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Direct numerical simulations of decaying high-Reynolds-number turbulence are 
presented a t  resolutions up to 8002 for general periodic flows and 20482 for periodic 
flows with large-scale symmetries. For turbulence initially excited a t  large scales, we 
characterize a transition of the inertial energy-spectrum exponent from n z -4 at 
early times to TZ FZ - 3 when the turbulence becomes more mature. In physical space, 
the first regime is associated with isolated vorticity-gradient sheets, as predicted by 
Saffman (1971). The second regime, which is essentially statistical, corresponds to an 
enstrophy cascade (Kraichnan 1967 ; Batchelor 1969) and reflects the formation of 
layers resulting from the packing of vorticity-gradient sheets. In addition to these 
small-scale structures, the simulation displays vorticity macro-eddies which will 
survive long after the vorticity-gradient layers have been dissipated (McWilliams 
1984). We validate the linear description of two-dimensional turbulence suggested by 
Weiss (1981), which predicts that coherent vortices will survive in regions where 
vorticity dominates strain, while vorticity-gradient sheets will be formed in regions 
where strain dominates. We show that this analysis remains valid even after 
vorticity-gradient sheets have been formed. 

1. Introduction 

incompressible turbulence governed by the Navier-Stokes equation 
Much effort has been devoted during the last decade to two-dimensional 

I a , v + ( v . v ) v  =-vp+vv2u, 
w . v  = 0, 
initial and boundary value. 

Although physical flows are usually three-dimensional, two-dimensional turbulence 
is often considered as a first approximation when modelling global circulation in the 
atmosphere or ocean where motions evolve with horizontal scales much larger than 
the thickness of the fluid. Furthermore, a t  large Reynolds numbers, two-dimensional 
turbulence displays interesting specific properties. Indeed, the vorticity o = V x u is 
perpendicular to the plane of the flow and satisfies 

a,o+(u.v)o = vv20. (1.2) 

It is thus a (pseudo) scalar o = a, v - aY u, conserved along the fluid trajectories in the 
inviscid limit. This prevents vorticity stretching and thus the development of an 
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energy cascade to the small scales, a central feature of three-dimensional turbulence. 
In  two-dimensions, the mechanism for small-scale generation is the stretching of 
vorticity gradients. I n  the inviscid limit, the latter satisfies 

a,vo+(v.v)vo = -(vu)-vo. (1.3) 

It is also convenient to consider 

which is deduced from V o  by a rotation of @ and s%ti;sfies 
, 

,, & q + ( u . V ) q  = q*(Vu) ,  (1.5) 

an equation analb'gorrs to the one governing vorticity in three dimensions?. 
Vorticity conservation and vorticity-gradient production are the basic elements of 

small-scale dynamics in two-dimensional turbulence. As noticed by Saffman (1971), 
the advection of vorticity along the fluid trajectories may bring close together 
different values of w ,  producing thin layers between macro-eddies across which 
vorticity jumps. Such quasi-discontinuities of vorticity along rectilinear structures 
would lead to an inertial range with a k-4 energy spectrum. A different point of view 
was presented by Kraichnan (1967) and Batchelor (1969) who used a statistical 
approach. By analogy with the direct energy cascade in three dimensions, they 
conjectured the existence in two-dimensions of an enstrophy (mean-square vorticity) 
cascade to the small scales. Phenomenology and dimensional considerations then 
lead to a k-3 inertial energy spectrum (with a possible logarithmic correction 
suggested by Kraichnan (1971) to take into account the effect of non-local 
interactions). 

The first numerical simulations of two-dimensional turbulence by direct inte- 
gration of Navier-Stokes equations were made a t  the end of the sixties and a t  the 
beginning of the seventies with a resolution of 32' (Lilly 1969, 1971, 1972; Deem & 
Zabusky 1971). But these resolutions were much too low to enable the authors to 
isolate an inertial range and definitely discriminate between the two predicted 
spectral exponents. Later Herring et al. (1974), using resolutions up to 128', 
concluded that a t  least 512' modes were required to properly simulate an inertial 
range. Preliminary calculations a t  this resolution were presented by Orszag (1977) 
and the computation showed, when the large-scale Reynolds number was increased 
from 1100 to 25000, a distinct change from a k4 energy spectrum to a spectrum 
roughly pr3portional to k3. 

More recent computations (Pornberg 1977 ; Basdevant et al 1981 ; McWilliams 
1984) suggest that  in addition to small scales generated by vorticity-gradient 
stretching, two-dimensional turbulent flows also display dynamically stable coherent 
structures corresponding to isolated vorticity concentrations. 

In  this paper, we present direct numerical simulations of two-dimensional 
turbulent flows a t  the highest resolutions which can reasonably be achieved on a 
Cray-1s computer with one million words in central memory : 800' collocation points 
for general periodic flows and 204V for periodic flows with large-scale symmetries. 
We concentrate here on the generation of small scales in freely decaying turbulence, 
excluding the development of the inverse energy cascade predicted by Kraichnan 

t Note that  in the three-dimensional case only the symmetric par t  of the matrix of velocity 
derivatives plays a role, whereas in (1.5) both the symmetric and the antisymmetric parts are 
present. 
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(1967) and observed in numerical simulations (Fyfe, Montgomery & Joyce 1977 ; 
Frisch & Sulem 1984; Herring & McWilliams 1985). Our main interest is to 
characterize small-scale generation in two-dimensional turbulence. The paper is 
organized as follows. In  $2, we discuss the numerical algorithms and describe the 
characteristics and the parameters of the runs. In  $3, we concentrate on spectral 
properties of the solution such as the energy and dissipation spectra, and briefly 
consider the geometry of the small-scale structures. The dynamics in physical space 
is presented and interpreted in $4. It concerns both the formation of vorticity- 
gradient layers and the evolution of vorticity macro-eddies. Section 5 is the 
conclusion. 

2. Numerical algorithm and description of the runs 
The flow being assumed 2n-periodic, we have used Fourier spectral methods for the 

space variables because they are both precise and easy to implement (Gottlieb & 
Orszag 1977). In  the case of general periodic flow the stream function can be 
written 

N l 2  N / 2  

@(x, y ,  t )  = C C a(k ,  t )  eitx+ cc. (2.1) 
k,=O ky=-N12 

In the case of periodic flows with large-scale symmetries, the stream function has a 
Fourier representation 

N / 2  N l 2  

@(x, y ,  t )  = C C a ( k ,  t )  sin ( k ,  5) sin (k,y), (2.2) 
k,=l k y = l  

where the a(k ,  t )  coefficients are non-zero only when k ,  and k ,  are both even or both 
odd. This representation, which is compatible with the Navier-Stokes equations, 
corresponds in physical space to the following symmetries : (i) invariance by rotation 
of 7c around the point x = in, y = in, (ii) reflectional symmetry on the sides of an 
impermeable box x = 0 and n, y = 0 and n. This so-called ‘sparse mode technique’ 
was first implemented in Brachet et a1 1983 for the three-dimensional Taylor-Green 
vortex. For a given ratio between the larger and the smaller scales retained in the 
system, this method leads to a significant reduction of both storage and operation 
number. 

The equation for the vorticity is integrated in the form 

a, w + a,(uw) + a,(uw) = v v 2 0 ,  (2.3) 

where u and v are the two velocity components. 

frog Crank-Nicolson scheme of the form : 
The time marching is done in Fourier space with a second-order (stabilized) leap- 

where wn(k) denotes the k-vorticity mode a t  time n6t and F,(k) is the Fourier 
transform of the nonlinear term a t  time n6t. F,(k) is computed from w,(k) by the 
following procedure. In  Fourier space, the stream function is related to the vorticity 
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Run 
Symmetry 
Resolution 

Energy 
Enstrophy 
Viscosity 
CPU/timestep (s) 
lO/timestep (s) 
Timestep 
Number of timesteps 

ko 

s 5  
Symmetric 
2048' 
5 
6 x 
3.6 

5.5 
2.5 

20 800 

2.33 x 10-5 

6.25 x 10-4 

P2-800 
General periodic 
800' 
2 
4 x 10-2 
0.23 

2 
5 

30000 

7.5 x 10-5 

2 x 10-3 

P8-800 
General periodic 
80O2 
8 
3 x 1 0 - 2  
1.9 

2 
5 

44 000 

10-4 

10-3 

TABLE 1. Parameters for the flow simulations 

P2-512 
General periodic 
512' 
2 
0.1 
0.5 

0.6 
Incore 

15 000 

1.5 x 10-4 

2 x 10-3 

and the Fourier transform of the velocity 

= a,+, v = -a,+ 
reads u,(k) = ik, @,(k)> v,(k) = - ik, +,(b (2.6) 

After transforming the velocity and the vorticity to physical space, one computes 
a, (x )  = u,(x)w,(x)  and Pn(x) = v,(x)w,(x) at the collocation points. One finally 
transforms back to Fourier space to calculate ik, a,(k),  ik, P,(k) and finally 

Note that (2.3), which is the two-dimensional version of the classical three- 
w,+l(k). 

dimensional representation 

a, w = v x ( u  x 0)  + U V 2 0 ,  (2.7) 

has the advantage of enforcing energy conservation by the nonlinear terms for 
truncated Fourier series. Enstrophy may also be exactly preserved by suppressing 
aliasing errors, using a spectral truncation for wavenumbers k, 2 +N, where N is the 
total number of modes in each direction. 

I n  all the simulations reported here, we used Gaussian (pseudo)-random initial 
data, such that the energy spectrum 

is initially given by E,(k, t = 0) = Ck exp ( -  (k/kJ2). (2.9) 

The simulations presented in this paper are listed in table 1. Each of these runs 
requires tens of hours of supercomputer time. They thus have been preceded by 
simulations a t  lower resolutions to adjust the parameters and get a quick look a t  the 
phenomena. The results obtained on general periodic flows at resolutions up to 
5122 and on an S-5-like symmetric flows a t  10242-resolution were published in 
Brachet & Sulem (1984, 1985), Brachet, Meneguzzi & Sulem (1985, 1986). A two- 
dimensional flow with even more symmetries than s-5 was considered by Kida (1985) 
who simulated it using our in-core- 10242-code. 
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3. Evolution of spectral and integral quantities 
Among the significant integral quantities that describe the development of a two- 

dimensional turbulence initially concentrated in the large scales, one can consider the 
(two-dimensional) skewness and the enstrophy dissipation. The two-dimensional 
skewness 9, which is a non-dimensional measure of the rate of production of mean- 
square vorticity gradients by nonlinear effects, is defined as follows (Herring et al. 
1974). Let 

TJk) = C Z Iw(-k')v(k'-k").ik"w(k")l, 
k-i  < I & l <  k+f k" 

denote the enstrophy transfer through the k-shell at time t .  Then 

Y =  zk k2Tw(k) 

Ck k4E(k) [& k2E(k)]i' 

In terms of physical quantities, Y also reads 

(3.2) 

Figure 1 ( a )  shows the evolution of the skewness for the run S5. We see that after an 
early rapid growth corresponding to the period of small-scale generation, Y reaches 
a maximum around t = 1 and then decays slowly. Figure 1 ( b )  shows the evolution of 
the enstrophy dissipation 

C = v (Vxu) 'dx.  (3.4) s 
It reaches a maximum at a time t x 6 (significantly later than the skewnes 
maximum), and then decays. These two maxima define two characteristic times for 
the development of two-dimensional turbulence, as we shall now see by considering 
the energy spectrum (2.7) whose evolution is generally used as a diagnostic of small- 
scale generation. 

The energy spectrum of developed turbulence is expected to display a power-law 
inertial range and an exponential tail which reflects the spatial analyticity of the 
solutions of Navier-Stokes equations. After the early inviscid period, this exponential 
range is generally referred to as the dissipation range. In order to extract 
quantitative information about the power-law exponent and the high-wavenumber 
exponential decay, we have resorted to analysing the energy spectrum in terms of an 
assumed functional form. We fit the energy spectrum with a function A(t)  k-nct) exp 
( - P ( t )  k). In  this way, we estimate both the smallest significantly excited scale by the 
logarithmic decrement (Sulem, Sulem & Frisch 1983; Frisch et al 1983; Brachet 
et al. 1983), and the spectral exponent n. 

Figure 1 ( c )  shows that the early time dynamics is characterized by an exponential 
decay of the logarithmic decrement. This process stops when skewness reaches its 
maximum. At this time, scales small enough to make viscosity efficient have been 
excited. Vorticity-gradient production is then inhibited and the width of the 
analyticity strip &(t)  x $( t )  of the Navier-Stokes solution stabilizes. Just after the 
logarithmic-decrement stabilization, the spectral exponent is close to the value 
n = -4 (figure I d ) ,  predicted by the Saffman (1971) theory. Later, around the time 
of maximum enstrophy dissipation ( t  x 6), the spectral exponent displays a sharp 
transition to a value close to n = -3, a value consistent with the enstrophy cascade 
(Kraichnan 1967); Leith 1968; Batchelor 1969; Pouquet et al. 1975). We note on 
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FIGURE 1 .  Spectral evolution of run S5 (see table 1):  ( a )  skewness, (b )  total enstrophy dissipation, 
(c) logarithmic decrement /3 and ( d )  spectral exponent n of the energy spectrum versus time. For 
(c, d )  each curve corresponds to a different fit wavenumber range covering the inertial and part of 
the dissipative range ; the dispertion gives an idea of the precision of the and /3 determination. 

figure 1 ( d ) ,  that by the end of the run (9 < t < 13), the prefactor t,ends to increase 
slowly in absolute value. This effect is probably related to the significant dissipation 
which has then occurred. This is visible on figure 1 ( b )  and also on figure 1 (c ) ,  where 
the dissipation scale and thus the extension of the inertial range have been reduced 
significantly. Similar observations can be made for the non-symmetric runs. Figure 
2 ( a )  for example shows the spectral index versus item for the run P2-800, The best 
fit, represented by the solid line, corresponds to the range 5 < k < 40. The other fits 
are obtained on ranges that are significantly larger than the inertial range and thus 
more affected by the algebraic prefactor of the dissipation range. The extension of 
the inertial range is visible on figues 2 ( b )  and 2 (c)  which display the compensated 
energy spectra k4E(k)  and k3E(k)  at  times before and after the transition, respectively. 
Note the large extent of the dissipation range, necessary in order to accurately 
represent all the scales of motion that contribute appreciably to the enstrophy 
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FIGURE 2 @ ,  6). For caption see next page. 
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FIGURE 2. Spectral evolution of run P2-800 (see table 1). ( a )  Spectral index n versus time obtained 
by fitting the energy spectrum with a function E ( k )  = Ck" exp ( - /3k)  in three different wavenumber 
ranges: ___ , 3 < k < 40; ---, 3 < k < 60; . . . * ,  3 < k < 80. ( b )  k4E(k)  versus k at t = 13. 
(c) k3E(k)  versus k a t  t = 40. 

dissipation. In practice, in all the computations presented here, we adjusted the 
viscosity in such a way as to make the energy-spectrum logarithmic decrement (or 
the dissipation scale) be a t  least eight times larger than the mesh size. 

In a two-dimensional flow, the times of maximum skewness and maximum 
dissipation go to infinity as the Reynolds number R increases to infinity. Several 
predictions have been made concerning the asymptotic scaling of the time of 
maximum dissipation with the Reynolds number. They suggest that the scaling is 
like logR or some fractional power of this quantity (Kida 1981, 1985; Tatsumi & 
Yanase 1981 ; Lesieur 1987). Such a slow variation seems difficult to investigate by 
direct numerical simulations where the accessible range of Reynolds numbers 
producing developed turbulence is very limited. Similarly, it  is difficult to test the 
t-2 enstrophy decay law predicted by Batchelor (1969). 

As seen on the isovorticity contours displayed in figure 3, the k-4 and k-3 regimes 
correspond to quite different configurations of the small-scale structures in physical 
space. During the kP4 phase, the small-scale structures consist of isolated quasi- 
rectilinear vorticity-gradient sheets resulting from differential advecttion of initial 
vortices and stretching of vorticity gradients by velocity gradients. In  the kP3 
regime, the early time sheets have been packed together and display a complex 
structure (figure 3 b ) .  We also notice that in addition to the vorticity-gradient sheets, 
figure 3 displays survival vortices which can be traced back to the initial conditions. 

The dynamics in physical space will be described and interpreted in detail in $4, 
where more elaborate visualizations will be presented. Here we only point out that 
the mechanisms of vorticity-gradient formation and of their piling up when the 
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FIGURE 3. Isovorticity lines for run P2-800: (a)  t = 13, ( b )  t = 40. 

turbulence becomes more mature are not significantly affected by the periodicity 
constraint. This is demonstrated on figure 4 which displays the regimes of isolated 
and packed sheets for the P8-800 run, whose integral scale is much smaller than the 
box periodicity. We see that the structures are essentially the same as in the run 
P2-800, and that, in particular, the sheets do not tend to stretch out indefinitely. 

We conclude this section by a few remarks on intermittency. Because of the linear 
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FIGURE 4. Isovorticity lines for run P8-800 (see table 1): ( a )  t = 4, ( b )  t = 10. 

character of the enstrophy cascade which will be discussed in the next section, 
intermittency in the small scales is not expected to  cause deviation from the kP3 
energy spectrum (Kraichnan 1975). The non-locality of the enstrophy cascade was 
questioned by Basdevant et al. (1981) on the basis of numerical simulations a t  
moderate resolution with hyperviscosity, which display an energy spectrum steeper 
than k3. Recent computations by Legras, Santangelo & Benzi (1988) show that the 
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FIGURE 5. Spectrum of the fluctuations of enstrophy dissipation for run P2-512 (see table 1) a t  
time t = 15.5. 

scale separation of these simulations was insufficient to display an enstrophy cascade 
and that the observed spectrum was dominated by the coherent vortices (Benzi, 
Patarnello & Santangelo 1987). Direct access to intermittency is provided by 
analysing the local enstrophy dissipation 

v ( x )  = v(V x w)2. (3.5) 
Figure 5 shows the dissipation spectrum 

(3.6) 

in the case of run P2-512 a t  a time t = 15.5, corresponding to the k P  regime for the 
energy spectrum. E,(k) displays a power-law range k-" with an exponent -a z 0.5. 
This corresponds to a correlation 

< r ( x ) v ( x + r )  > - lrl-fl, (3.7) 

with I(. = 1 --a. In  a simple model where turbulence is fractally homogeneous with a 
fractal dimension D, structures of scale r occupy a fraction of the total volume which 
scale like rDP2, which leads to D = 2-p.  More complex relations are obtained in more 
elaborated models where dissipation is not uniformly distributed over structures of 
comparable size (Mandelbrot 1976). 
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4. Physical-space dynamics 
One of the main interesting features of direct numerical simulations is that, when 

visualized, they give a complete picture of the turbulent flow. For our two- 
dimensional flows, we used a VICOM Raster image processor. In Brachet et al. (1986), 
we have presented the detailed evolution of the vorticity field for the S5-symmetric 
run. Because of lack of space, we cannot reproduce this evolution here and shall only 
show a few examples a t  times that display significant features of the dynamics. 

The initial conditions correspond to a few isotropic vortices of positive and 
negative signs. At t = 3 (figure 6 a ,  plate l ) ,  a time for which the energy spectrum 
displays a kP4 range, we observe thin and isolated layers across which vorticity 
changes drastically. As suggested by Saffman (1971), these sheets may be viewed as 
boundary layers between large-scale eddies. We also see that these layers correspond 
to vortex tails produced by stretching of vorticity gradients. 

It is possible to characterize the regions where vorticity-gradient sheets will be 
formed : following Weiss (1981) we assume a (temporal and spatial) scale separation 
between velocity and vorticity gradients. In  other words, Vv is assumed to be frozen 
as far as the dynamics of V x o is concerned. Equation (1.5) then becomes linear in 
Lagrangian coordinates and the evolution of V X O  is prescribed by the spectral 
properties of the velocity gradient. It is convenient to rewrite Vv in terms of the 
strain, S = V v +  Vat' and the vorticity : 

vv = - 2 ( S , , - W  #11 "12'"). -S1, 

where S,, = 23,u = - 2i3, v, S,, = a, v + a, u, and o = a, v - a, u. The eigenvalues of 
Vv then read 

A ,  - = [ - det (Vu)]; = & $[S:, + S:2 - w2$. (4.2) 
This equation shows that according to the relative importance of strain and 
vorticity, the eigenvalues of Wv will be real or purely imaginary. In  the regions where 
strain dominates, vorticity gradients are stretched, leading to the formation of 
vorticity-gradient sheets. In these regions, the motion is said to be hyperbolic. In  
contrast, in the regions where vorticity dominates, vortices will be stable. In  these 
regions the motion is said to be elliptic. Note that the zero-vorticity lines play a 
special role. In  their neighbourhood, the motion is hyperbolic and vorticity-gradient 
sheets will be formed. It is thus expected that vorticity gradients will be stretched 
in the region where the Vv-eigenvalues are real, leading to the formation of vorticity- 
gradient sheets directed along the left eigenvector of Vv associated with the positive 
eigenvalue. From (1 -3) the direction perpendicular to the sheets is given by the right 
eigenvector of Vv associated with the negative eigenvalue. These (unnormalized) left 
and right eigenvectors are given by (see (4.1)) 

P+' = [ S , , - W ,  (a;1+S;2-W2)L911]) 

In  order to test this analysis based on the scale-separation hypothesis, figure 6 ( b )  
(plate 1) shows -det (Vv). We see that it is positive in the regions where the sheets 
are formed and negative in the regions where the centres of the vortices are located. 
This permits us to define precisely the core and the tail of a vortex : the core is the 
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FIGURE 6. Physical-space visualizations for run S5 at t = 3 using Raster techniques on a VICOM 
machine. (a) Vorticity w; (b) - det (vv); (c) strain - det (%(vv + Vv")). Negative regions are 
coIoured in orange and positive regions in blue. The intensity is proportional to the absolute magnitude 
of the field. 
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FIGURE 7. Same as figure 6 but at t = 8. 

Plate 2 

M. E. BRACHET ET AL 
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FIGURE 8. Same as figure 6 but at t = 13. 

Plate 3 

M. E. BRACHET ET AL 
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region where -det (Vu) is negative, the tail is the region where it is positive and thus 
subject to vortex stretching. Furthermore, we note that det(Vu) varies smoothly 
across the sheets, which is consistent with the assumption of scale separation. 

The importance in two-dimensional turbulence of direct straining of small scales 
by large scales was first pointed out by Kraichnan (1975) and Herring (1975) who 
argued that at small scales the (scalar) vorticity field is passively strained by the large 
scales. 

Figure 6 (c) (plate 1 )  shows the distribution of the strain at the same time t = 3. We 
see that the regions of strong strain are those where the sheets develop. However, 
note that the sheet contributes strongly to the strain distribution. 

The usefulness of the Weiss' frozen-velocity-gradient model in explaining sheet 
formation was noted by McWilliams (1984) and Brachet & Sulem (1984, 1985). 
However, when the sheets have been formed, they obviously modify the velocity 
gradients. We shall show that this modification is irrelevant for the sheet dynamics. 
Indeed, assume that a quasi-one-dimensional layer has been formed in the direction 
of the left eigenvector associated with the positive eigenvalue of the background 
velocity gradient (4.1). Denote by $I the perturbation of the background stream 
function induced by these vorticity gradient sheets. As the sheets are quasi- 
rectilinear, $I varies only, at leading order, in the direction perpendicular to the 
sheets. Thus $I = k1(s), where s = r ( - - ) - x .  The velocity gradient is changed to 

A little algebra then shows that the eigenvalues and eigenvectors of V(u-u,) are 
identical to those of Vu. This result is best understood by changing to the 
orthonormal frame with x-axis along r(-) and y-axis along Z(+). In this frame the sheet 
is directed along the y-axis, and the values of the strain components are such that 
(see (4.2) and (4.3)) S,, = - (S;,+S&-o2)f, S,,-o = 0. At leading order $, 
depends on 2 only and (4.7) reads 

whose eigenvectors and eigenvalues are the same as that of Vu. This explains why 
scale separation holds even after vorticity-gradient sheets have been formed. 

Figure 7 (plate 2) corresponds to a later time t = 8 within the kP3 regime. We see 
that the vorticity-gradient sheets are no longer isolated but have been packed 
together. Note that across layers that display very strong variation of vorticity, 
det (Vu) varies very smoothly. In the regions where strong (quasi-one-dimensional) 
layers are formed, vorticity is significantly smaller than strain, and we can locally 
approximate the velocity gradient by a constant strain, corresponding to a velocity 
field 

u = - x ,  v = y .  (4.6) 

Vorticity is then viewed as a passive scalar and we can apply the Batchelor (1959) 
analysis (see also Leslie 1973), the relevance of which in the description of the 
enstrophy cascade was pointed out by Kraichnan (1975). Such a velocity field will 
pack together the vortex sheets in the direction of the y-axis. Furthermore, it is easy 
to write the equation satisfied by the correlation function of the vorticity field. 
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FIGURE 9. Space visualization for run P2-512 at t = 7 :  ( a )  isovorticity lines, (b )  left eigenvector 
Z(+) of (Vu) with positive real eigenvalue (when defined). 
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Assuming homogeneity and taking into account the one-dimensionality of the 
problem (to leading order), one has 

(4.7) Q ( E , t )  = < 4z, t )  4 x  + E ,  4 > f 

where < denotes the x-component of point separation. At scales large compared with 
the dissipative scales but small compared with the scales at which the sheets are 
generated, an equilibrium is established for which the vorticity spectrum EJk, t )  
satisfies 

(4.9) 

E,(k) - 1/k,  (4.10) 

which corresponds to an energy spectrum 

E(k) - k-3. (4.11) 

It is important to stress that in contrast with the Saffman theory, this 
Batchelor-Kraichnan analysis is statistical. 

In  addition to the vorticity-gradient sheets, the simulation also displays large- 
scale vortices. We see that these vortices are stretched when they are localized in a 
region of hyperbolic motion. When they move to regions of elliptic motion, their 
isotropy is restored. I n  this case neighbouring structures resulting from packing and 
reconnection of vorticity-gradient sheets are also subject to rotational motion and 
spin up around the coherent vortices. This phenomenon is clearly seen in figure 8, 
(plate 3) corresponding to a time t = 13. Again the local direction of the sheets is 
prescribed by the left eigenvector of Vv associated with the positive eigenvalue. In  
the simple case of a point vortex, the strain eigenvector associated with the positive 
eigenvalue will make an angle of an with the radius vector. 

Throughout this section, we have asserted that the sheets are directed along the 
left eigenvector of Vv associated with the positive eigenvalue. This point is 
demonstrated in figure 9 which shows for the run P2-512 at time t = 7 both the 
vorticity field and the above eigenvector (where it is real). We see that the prediction 
is precisely verified. 

5. Conclusion 
We have presented in this paper direct numerical simulations of high-Reynolds- 

number turbulence. We were able to  characterize precisely the inertial exponent of 
the energy spectrum which displays a transition from k-4 to k-3 when the turbulence 
becomes mature. In  the first regime, the small scales consist of isolated vorticity- 
gradient sheets. In  the second regime, the sheets are packed together and form more 
complex layers. I n  addition to these small-scale structures, the flow displays 
vorticity macro-eddies which appear to be very robust. We have validated the Weiss 
(1981) analysis of two-dimensional dynamics based on scale separation between 
velocity and vorticity gradients, and explained why this analysis remains valid even 
after vorticity-gradient sheets have been formed. In  this approach, the local 
dynamics is completely prescribed by the sign of det (Vv). Where det (Vv) is negative, 
strain dominates and vorticity-gradient sheets are formed in the direction of the left 

12 1'7.31 111.1 
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eigenvector associated with the positive eigenvalue of V v .  Where i t  is positive, 
macro-eddies are stable. The model explains in particular the difference between the 
dynamical influence of pairs of vortices with opposite sign and with the same sign. 
In the former case a line of zero vorticity is present between them, and near this line 
vorticity-gradient sheets are formed. In contrast, two vortices with the same sign 
may either act as a rolling mill and generate vorticity-gradient sheets if strain 
dominates vorticity, or rotate around one another and eventually coalesce when the 
strain is weak. Such coalescence, as seen for example in the run P2-512, is shown in 
figure 9. 

At later times than those we have reached in the simulations, the vorticity- 
gradient layers will be dissipated by viscosity and the dynamics will essentially 
reduce to that of coherent vortices which will persist for a very long time. This regime 
is difficult to investigate with high-resolution codes because of the prohibitive 
computer times that are required. Moderate resolutions are actually sufficient to 
investigate such a regime, in which the small scales have been rubbed out. A detailed 
investigation of the dynamics of the surviving vorticity macro-eddies has been 
carried out by MeWilliams (1984). 

We are grateful to C. Basdevant, U. Frisch, J. Herring, R. H. Kraichnan, S. A, 
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