(imϕ),

m = ±1, where (r, ϕ) are polar coordinates. The vortex profile
√

ρ(r) ∼ r

as r → 0 and
√

ρ(r) = 1 + O(r−2) for r → ∞. It can be computed numeri-

cally using mapped Chebychev polynomials and an appropriate functional [9].
The corresponding velocity field is azimuthal and is given by v(r) =

√
2cξ/r.

Using the mapped Chebychev polynomials expansion for
√

ρ(r), the angle av-

eraged spectrum of
√
ρvj can then be computed with the formula Evort

kin (k) =

c2ξ2/(2πk)
(

∫∞
0 drJ0(kr)∂r

√
ρ
)2

[9], where J0 is the zeroth order Bessel func-
tion.

The incompressible kinetic energy spectrum E i
kin of the ARGLE converged

vortex array of Fig. 1 is displayed on Fig. 2. For large wavenumbers, the spec-
trum is well represented by extending a collection of 2D vortices into 3D vortex
lines via E line

kin (k) ≡ const.×Evort
kin (k). (We will see that the constant of propor-

tionality is related to the length l of vortex lines by const. = l/(2π) = 175 at
time t = 0.) In contrast, the small wavenumber region cannot be represented
by Eline

kin . This stems from the average separation distance between the vortex
lines in Fig. 1. Calling this distance dbump = k−1

bump = 1/16, the wavenum-
ber range between the large-scale wavenumber k = 2 and the characteristic
separation wavenumber kbump can be explained by interference effects. Due
to constructive interference, the energy spectrum at k = 2 has a value close
to its corresponding value in TG viscous flow (namely 0.125), which is much
above the value of E line

kin (k = 2). In contrast, for 2 < k ≤ kbump, destructive
interference decreases Ei

kin below Eline
kin .
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3.2 Numerical results

The evolution in time via NLSE (16) of the incompressible kinetic energy is
shown in Fig. 3. The main quantitative result is the remarkable agreement
of the energy dissipation rate, −dE i

kin/dt, with the corresponding data in the
incompressible viscous TG flow (see reference [25], and reference [29], figure
5.12). Both the moment tmax ∼ 5 − 10 of maximum energy dissipation (the
inflection point of Fig. 3) and its value ε(tmax) ∼ 10−2 at that moment are in
quantitative agreement. Furthermore, both tmax and ε(tmax) depend weakly
on ξ.

Another important quantity studied in viscous decaying turbulence is the scal-
ing of the kinetic energy spectrum during time evolution and, especially, at
the moment of maximum energy dissipation, where a k−5/3 range can be ob-
served (see reference [25]). Fig. 2 (b) shows the energy spectrum at t = 5.5. A
least-square fit over the interval 2 ≤ k ≤ 16 with a power law E i

kin(k) = Ak− n

gives n = 1.70 (solid line). For 5 < t < 8, a similar fit gives n = 1.6±0.2 (data
not shown). Fitting Ei

kin(k) in the interval 30 ≤ k ≤ 170 with l/(2π) times
Evort
kin (k) leads to l/2π = 452, roughly three times the t = 0 length of the vor-

tex lines. The time evolution of l/2π obtained by this procedure is displayed
in Fig. 3, showing that the length continues to increase beyond tmax. The
computations were performed with c = 2 corresponding to a root-mean-square

Mach number Mrms ≡ |vTGrms|/c = 0.25. As it is very costly to decrease Mrms,
we checked [9] that compressible effects were non-dominant at this value of
Mrms.

The vortex lines are visualized in physical space in Figs. 4 and 5 at time
t = 4 and t = 8. At t = 4, no reconnection has yet taken place while a
complex vortex tangle is present at t = 8. Detailed visualizations (data not
shown) demonstrate that reconnection occurs for t > 5. Note that the viscous
TG vortex also undergoes a qualitative (and quantitative) change in vortex
dynamics around t ∼ 5.

3.3 Experimental results

The TG flow is related to an experimentally studied swirling flow [30–32]. The
relation between the experimental flow and the TG vortex is a similarity in
overall geometry [30]: a shear layer between two counter–rotating eddies. The
TG vortex, however, is periodic with free-slip boundaries while the experi-
mental flow is contained inside a tank between two counter–rotating disks.

The spectral behavior of NLSE can be compared to standard (viscous) turbu-
lence only for k ≤ kbump. It is thus of interest to estimate the scaling of kbump
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in terms of the characteristic parameters of the large scale flow and of the
fluid. As seen above, kbump ∼ d−1

bump, where dbump is the average distance be-
tween neighboring vortices. Consider a flow with characteristic integral scale
l0 and large scale velocity u0 (in the case of the TG flow, l0 ∼ 1 and u0 ∼ 1).
The fluid characteristics are the velocity of sound c and the coherence length
ξ (with corresponding wavenumber kξ ∼ ξ−1). The number nd of vortex lines
crossing a typical large–scale l20 area is given by the ratio of the large–scale flow
circulation l0u0 to the quantum of circulation Γ = 4πcξ/

√
2, i.e nd ∼ l0u0/cξ.

On the other hand, the assumption that the vortices are uniformly spread over
the large scale area gives nd ∼ l20/d

2
bump. Equating these two evaluations of nd

yields the relation dbump ∼ l0
√

(cξ)/(l0u0).

In the case of helium, the viscosity at the critical point ( T = 5.174◦K, P =
2.2 105 Pa) is νcp = 0.27 × 10−7m2s−1 while the quantum of circulation,
Γ = h/mHe has the value 0.99× 10−7m2s−1. Thus, 0.25νcp ∼ Γ. The order of

magnitude for dbump is thus dbump = l0/
√

Rcp ∼ lλ where Rcp is the integral
scale Reynolds number at the critical point and lλ the Taylor micro-scale. In
other words, the value of dbump in a superfluid helium experiment at T = 1◦K
is of the same order as the Taylor micro-scale in the same experimental set-up
run with viscous helium at the critical point.

The experimental set-up is similar to the one described in [31]. Some modi-
fications have been made to work down to 1.2K. The flow is produced in a
cylinder, 8 cm in diameter and 12 cm high, limited axially by two counter-
rotating disks. One disk is flat and, on the other one, are fixed 8 radial blades,
forming an angle of 45o between each other. A stator is mounted at half the
total height of the cell in order to stabilize the turbulent shear region. The
two disks are driven by two DC motors rotating from 1 to 30 Hz. The whole
system is enclosed directly in a liquid Helium bath which is used as the ex-
perimental fluid, the main difference with the set-up described in [31]. The
temperature of the fluid is fixed by the pressure above the liquid bath, which
is itself controlled by the pumping system.

Local pressure fluctuations are measured by using small total-head pressure
tubes, immersed in the flow. The pressure sensors are hollow metallic tubes,
connected to a quartz pressure transducer WHM 112 A22 from PCB. Details
are given in [11].

In normal fluids, the pressure measured at the tip of the total-head tube can be
related to the upstream flow U(t) and the local pressure P (t) using Bernoulli
theorem:

Pmeas(t) = P (t) + ρU 2(t)/2 (25)
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Fig. 6. Experimental pressure fluctuation spectrum (in non-dimensional units) mea-
sured with a total head pressure tube immersed in the flow at T = 2.3 K.

In the flow region where the probe is immersed, a well established axial mean
flow U exists so that, after removing the mean parts of Equation (1), one gets:

pmeas(t) = p(t) + ρUu(t) (26)

where pmeas, p and u are the fluctuations of the measured pressure, the actual
pressure, and the local velocity respectively. It is currently admitted that, in
ordinary turbulent situations, and at low fluctuation rates, Equation (2) is
dominated by the dynamic term, so that, by measuring the pressure fluctua-
tions at the total head tube, one has a direct access to the velocity fluctuations
u(t).

The situation is less clear when the probe is immersed in the superfluid. It is
however possible to write an equation similar to (2). Details can be found in
[11].

The analysis of the pressure fluctuations obtained with the total head tube
placed at 2 cm above the mid plane and 2 cm from the cylinder axis, yields
interesting informations. Figures 6 and 7 shows the spectra of the pressure
fluctuations above and below Tλ (i.e respectively at 2.3K and 1.4K). Fig. 6
clearly shows, as expected, that such fluctuations follow a Kolmogorov regime
between the injection scale (signaled by the peak at 25 Hz) and the largest
resolved frequency, i.e 900 Hz. The spectrum obtained at 1.4K is similar to
that obtained at T = 2.3K (see Fig. 7). A clear Kolmogorov like regime exists
for the same range of frequencies. The corresponding Kolmogorov constant
turns out also to be indistinguishable from the classical value. We have fur-
ther analyzed the deviations from Kolmogorov in the superfluid regime. The
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Fig. 7. Experimental pressure fluctuation spectrum (in non-dimensional units) mea-
sured with a total head pressure tube immersed in the flow at T = 1.4 K.

striking result is that they have the same magnitude as in classical turbulence.
More details are given in [33].

These observations - both on global and local quantities - agree pretty well
the theoretical approach developed in the previous section. In particular, it
seems rather clear that Kolmogorov cascade survives in the superfluid regime.

4 Stability of stationary solutions

This section is devoted to the stability of BEC. Exact 1D bifurcation results are
given in section 4.1. A general formulation of stability is given in section 4.2.
Numerical branch following methods are explained in section 4.3. The stability
of a superflow around a cylinder is studied in section 4.4 and attractive Bose-
Einstein condensates are studied in section 4.5.

4.1 Exact solution in 1D

4.1.1 Definition of the system

We consider a punctual impurity moving within a 1D superflow. In the frame
of the moving impurity, the system can be described by the following action
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functional

A[ψ, ψ] =
∫

dt
[

i

2

∫

dx (ψ∂tψ − ψ∂tψ)− K
]

. (27)

In this expression, ψ is a complex field, ψ its conjugate and the energy func-
tional K reads

K = E − vP + v
[

R2(+∞)φ(+∞)−R2(−∞)φ(−∞)
]

, (28)

with

E =
∫

dx
[

|∂xψ|2 +
1

2
(|ψ|2 − 1)2 + gδ(x)(|ψ|2 − 1)

]

, (29)

P =
∫

dx
1

2i

[

ψ(∂xψ)− ψ(∂xψ)
]

, (30)

ψ = R exp(iφ) . (31)

The Dirac (pseudo) potential gδ(x) in (29) represents the impurity and the
last term in (28) imposes the appropriate boundary conditions for the phase
φ [34]. R obeys the boundary conditions R2(±∞) = 1.

The Euler-Lagrange equation associated to (27), δA/δψ = 0, is the nonlinear
Schrödinger equation (NLSE)

i∂tψ = − ∂xxψ + iv ∂xψ − ψ + |ψ|2ψ + gδ(x)ψ , (32)

where the discontinuity condition

∂xψ(0+, t)− ∂xψ(0−, t) = gψ(0, t) (33)

is imposed in order to balance the gδ(x)ψ singularity with the −∂xxψ term
for all times t.

4.1.2 Stationary solutions

Time-independent solutions of the NLSE (32) are best studied by performing
the change of variables defined above in (31): ψ = R exp(iφ). Using these
variables, the NLSE reads

∂tR = v∂xR−R∂xxφ− 2∂xR∂xφ , (34)

∂tφ = v∂xφ− (∂xφ)2 + 1− R2 − gδ(x) +
∂xxR

R
, (35)

and the jump condition (33) reads

∂xR(0+, t)− ∂xR(0−, t) = gR(0, t) , (36)

∂xφ(0+, t)− ∂xφ(0−, t) = 0 . (37)
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Note that Eqs. (34) and (35) can be respectively interpreted as the continuity
and Bernoulli equations for a fluid of density ρ = R2(x) and velocity u = 2∂xφ
(as done in section 2).

Explicit time-independent solutions of Eqs. (34) and (35) were found by Hakim[34],
using the so-called gray solitons (a nonlinear optics terminology). Gray solitons
[35,36] are stationary solutions of Eqs. (34) and (35), without the potential
term gδ(x). They are localized density depletion of the form

R2
GS(x) = v2/2 + (1− v2/2) tanh2[

√

1/2− v2/4x] , (38)

φGS(x) = arctan

(

v
√

2− v2

exp[
√

2− v2 x] + v2 − 1

)

. (39)

Patching together pieces of gray solitons, Hakim found the following ξ-indexed
stationary solutions of Eqs. (34) and (35), including the potential term gδ(x)

Rξ(x) = RGS(x± ξ) , x ≷ 0 (40)

φξ(x) = φGS(x± ξ)− φGS(±ξ) , x ≷ 0 (41)

where the jump conditions (36) and (37) impose the relation

g(ξ) =
√

2(1− v2/2)3/2
tanh[

√

1/2− v2/4 ξ]

v2/2 + sinh2[
√

1/2− v2/4 ξ]
. (42)

The function g(ξ) reaches a maximum gc = g(ξc) at ξc =
argcosh( 1+

√
1+4v2

2√
2−v2 with

gc = 4(1− v2/2)
[
√

1 + 4v2 − (1 + v2)]1/2

2v2 − 1 +
√

1 + 4v2
. (43)

The two stationary solutions of (32) corresponding to ξ+(g) > ξc and ξ−(g) <
ξc obtained by inverting (42) for g < gc thus disappear, merging in a saddle-
node bifurcation at a critical strength gc. Note that the bifurcation can also be
obtained by varying v and keeping g constant. In the following, the strength
g of the delta function is used as the control parameter of our system, keeping
v constant.

The bifurcation diagram corresponding to the energy K (see Eq. (28)) is
shown on fig.8. The energetically unstable and stable solutions (K(ξ−(g)) >
K(ξ+(g))) are also displayed on the figure. Note that the phase φξ(x), as de-
fined in eq. (41), differs from that considered in [34] by an (x-independent)
constant. The phase in [34] is set to 0 at x = +∞, whereas (41) is antisym-
metric in x. This difference is unimportant because Eqs. (34) and (35) are
invariant under the constant phase shift

φ(x) 7→ φ(x) + ϕ . (44)
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Fig. 8. (a) Modulus R of the stable (—) and unstable (- - -) stationary solutions of
eq.(32) (see eq.(40)) for g = 1.250 and v = 0.5; insert, energy functional K of the
stationary solutions versus g for v = 0.5 (see eq.(28)); lower branch: energetically
stable branch, upper branch: energetically unstable branch. The bifurcation occurs
at g = 1.5514 (b) Phase φ of the stable (—) and unstable (- - -) stationary solutions
(see eq.(41)), same conditions as in (a).

4.2 General formulation

In this section we define and test the numerical tools needed to obtain the
stationary solutions of the NLSE.

Consider the following action functional associated to the NLSE

A =
∫

dt̃

{

∫

dx̃
i

2

(

ψ
∂ψ

∂t̃
− ψ

∂ψ

∂t̃

)

−F
}

, (45)

where ψ is a complex field, ψ its conjugate and F is the energy of the system.
Here, x and t̃ correspond to adequately nondimensionalized space and time
variables respectively.

The Euler-Lagrange equation corresponding to (45) leads to the NLSE in
terms of the functional F

∂ψ

∂t̃
= −iδF

δψ
. (46)

This equation obviously admits ψS as a stationary solutions if δF/δψ|ψ=ψS
= 0.

Thus, stationary solutions of (46) are extrema of F . In general, we are looking
for an extremum of an energy functional E under some constraint Q[ψ] = cst.
The usual Lagrange multiplier trick consists in introducing a control parameter
ν and, rather than solving for extrema of E [ψ], searching for extrema of the
new functional F [ψ] = E [ψ]− νQ[ψ]. We thus solve for

δF
δψ

∣

∣

∣

∣

∣

ν=cst.

= 0. (47)
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We now turn to the precise definitions, corresponding to the two systems
considered in this section : (a) Bose-Einstein Condensates and (b) Superflows.

4.2.1 Superflows

In the problem of a superflow past an obstacle, E is the hydrodynamic energy
and ν ≡ ~U is the flow velocity with respect to the obstacle [12,14]. This implies

that Q ≡ ~P is the flow momentum. Functionals F , E and ~P are given by the
expressions

F = E − ~P · ~U (48)

E = c2
∫

d3x
(

[−1 + V (~x)]|ψ|2 +
1

2
|ψ|4 + ξ2|∇ψ|2

)

(49)

~P =
√

2cξ
∫

d3x
i

2

(

ψ∇ψ − ψ∇ψ
)

. (50)

Here, c and ξ are the physical parameters characterizing the superfluid. They
correspond to the speed of sound (c) for a fluid with mean density ρ0 = 1,
and to the coherence length (ξ). The potential V (~x) is used to represent a
cylindrical obstacle of diameter D. The NLSE reads

∂ψ

∂t
= − i√

2cξ

δF
δψ

= i
c√
2ξ

(

[1− V (~x)]ψ − |ψ|2ψ + ξ2∇2ψ
)

+ ~U · ∇ψ. (51)

We will be interested in the solutions of δF/δψ = 0, for a given value of
~U . According to equation (47), these solutions are extrema of E at constant

momentum ~P .

4.2.2 Bose-Einstein Condensates

We consider a condensate of N particles of mass m and effective scattering
length a in a radial confining harmonic potential V (r) = mω2r2/2 [15]. Quan-
tities are rescaled by the natural quantum harmonic oscillator units of time

τ0 = 1/ω and length L0 =
√

~/mω, thus obtaining the nondimensionalized

variables t̃ = t/τ0, x̃ = x/L0 and ã = 4πa/L0. The control parameter ν be-
comes in this context the chemical potential µ. The total number of particles
in the condensate is therefore given by Q ≡ N . Functionals F , E and N are
given, in terms of rescaled variables, by
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F = E − µN (52)

E =
∫

d3x̃

(

1

2
|∇

x̃
ψ|2 + V (x̃)|ψ|2 +

ã

2
|ψ|4

)

(53)

N =
∫

d3x̃|ψ|2. (54)

Two different situations are possible, depending on the sign of the (rescaled)
effective scattering length ã. When ã is positive the particles interact repul-
sively. A negative ã corresponds to an attractive interaction. The dynamical
equation is

∂ψ

∂t̃
= −iδF

δψ
= i

[

1

2
∇2

x̃
ψ − 1

2
|x̃|2ψ −

(

ã|ψ|2 − µ
)

ψ
]

. (55)

We will be interested in the solutions of δF/δψ = 0, for a given value of
µ. According to equation (47), these solutions are extrema of E at constant
particle number N .

4.3 Branch following methods

When the extremum of F is a local minimum, the stationary solution ψS
of (51) can be reached by a relaxation method. If the extremum is not a
minimum, Newton’s iterative method is used to solve for ψS.

4.3.1 Relaxation method

In what remains of this section, we will write the NLSE under the following
generic form, which is valid for both the Bose-Einstein condensates and the
superflow past an obstacle:

∂ψ

∂t
= −iδF

δψ
= i

(

α∇2ψ + [Ω− V (~x)]ψ − β|ψ|2ψ
)

+ ~U · ∇ψ. (56)

When the extremum of F is a local minimum, the stationary solution ψS of
(56) can be reached by integrating to relaxation the associated real Ginzburg-
Landau equation (RGLE)

∂ψ

∂t
= −δF

δψ
= α∇2ψ + [Ω− V (~x)]ψ − β|ψ|2ψ − i~U · ∇ψ. (57)

Indeed, (56) and (57) have the same stationary solutions.

In our numerical computations, equation (57) is integrated to convergence by
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Fig. 9. Two typical examples of the Newton method convergence towards the solu-
tion of equation (60) for the problem of a superflow past a cylinder with ξ/D = 1/10
and a field ψ(j) discretized into n = 128 × 64 = 8190 collocation points. The error
measure is given by

∑n
j=1 f

2
(j)(ψ)/n. The convergence is faster than exponential, as

expected for a Newton method.

using the Forward-Euler/Backwards-Euler time stepping scheme

ψ(t+ σ) = Θ−1
[(

1− i σ ~U · ∇
)

+ σ
(

[Ω− V (~x)]− β|ψ(t)|2
)]

ψ(t) (58)

with

Θ =
[

1− σ α∇2
]

. (59)

The advantage of this method is that it converges to the stationary solution
of (56) independently of the time step σ.

4.3.2 Newton method

We use Newton’s method [37] to find unstable stationary solutions of the
RGLE.

In order to work with a well-conditioned system [38], we search for the fixed
points of (58). These can be found as the roots of

f(ψ) = Θ−1
[(

1− i σ ~U · ∇
)

+ σ
(

[Ω− V (~x)]− β|ψ(t)|2
)]

ψ(t)−ψ(t), (60)

where Θ−1 was already introduced in equation (58). Calling ψ(j) the value of
the field ψ over the j-th collocation point, finding the roots of f(ψ) is equivalent
iterating the Newton step

ψ(j) = ψ(j) + δψ(j) (61)
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Fig. 10. Two typical examples of a bi-conjugate gradient method convergence cor-
responding to the case shown on figure 9. The convergence of the relative error
achieved for the x solution of Ax=b is given by |Ax-b|/|b|, where A= [df(j)/dψ(k)],
b= −f(j)(ψ) and x= δψ(k).

up to convergence. Every Newton step (61) requires the solution for δψ(k) of

∑

k

[

df(j)

dψ(k)

]

δψ(k) = −f(j)(ψ). (62)

This solution is obtained by an iterative bi-conjugate gradient method (BCGM)
[39]. The BCGM uses the direct application of [df(j)/dψ(k)] over an arbitrary
field ϕ to obtain an approximative solution of (62). Note that since the con-
vergence of the time step (58) does not depend on σ, the roots found through
this Newton iteration are also independent of σ. Therefore, σ becomes a free
parameter that can be used to adjust the pre-conditioning of the system in
order to optimize the convergence of the BCGM [38].

4.3.3 Implementation

We use standard Fourier pseudo spectral methods [19]. Typical convergences
of the Newton and bi-conjugate gradient iterations are shown in figures 9 and
10.

In the case of the radially symmetric Bose Condensate, ψ(r, t̃) is expanded

as ψ(r, t̃) =
∑NR/2
n=0 ψ̂2n(t̃)T2n(r/R), where Tn is the n-th order Chebychev

polynomial and ψ̂NR
is fixed to satisfy the boundary condition ψ(R, t̃) = 0.

The time integration of the NLSE is done by using a fractional step (Operator-
Splitting) method [40].
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4.4 Stability of 2D superflow around a cylinder

In this section, following references [12–14], we investigate the stationary sta-
ble and unstable (nucleation) solutions of the NLSE describing the superflow
around a cylinder, using the numerical methods developed in section 4.3. We
study a disc of diameter D, moving at speed ~U in a two-dimensional (2D)
superfluid at rest. The NLSE (51) can be mapped into two hydrodynamical
equations by applying Madelung’s transformation [1,16]:

ψ =
√
ρ exp

(

iφ√
2cξ

)

. (63)

The real and imaginary parts of the NLSE produce for a fluid of density ρ and
velocity

~v = ∇φ− ~U, (64)

the following equations of motion

∂ρ

∂t
+∇ (ρ~v)= 0 (65)

[

∂φ

∂t
− ~U · ∇φ

]

+
1

2
(∇φ)2 + c2[ρ− Ω(~x)]− c2ξ2∇2√ρ√

ρ
= 0. (66)

In the coordinate system ~x that follows the obstacle, these equations corre-
spond to the continuity equation and to the Bernoulli equation [4] (with a
supplementary quantum pressure term c2ξ2∇2√ρ/√ρ) for an isentropic, com-
pressible and irrotational flow. Note that, in the limit where ξ/D → 0, the
quantum pressure term vanishes and we recover the system of equations de-
scribing an Eulerian flow.

4.4.1 Bifurcation diagram and scaling in 2D

In this section, varying the ratio of the coherence length ξ to the cylinder
diameter D, we obtain scaling laws in the ξ/D→ 0 limit.

Bifurcation diagram

We present results for ξ/D = 1/10 which are representative of all ratios we
computed. The functional E and energy F of the stationary solutions are
shown in Fig. 11 as a function of the Mach number (M = |~U |/c). The stable
branch (a) disappears with the unstable solution (c) at a saddle-node bifur-
cation when M = M c ≈ 0.4286. The energy F has a cusp at the bifurcation
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point, which is the generic behavior for a saddle-node. There are no station-
ary solutions beyond this point. When M ≈ 0.4282, the unstable symmetric
branch (c) bifurcates at a pitchfork to a pair of asymmetric branches (b). Their
nucleation energy barrier is given by (Fb′ − Fa′) which is roughly half of the
barrier for the symmetric branch (Fc′ −Fa′).

We can relate branches in Fig. 11 to the presence vortices in the solution.
When Mpf ≤ M ≤ M c, solutions are irrotational (Mpf ∼ 0.405 as indicated
in Fig. 11). For M ≤Mpf the stable branch (a) remains irrotational (Fig. 12A)
while the unstable branch (b) corresponds to a one vortex solution (Fig. 12B)
and the unstable branch (c), to a two vortex solution (Fig. 12C). The dis-
tance between the vortices and the obstacle in branches (b) and (c) increases
when M is decreased. Branch (c) is precisely the situation described in [41].

Furthermore, the value M c ≈ 0.4286 is close to the predicted value
√

2/11.
Figure 12D shows the result of integrating the NLSE forward in time with,
as initial condition, a slightly perturbed unstable symmetric stationary state
(Fig. 12C). The perturbation drives the system over the nucleation barrier
and cycles it, after the emission of two vortices, back to a stationary stable so-
lution. This shows that the branch (c) corresponds to hyperbolic fixed points
of NLSE.

Figures 12E,F show the phase of the field at the surface of the disc (r = D/2
and θ ∈ [0, 2π]) for four different flow speeds. In both unstable branches, 2π-
discontinuities, a diagnostic of vortex crossing, appear between M = 0.40 and
M = 0.41.

Scaling laws

We now characterize the dependence on ξ/D of the main features of the bifur-
cation diagram. When ξ/D is decreased, M c and Mpf become indistinguish-
able. In the limit where ξ/D = 0, the critical Mach number M c will be that
of an Eulerian flow M c

Euler.

Figure 13 shows the convergence of M c to the Eulerian critical velocity.
This convergence can be characterized by fitting the polynomial law M c =
K1(ξ/D)K2 +M c

Euler to M c(ξ/D). This fit is shown on Fig. 13 as a dotted line,
yielding K1 = 0.322, K2 = 0.615 and M c

Euler = 0.35.

Dynamical solutions The stationary solutions obtained in the above sub-
section provide adequate initial data for the study of dynamical solutions.
Indeed, after a small perturbation, their integration in time will generate a
dynamical evolution with very small acoustic emission. Therefore, this proce-
dure corresponds to an efficient way to start vortical dynamics in a controlled
manner.

Starting from a two-vortex unstable stationary solution at a supercritical Mach
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Fig. 11. Plot of the energy (F), and functional (E) versus Mach number (M = | ~U |/c),
with D = 10ξ. Stable state (a). Nucleation solutions: asymmetric branch (b) and
symmetric branch (c). The diagram shows a saddle-node and a pitchfork bifurcation.
The point where vortices cross the surface of the disc (see fig. 12) is gabelled by
Mn. The total fluid momentum is given by −dF/dU (see text).

number M c = 0.9, the evolution of the NLSE time integration shows a clearly
periodical emission of vortex pairs (see Fig. 12). This emission conserves total
circulation.

We have studied the behavior of the frequency of vortex emission close to the
bifurcation for such symmetrical wakes with different supercritical velocities
(characterized by δsp = (M −M c)/M c = −δ > 0). Our results, plotted on
Fig. 14, are consistent with a δ1/2

sp scaling.

4.4.2 Subcriticality and vortex-stretching in 3D

In this section, using a 3D version of our code to integrate the NLSE, we study
3D instabilities of the basic 2D superflow.

Preparation method

We used the 2D laminar stationary solution ψ0V (x, y) (corresponding to branch
(a) of precedent section) and the one-vortex unstable stationary solution ψ1V (x, y)
(branch (b)) to construct the 3D initial condition

ψ3D(x, y, z) = fI(z)ψ1V (x, y) + [1− fI(z)]ψ0V (x, y). (67)
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Fig. 12. Stationary states : stable (A), one vortex unstable (B), two vor-
tices unstable (C). The surface indicates the fluid density around the cylinder
(M = 0.24, ξ/d = 0.1). (D) Shows the result of the NLSE integration, starting
from a slightly perturbed stationary (C) state. Figures (E) and (F ) display the
phase of the complex field ψ at the surface of the cylinder versus the polar angle
θ. Asymmetric branch (A), symmetric branch (B). M = 0.4286 (◦), M = 0.41 (�),
M = 0.40 (+), M = 0.30 (×). The crossing out of the vortex produces a phase
discontinuity at Mpf ∼ 0.405.

The function fI(z), defined by

fI(z) = (tanh[(z − z1)/∆z]− tanh[(z − z2)/∆z])/2,

takes the value 1 for z1 ≤ z ≤ z2 and 0 elsewhere, with ∆z an adaptation
length.

Figure 15 represents a 3D initial data prepared with this method for ξ/D =

0.025, |~U |/c = 0.26 and ∆z = 2
√

2ξ in the [Lx × Ly × Lz] periodicity box

27



0 0.05 0.1 0.15 0.2
ξ/

0.35

0.4

0.45

0.5

M

d

M

M

*

*

1

2

Fig. 13. Saddle-node bifurcation Mach number M c (+) and pitchfork bifurcation
Mach number Mpf (×), as a function of ξ/D. The dotted curve corresponds to a
fit to the polynomial law M c = K1(ξ/D)K2 +M c

Euler with K1 = 0.322, K2 = 0.615
and M c

Euler = 0.35. The dashed lines M ∗
1 ≈ 0.4264 and M ∗

2 ≈ 0.3903 correspond
respectively to first and second order compressible corrections to the M c = 0.5
critical velocity computed using a local sonic criterion for an incompressible flow
(see text).

� �0.02 � �0.04 � �0.06 � �0.08 � �
δ

�0.008

�

�0.012

��

�0.016

��

�0.020

�

�0.024
�

ν

sp

Fig. 14. Vortex emission frequency as a function of δsp = (M −M c)/M c � 1 (with
M c = 0.3817), for a symmetric wake and ξ/D = 1/20. The dashed line shows a fit of

a polynomial ν = K1δ
1/2
sp with K1 = 0.081. The obtained δ

1/2
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is equivalent to the one expected for a dissipative system.

(Lx/D = 2.4
√

2π, Ly/D = 1.2
√

2π and Lz/D = 0.4
√

2π). The surface |ψ3D| =
0.5 draws the cylinder surface and the initial condition vortex line, with both
ends pinned to the right side of the cylinder.

Short time dynamics
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U

Fig. 15. Initial condition of a vortex pinned to the cylinder generated by eq.(67).
The surface |ψ3D| = 0.5 is shown for ξ/D = 0.025, |~U |/c = 0.26 and ∆z = 2

√
2ξ

in the [Lx × Ly × Lz] periodicity box (Lx/D = 2.4
√

2π, Ly/D = 1.2
√

2π and
Lz/D = 0.4

√
2π).

Starting from the initial condition (67), the evolution of the NLSE time inte-
gration shows a short-time and a long-time dynamics.

During the short-time dynamics, the initial pinned vortex line rapidly con-
tracts, evolving through a decreasing number of half-ring-like loops, down to
a single quasi-stationary half-ring (see Figs. 16a, 16b, 16c). This evolution
happens mainly on the plane perpendicular to the flow, provided that the ini-
tial vortex is long enough to contract to a quasi-stationary half-ring as shown
on Fig. 16c. Otherwise, the vortex line collapses against the cylinder while
moving upstream.

Note that this quasi-stationary half-ring has been used by Varoquaux [42,43]
to estimate the nucleation barrier in a 3D experiment.

The dynamics of the half-ring situation (Fig. 16c) is very slow and can be
shown to be close to a stationary field. Indeed, the local flow velocity v in an
Eulerian flow around a cylindrical obstacle is known to vary from v = |~U | at

infinity to v = 2|~U | at both sides of its surface. Moreover, the diameter d of
a stationary vortex ring in an infinite Eulerian flow with no obstacle is given
by [1]:

|~U |/c = (
√

2ξ/d) [ln (4d/ξ)−K] , (68)

where |~U | is the flow velocity at infinity and the vortex core model constant
K ∼ 1 is obtained by fitting the numerical results in [44]. Therefore, for the
values used on Figs. 16, we expect that local velocities range from v = 0.25 to
v = 2× 0.25. Equation (68) thus implies that the diameter of an hypothetical

stationary half-ring should be bounded by d(v = |~U | = 0.25) = 18.8ξ and

d(v = 2|~U | = 0.5) = 6.3ξ. The diameter d ≈ 9ξ measured on the half-ring
observed on Fig. 16c is consistent with its quasi-stationary behavior. Similarly
the diameter of the half-ring shown on Fig. 18 d ≈ 7.6ξ is also found to be
between the corresponding bounds d(0.35) = 11.4ξ and d(2× 0.35) = 3ξ.

Vortex stretching as a subcritical drag mechanism A small perturbation
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U

Fig. 16. Short-time dynamics for ξ/D = 1/40 and |~U |/c = 0.25 starting from Fig. 15:
A (t = 5ξ/c), B(t = 10ξ/c) and C(t = 15ξ/c). The contraction of the initial vortex
line occurs in the plane perpendicular to the flow. The half-rings have a diameter
compatible with that of a quasi-stationary half-ring (see text).

over the half-ring solution can drive the system into two opposite situations
where the half-ring either starts moving upstream or downstream.

When driven upstream, the half-ring eventually collapses against the cylinder,
dissipating its energy as sound waves. Otherwise, the vortex loop is stretched
while the pinning points move towards the back of the cylinder. Figures 17
show the long-time dynamics for a stretching case with ξ/D = 1/40 and

|~U |/c = 0.25 starting from Fig. 16c. Figure 19 shows a later situation for

ξ/D = 1/20 and |~U |/c = 0.35 starting from Fig. 18. As the vortex loop grows,
its backmost part remains oblique to the flow. The described vortex stretching
mechanism consumes energy, thus generating drag. It can be responsible for
the appearance of drag in experimental superflows if fluctuations are strong
enough to nucleate the initial vortex loop (which is imposed extrinsically in
our numerical system). Note that it takes place for 2D subcritical velocities.

Figure 20 displays several numerical and experimental [45] critical Mach num-
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U

Fig. 17. Long-time dynamics for ξ/D = 1/40 and |~U |/c = 0.25 starting from
Fig. 16c. The half-ring moves downstream while growing.

U

Fig. 18. Quasi-nucleation solution for |~U |/c = 0.35 and ξ/D = 1/20 at time
t = 15ξ/c.
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U

Fig. 19. Vortex stretching at t = 150ξ/c with |~U |/c = 0.35 and ξ/D = 1/20. The
vortex line is oblique to the flow.
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Fig. 20. Critical Mach number Vc/C versus scale ratio of numerical and experimental
data D/ξ. Circles correspond to several experiments from [45]. Squares stand for
our numerical stretching cases while crosses correspond to non-stretching cases [14].

bers (Vc/C) with respect to D/ξ, which seem to follow a (−1) slope in a
log-log plot. The squares stand for our numerical stretching cases while the
crosses correspond to non-stretching cases. There is a frontier between the 3D
numerical dissipative and non-dissipative cases [14]. For 1/30 < ξ/D < 1/20,
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the frontier corresponds to the expression Rs = 5.5 with

Rs ≡ |~U |D/cξ = MD/ξ. (69)

This superfluid ‘Reynolds’ number is defined in the same way as the standard
(viscous) Reynolds number Re ≡ |~U |D/ν (with ν the kinematic viscosity).
It has been shown, in the superfluid turbulent (Rs � 1) regime, that Rs

is equivalent to the standard (viscous) Reynolds number Re [10,9,11]. Note
that, for a Bose condensate of particles of mass m, the quantum of velocity
circulation around a vortex, Γ = 2π

√
2cξ, has the Onsager-Feynman value

Γ = h/m (h is Planck’s constant) and the same physical dimensions L2T−1 as
ν.

The value of Rs divides the space of parameters into a laminar flow zone
and a recirculating flow zone, very much like in the problem of a circular
disc in a viscous fluid in which this frontier is also found to be around Re ∼
5. It therefore seems to exist some degree of universality between viscous
normal fluids and superfluids modeled by NLSE as discussed in [10,9,11]. In
the context of superfluid 4He flow, the experimental critical velocity is known
to depend strongly on the system’s characteristic size D. It is often found to be
well below the Landau value (based on the velocity of roton excitation) except
for experiments where ions are dragged in liquid helium. Feynman’s alternative
critical velocity criterion Rs ∼ log(D/ξ) is based on the energy needed to form
vortex lines. It produces better estimates for various experimental settings, but
does not describe the vortex nucleation mechanism [1].

In a recent experiment, Raman et al. have studied dissipation in a Bose-
Einstein condensed gas by moving a blue detuned laser beam through the
condensate at different velocities [46]. In their inhomogeneous condensate,
they observed a critical Mach number for the onset of dissipation M c

2D/1.6.

Our computations were performed for values of ξ/D comparable to those in
Bose-Einstein condensed gas experiments. They demonstrate the possibility of
a subcritical drag mechanism, based on 3D vortex stretching. It would be very
interesting to determine experimentally the dependence of the critical Mach
number on the parameter ξ/D and the nature (2D or 3D) of the excitations
[14].

4.5 Stability of attractive Bose-Einstein condensates

In this section, following reference [15], we study condensates with attractive
interactions which are known to be metastable in spatially localized systems,
provided that the number of condensed particles is below a critical value Nc

[7]. Various physical processes compete to determine the lifetime of attractive
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condensates. Among them one can distinguish macroscopic quantum tunnel-
ing (MQT) [47,48], inelastic two and three body collisions (ICO) [49,50] and
thermally induced collapse (TIC) [48,51]. We compute the life-times, using
both a variational Gaussian approximation and the exact numerical solution
for the condensate wave-function.

4.5.1 Computations of stationary states

Gaussian approximation

A Gaussian approximation for the condensate density can be obtained ana-
lytically through the following procedure.

Inserting

ψ(r, t̃) = A(t̃) exp
(

−r2/2r2
G(t̃) + ib(t̃)r2

)

(70)

into the action (45), where F is given by (52), yields a set of Euler-Lagrange
equations for rG(t̃), b(t̃) and the (complex) amplitude A(t̃). The stationary
solutions of the Euler-Lagrange equations produce the following values [52]:

N (µ) =
4
√

2π3
(

−8µ+ 3
√

7 + 4µ2
)

7|ã|
(

−2µ+
√

7 + 4µ2
)3/2

, (71)

E = N (µ)
(

−µ+ 3
√

7 + 4µ2

)

/7. (72)

N is found to be maximal at NG
c = 8

√
2π3/|55/4ã|. The corresponding value

of the chemical potential is µ = µGc = 1/2
√

5.

Linearizing the Euler-Lagrange equations around the stationary solutions,
yields the following expression for the eigenvalues [52]:

λ2(µ) = 8µ2 − 4µ
√

7 + 4µ2 + 2 (73)

This qualitative behavior is the generic signature of a Hamiltonian Saddle
Node (HSN) bifurcation defined, at lowest order, by the normal form [53]

meff Q̈ = δ − βQ2, (74)

where δ = (1−N /Nc) is the bifurcation parameter. The critical amplitude Q
is related to the radius of the condensate [52]. We can relate the parameters
β and meff to critical scaling laws, by defining the appropriate energy

E = E0 +meff Q̇
2/2− δ Q + βQ3/3− γδ. (75)
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From (74) it is straightforward to derive, close to the critical point δ = 0, the
universal scaling laws

E± = Ec − Elδ ± E∆δ
3/2, (76)

λ2
± = ±λ2

∆δ
1/2, (77)

where Ec = E0, El = γ, E∆ = 2/3
√
β and λ2

∆ = 2
√
β/meff .

Numerical branch following

Using the branch-following method described in section 4.3, we have computed
the exact stationary solutions of the NLSE. We use the following value ã =
−5.74×10−3, that corresponds to experiments with 7Li atoms in a radial trap
[54,7].

As apparent on Fig. 3, the exact critical N E
c = 1258.5 is smaller than the

Gaussian one NG
c = 1467.7 [55,47]. The critical amplitudes corresponding

to the Gaussian approximation can be computed from (71) and (72). One
finds Ec = 4

√
2π3/|53/4ã|, E∆ = 64

√
π3/|59/4ã| and λ2

∆ = 4
√

10. For the exact
solutions, we obtain the critical amplitudes by performing fits on the data.
One finds E∆ = 1340 and λ2

∆ = 14.68. Thus, the Gaussian approximation
captures the bifurcation qualitatively, but with quantitative 17% error on Nc

[55], 24% error on E∆ and 14% error on λ2
∆. Fig. 4 shows the physical origin

of the quantitative errors in the Gaussian approximation. By inspection it is
apparent that the exact solution is well approximated by a Gaussian only for
small N on the stable (elliptic) branch.
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4.5.2 Estimation of life-times

In this section, we estimate the decay rates due to thermally induced collapse,
macroscopic quantum tunneling and inelastic collisions.

Thermally induced collapse

The thermally induced collapse (TIC) rate ΓT is estimated using the formula
[56]

ΓT
ω

=
|λ+|
2π

exp

[

−~ω (E+ − E−)

kBT

]

(78)

where ~ω(E+−E−) is the (dimensionalized) height of the nucleation energy bar-
rier, T is the temperature of the condensate and kB is the Boltzmann constant.
Note that the prefactor characterizes the typical decay time which is controlled
by the slowest part of the nucleation dynamics: the top-of-the-barrier saddle
point eigenvalue λ+. The behavior of ΓT can be obtained directly from the
universal saddle-node scaling laws (76) and (77). Thus the exponential factor
and the prefactor vanish respectively as δ3/2 and δ1/4.

Macroscopic quantum tunneling

We estimate the MQT decay rate using an instanton technique that takes into
account the semi classical trajectory giving the dominant contribution to the
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Fig. 23. The bounce trajectory is shown as dashes, above the potential V (q).

quantum action path integral [48,47]. This trajectory is approximated as the
solution of

d2q(t)

dt2
= − dV (q)

dq
, (79)

V (q) is a polynomial such that −V (q) reconstructs the Hamiltonian dynamics.
V (q) is determined by the relations

V (qm)=−E+ (80)

V (qf )=−E− (81)

∂2
qV (qm)= |λ+(N )| (82)

∂2
qV (qf )=−|λ−(N )|. (83)

The bounce trajectory is displayed on Fig. 23 (dashed line) above the potential
V (q). The MQT rate is estimated as

ΓQ
ω

=

√

|λ−|v2
0

4π
exp

[

−4√
2

∫ qb

qf

√

V (q)− V (qf )dq

]

, (84)

where v0 is defined by the asymptotic form of the bounce trajectory q(t) [48]:
q(τ) ∼ qf + (v0/|λ−|) exp[−|λ−τ |]. Universal scaling laws can be derived close
to criticality from (74), (76) and (77). The exponential factor in (84) follows

the same scaling than
√

|E+ − E−|dq. It therefore vanishes as δ5/4. From the

asymptotic form of q(t), dq follows the same law as v0/|λ−|. Thus v0 ∼ δ3/4

and the prefactor vanishes as δ7/8.

Inelastic collision
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The inelastic collision rate (ICO) is estimated using the relation

dN
dt

= fC(N ) (85)

with

fC(N ) = K
∫

|ψ|4d3x̃ + L
∫

|ψ|6d3x̃, (86)

where K = 3.8 × 10−4 s−1 and L = 2.6 × 10−7 s−1. The ICO rate can be
evaluated from the stable branch alone. In order to compare the particle decay
rate fC(N ) to the condensate collective decay rates obtained for TIC and
MQT, we compute the condensate ICO half-life as:

τ1/2(N ) =
∫ N

N/2
dn/fC(n) (87)

and plot τ−1
1/2

Discussion

It is apparent by inspection of Fig. 6 that for a given value of N the exact and
Gaussian approximate rates are dramatically different. We now compare the
relative importance of the different exact decay rates. At T ≤ 1 nK the MQT
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effect becomes important compared to the ICO decay in a region very close
to NE

c (δ ≤ 8 × 10−3) as it was shown in [47] using Gaussian computations
but evaluating them with the exact maximal number of condensed particles
NE
c . Considering thermal fluctuations for temperatures as low as 2 nK, it is

apparent on Fig. 6 (see insert) that the MQT will be the dominant decay
mechanism only in a region extremely close to Nc (δ < 5 × 10−3) where the
condensates will live less than 10−1 s. Thus, in the experimental case of 7Li
atoms, the relevant effects are ICO and TIC, with cross-over determined in
Fig. 6.

5 Conclusion

The main result of the NLSE simulations presented in section 3.2 is that
two diagnostics of Kolmogorov’s regime in decaying turbulence are satisfied.
These diagnostics are, at the time of the maximum of energy dissipation: (i) a
parameter-independent kinetic energy dissipation rate and (ii) a k−5/3 spectral
scaling in the inertial range. Thus, the NLSE simulations were shown to be
very similar, as far as energetics is concerned, with the viscous simulations. The
experimental results shown in section 3.3 show that the Kolmogorov cascade
survives in the superfluid regime.

We have seen that the numerical tools developed in section 4.3 can be used in
practice to obtain the stationary solutions of the NLSE. These methods have
allowed us to find the full bifurcation diagrams of Bose-Einstein condensates
with attractive interactions and superflows past a cylinder. Furthermore, the
stationary solutions have given us efficient way to start vortical dynamics (in
2D and 3D) in a controlled manner.
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